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In this paper, we describe a data mining method called ADOPT (Automatic Discovery
of Precursors in Time series data) to identify precursors to aviation adverse events. An
adverse event may refer to any unsafe event ranging from a negligible safety hazard to
a catastrophic accident, depending on the scope of the analysis. A precursor is an early
indicator of an increasing likelihood of the adverse event. Identifying precursors is im-
portant in the context of a proactive safety management because precursors detect the
increasing severity of the underlying hazard much earlier, giving sufficient time to identify,
analyze and implement corrective actions. ADOPT analyzes large volumes of historical
data to find complex trends among several sensory variables simultaneously to find precur-
sors. ADOPT’s data mining approach captures real-world effects such as human factors,
weather, geographic constraints, operating procedures, airline strategies etc that are dif-
ficult to capture using first-principle models. This paper describes the algorithm using
two case studies including a take-off stall hazard and RNAV adherence. While the case
studies are not intended to discuss the critical safety risks in aviation, they are used to
demonstrate the various steps involved in ADOPT including data preparation, variable
selection, parameter tuning, experiment setup and analyzing the results. The results show
that ADOPT can be a powerful tool to identify and analyze performance and safety issues
in Aviation.

I. Introduction

Many of the current aviation safety systems are reactive (i.e., an adverse event occurs first which is used
to trigger a response/ recovery). For example, after an impending stall is sensed, an alert in the form of a
stick shaker is given so that the pilot initiates a recovery maneuver. While reactive systems are abundant
in current aviation systems, they may not always work and accidents do happen in rare cases. Often the
time between the alert and the adverse event can be short in a reactive system. Further, during the recovery
process, any secondary factors such as human fatigue, lack of situational awareness often results in a failed
recovery.1,2 Thus, to improve safety, a proactive approach to risk management is required. A proactive
system identifies the latent risk factors early so that sufficient time is available to analyze the situation,
make predictions about possible outcomes, and choose the best action to enforce a risk mitigation plan in
order to prevent adverse event.3 In this paper, we address the first aspect of identifying latent factors (which
we call precursors) to aviation safety events. We propose to use operational data of past adverse events
to identify the precursors in a retrospective way. We describe a recently developed data mining technique
called ADOPT (Automatic Discovery of Precursors in Time series)4 and show its application to aviation
problems. We discuss how one can use historical aviation data and the ADOPT algorithm to setup a data
mining work-flow, and automatically infer a knowledge base a of precursors to some adverse event of interest.

aA knowledge base could be a set of precursor rules or a model that infers precursor variables using sensory measurements.
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A precursor is an early indicator of an increasing likelihood of the adverse event. For instance, a “hard
touchdown” could be an adverse event for which a precursor could be a “high descent rate at the outer-
marker” which gives an indication that a hard touchdown may occur. An adverse event in ADOPT may
refer to any unsafe event ranging from a negligible safety hazard to a catastrophic accident that is of interest
to the analyst. It may be an event that occurs at the subsystem level (as in engine failure), flight level
(runway excursion), airport level (delays) or at the airspace level (traffic congestion). As precursors are
early indicators, identifying them may give an increased response time to proactively determine subsequent
risk. For example, knowing the high descent rate early in approach, the pilot may analyze the risk, evaluate
corrective actions, and enforce the best action so that the hard landing is prevented.

Methods to identify precursors include incident/accident investigations, trend analysis, expert panel,
simulation and testing, and using data mining. In this paper, we follow a data mining approach. The main
advantage of basing the discovery process directly on operational data is that one can expect to capture the
precursors arising from real-world effects such as human factors, weather, geographic constraints, operating
procedures, airline strategies etc that are difficult to capture using models based on first-principles. Thus,
ADOPT could be complementary to existing approaches. In addition, many of the modern aviation systems
are equipped with sensors that collect rich data at multiple system and subsystem levels in the US National
Airspace (NAS). Using such a rich source of information, it may now be possible to uncover some of the
hidden risk factors in the NAS by mining operational data.

The ADOPT algorithm is a general methodology that does not make any special assumptions about the
system and does not need specialized knowledge on the system states enabling it to operate directly on the
observed time series data. Further, it can scale well to multivariate time series and can analyze large number
of flights, which may enable a faster turnaround time for subsequent tasks such as hazard identification and
safety risk analysis.5 A subject matter expert may require a few hours to analyze a flight for precursors
which is not scalable considering the thousands of flights operated on a daily basis. Also, human experts may
not be able to visualize hundreds of time series variables to notice complex variations and trends in the data.
ADOPT may be used to speed this process by analyzing the thousands of flights that operate every day to
short-list only the significant precursors which may then be analyzed by a subject matter expert, reducing
the turnaround time for safety analysis. Recently, ADOPT was published from a data mining perspective4,6

with some preliminary demonstration using aviation safety problems. In this paper, we present further case
studies using two scenarios including take-off stall hazard and RNAV procedure adherence. The case studies
demonstrate the working of ADOPT under different problem scopes and data sources, and offer insights on
how to efficiently apply data mining to discover safety precursors.

The rest of the paper is organized as follows. The precursor mining methodology and ADOPT algorithm
are detailed in Section II which is followed by detailed case studies in Section III. A brief summary of relevant
work and literature is presented in Section IV and is followed by concluding remarks in Section V.

II. Methodology

An adverse event such as a safety incident is a temporal phenomenon which is usually preceded by a
sequence of events. Also, we usually have multiple sensors observing the system collecting time stamped
data. Thus, our setup has a multivariate time series with d variables as shown in Figure 1. If the adverse
event Ea occurs at time L + 1, the data prior to the adverse event (corresponding to time 1, 2, .., L) can
be considered the search data where precursors may be present. Let N = {X1, X2, .., XN} be a database
containing N such time series records. Similarly let N = {X1, X2, .., XN} be a database containing N time
series records that are nominal; i.e., data where Ea does not occur. For example, flights that had a speed
exceedance for a year could be considered the adverse database N . On the other hand, the flights where the
exceedance did not occur during that year may be considered the nominal database N .

A data record Xi can be represented in matrix form as follows

Xi =


x1(1) x1(2) . x1(Li)

x2(1) x2(2) . x2(Li)

. . . .

xd(1) xd(2) . xd(Li)


where Li is the length of the multivariate time series Xi. Here, a data record X may be a flight with d
sensory variables such as velocity, altitude, etc. that are measured at regular sampling intervals. The event
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Start of adverse event 

Figure 1: Schematic showing the data setup for precursor discovery in ADOPT. Each data record is a time
series of d dimensions.

at time k is given by
x(k) = [x1(k), x2(k), .., xd(k)] . (1)

The time series record Xi can now be represented in terms of events as Xi = [x(1),x(2), ..,x(Li)]. With
this setup, ADOPT defines a precursor as follows. Given a sequence of events X = [x(1),x(2), ..,x(L)], an
action is any transition ak : x(k) −→ x(k + 1) where 1 ≤ k ≤ L, then ak is a precursor to Ea if

V (ak)− V (a∗k) > δ, (2)

where a∗k is the expert action at time k and V (.) is the expert’s value function.4

A value function in this context, is a metric that evaluates a given transition (ak in this case) for its long
term consequence with respect to the adverse event. It was shown in6 that the value function is equivalent to
the conditional probability P (Ea|ak); i.e., a high value of ak translates to a high probability of adverse event
occurring in the future. Thus, the expert’s value V (a∗) is always less than or equal to V (a). We assume that
the nominal data is generated by an expert who manages the state transitions so that the adverse event is
prevented. Consequently, the expert’s action a∗k is the best action that can be taken at time k to prevent
the adverse event.

The algorithm begins by taking data corresponding to nominal N and adverse N time series as trajectory
demonstrations of the expert and non-expert respectively. The expert’s reward model R(x) is defined based
on the knowledge of the adverse event in the data as

R(x) =


0, if x = x(L) and X ∈ N
1, if x = x(L) and X ∈ N
0, otherwise.

(3)

In other words, we assign a reward of 1 for the last state transition in the adverse time series data; i.e.,
when the adverse event happens. Everywhere else, the state transition gets a reward of 0 for the adverse time
series. For the nominal time series, the reward is set to 0 for all state transitions. Using the reward model
and the trajectory data, the expert’s value model V̂ πE (x) is estimated using reinforcement learning. The
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idea behind the value function is to capture the long-term consequence of the state. Note that the reward is
an instantaneous consequence of the state. For our purposes, we need to evaluate the long-term consequence
to identify if a given state/action is a precursor. A support vector machine (SVM) classification model is
used to model the expert’s value function. For a detailed description of the steps involved in ADOPT, we
refer to.4,6 Using the value model, every data transition (abstracted as action ak) of a test flight is evaluated
for its correlation to the adverse event. A high correlation is inferred if

PS(ak) = V πE (ak)− V πE (a∗k) > δP , (4)

In other words, when a pilot takes an action that is similar to an “expert”, then PS(ak) will be low while
if the pilot takes a “poor” action that lowers safety, then V πE (ak) for that action will be high which makes
PS(ak) to be higher than the threshold δP . Such an action will be detected as a precursor.

III. Case Studies

In this section, we detail two case studies to demonstrate the working of ADOPT. While the case studies
are not intended to discuss the critical safety risks in aviation, they are used to demonstrate the various steps
involved in ADOPT including data preparation, variable selection, parameter tuning, experiment setup and
analyzing the results.

A. Take-off Stall Hazard

This case study is a demonstration of how monitoring data from an aircraft can be used to find safety
precursors at a flight level. Here the goal is to find precursors to a stall related hazard during take-off. This
is an important problem because airspeed management based accidents were prevalent in the last decade.1,2

While aerodynamic stall is a well studied problem and a reactive safety system (stick shaker for example)
exists, we aim to identify precursors that may inform proactive safety systems to prevent the hazard. In our
prior work, we introduced this problem and developed an algorithmic framework using ADOPT.6 Here, we
aim to reuse this case study and discuss additional flight examples.

In this case study, a stall hazard is characterized by a drop in airspeed during take-off with a severity of
at least 20 knots in airspeed reduction. This severity level detects events that are operationally significant
as well as gives sufficient data records to train our models. The reason for choosing airspeed to study
precursors is as follows. The airspeed is an important component of the energy state of the aircraft. The
airspeed profile during take-off is determined using the gross weight of the airplane, air temperature and
using the performance characteristics of the airplane. Any human errors in the calculations or during take-
off, lack of state awareness and external disturbances will be observed in the airspeed prior to the hazard.
While the definition of the adverse event is based purely on the airspeed, the precursor analysis considers
multiple time series variables in combination to find latent factors present in the explanatory variables.

Using the Flight Operational Quality Assurance (FOQA) data from a de-identified airlines, we obtained
two sets of flights - the ones that had the drop in airspeed events and the ones that did not (the nominal).
Let these two datasets be identified as N and N respectively. The FOQA data has more than 350 time
series variables in each flight and it is not trivial to decide which ones to choose for precursor analysis. We
did feature selection based on Granger Causality7 to get an initial set of variables from which shortlisted
further using domain knowledge for further ADOPT modeling. More than 150 variables were eliminated
using Granger causality method. From the rest, the top 10% of the variables that causally affects airspeed
were short listed. We verified the short-listed variables with a team of domain experts who eliminated some
variables that were unrelated to the airspeed drop events and added a few that were missed by Granger
causality method.

The data is split as 90% for training (about 36000 flights) and the remaining (about 4000 flights) for
testing. The class proportions in the data are balanced with equal number of nominal and adverse flights
by randomly sub-sampling the nominal flights which were in excess. The Support Vector Machine (SVM)
model for ADOPT’s value function was trained using Gaussian kernel parameters γ = 10, C = 50, achieving
an accuracy of over 85% on the unseen test data.6 The values of γ and C are selected based on cross-
validation. Using the trained models, we analyze the precursors to the drop in airspeed events in the following
sections. We identified some commonly occurring scenarios and included an example flight for each. For each
example, we refer the flight evaluated by ADOPT as the “test flight”. The plots show nominal distribution
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of parameter values in green (10-90 percentile) and blue (25-75 percentile) as references. The blue area shows
what a nominal flight (with no adverse event) values look like. The green area includes more variations in
the nominal flights and thus shows possible values that may be slightly off-nominal but still ends up with
no adverse event. Note that these distributions are not given to ADOPT during learning and are available
only to serve as references. The flight progress (or time) is along the x-axis from left to right where the right
most data point corresponds to the adverse event. Markers of type ‘X’ will be used to indicate precursor
time instances in the flight.

1. Flight Analysis 1: Reference speed set incorrectly

In this example, the speed reference (PFD b selected speed) is incorrectly set during take-off which turns
out to be the main precursor. The flight takes off nominally until about 30 seconds when the test flight’s
PFD was set to less than 150 knots. Note that during this time, most nominal flights had their PFD speed
increased above 200 knots (see Figure 2). The PFD speed is a reference based on which the pitch commands
are derived (a high pitch command is followed to match the low PFD speed reference). Correspondingly,
between 30 and 45 seconds after take-off, the PFD Speed was ranked as a top precursor (see Table 1).
Although the pitch is defined by the PFD, it is also identified as one of the top precursors by ADOPT. In
this way, ADOPT ranks the time series variables at each time step that contributed to the high precursor
score. This is important to understand and interpret the results of the model, particularly when the data
is high dimensional. ADOPT breaks down the influence of each variable independently and ranks the top
precursors at a given time instant. To get a visual understanding, ADOPT’s scoring is shown in Figure 2.
The “Prob” plot shows the probability of the speed drop occurring calculated every time step of the flight.
The precursor score is shown in the “Precursor Index” plot along with the learned threshold. The threshold
gives the cut-off at every time-step on the precursor score; i.e., a value greater than the threshold indicates
a precursor. The precursors discovered for this flight and for others were qualitatively validated by subject
matter experts who did an independent analysis of the flights for precursors.
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Figure 2: Flight time series variables plotted (thick black curve) against time (seconds) after lift-off. The
distribution of nominal values are shown in blue (25-75 percentile) and green (10-90 percentile) as references.
The X marker in red shows the precursors identified by ADOPT while the two O markers in red show the
start of the speed drop and where the drop reaches 20 knots respectively.

2. Flight analysis 2: High headwind

In this example, the flight took-off in a strong headwind reaching about 25 knots. There was no significant roll
and the correct PFD speed was set around 30 seconds (see Figure 3) unlike the previous example. Initially,
the flight appears to have a high airspeed because of the headwind which became normal after the headwind
dropped low which caused the overall drop in airspeed for this flight to exceed our defined threshold of 20
knots. While this is purely external, ADOPT correctly identifies headwind (note that a negative tailwind is
a headwind) as the top precursor until about 20 seconds (see Table 2). The corresponding precursor scores
and the probabilities are shown in Figure 3. Note that although pitch angle seems to be within nominal
bounds, it is listed as a top precursor. One reason could be that, for the given values of high winds, the pitch

bPrimary Flight Display
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Table 1: Precursors ranked by ADOPT at various points during the flight after lift-off. The precursor at the
top is contributing most to the high precursor score.

Time = 1s 4s 30s 35s 40s 45s 50s

Tailwind Pitch Angle PFD Spd PFD Spd Pitch Angle Pitch Angle PFD Spd

Pitch Angle Altitude Pitch Angle Tailwind PFD Spd PFD Spd Pitch Angle

Roll Angle Roll Angle Auto-throttle Pitch Angle Tailwind Tailwind Tailwind

Altitude Tailwind Roll Angle Roll Angle Auto-throttle Auto-throttle Auto-throttle

Auto-throttle Auto-throttle Altitude Altitude Autopilot Autopilot Autopilot

could have been managed differently to reduce the speed drop. ADOPT works with all time series variables
in combination and is efficient at finding precursors that involve multiple variables simultaneously.
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Figure 3: Flight time series variables plotted (thick black curve) against time (seconds) after lift-off. The
distribution of nominal values are shown in blue (25-75 percentile) and green (10-90 percentile) as references.
The X marker in red shows the precursors identified by ADOPT while the two O markers in red show the
start of the speed drop and where the drop reaches 20 knots respectively.

Table 2: Precursors ranked by ADOPT at various points during the flight after lift-off. The precursor at the
top is contributing most to the high precursor score.

Time = 1s 4s 20s 25s

Pitch Angle Tailwind Tailwind Pitch Angle

Tailwind Pitch Angle Pitch Angle PFD Spd

Altitude Roll Angle Roll Angle Tailwind

Roll Angle Altitude PFD Spd Roll Angle

Auto-throttle Auto-throttle Altitude Altitude

3. Flight Analysis 3: Large roll at take-off

In this example, the flight takes off at moderate winds and the PFD speed is set correctly around 30 seconds
(see Figure 4). However, the flight makes a roll and pitches up simultaneously possibly causing excessive drop
in airspeed from about 10 seconds after lift-off. ADOPT lists the pitch angle and roll angle among the top
precursors for this flight (see Table 3). The corresponding precursor scores and the prediction probabilities
are shown in Figure 4.
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Figure 4: Flight time series variables plotted (thick black curve) against time (seconds) after lift-off. The X
marker in red shows the precursors identified by ADOPT while the two O markers in red show the start of
the speed drop and where the drop reaches 20 knots respectively.

4. Flight analysis 4: Nominal flight

In this example, most of the flight variables follow nominal values and thus, ADOPT does not find any
precursors. Figure 5 shows the flight data as well as the probability and precursor scores. Note that the
probability always stays under 0.2 and the precursor score always less than the threshold indicating no
precursors.
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Figure 5: Flight time series variables plotted (thick black curve) against time (seconds). The distribution
of nominal values are shown in blue (25-75 percentile) and green (10-90 percentile) as references. The X
marker in red shows the precursors identified by ADOPT while the two O markers in red show the start of
the speed drop and where the drop reaches 20 knots.

5. Discussion

In this section, ADOPT algorithm was applied to find precursors to the drop in airspeed events during
take-off. The precursors identified important latent factors to the airspeed drop events and helped assist the
domain experts in our group to identify possible root causes. For majority of the cases, the main precursor
was an incorrect setting of the PFD speed reference. For some of the flights we analyzed, human errors prior
to takeoff were speculated including possible errors in performance calculations and overcompensation to a
high headwind during take-off. While additional investigations are required to confirm the true causes, the
case study shows how ADOPT can help distill the large volumes of flight data into a set of focus points in
the flight where further human analysis can be performed.

B. STAR Procedure Adherence

The second case study is an example of how ADOPT can be used to quantify performance of flights fol-
lowing standard operating procedures such as the standard terminal arrival routes (STAR) Area Navigation
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(RNAV). RNAV aims to achieve an optimized flight path, reduce traffic congestions and a streamlined con-
trolled flow of flights to the airport. The performance of STAR RNAV procedures were quantified using
a combination of lateral and vertical adherence rates of flights following instrument procedures in the lit-
erature.8 As a case study to demonstrate ADOPT, we consider the vertical adherence as defined in8 as
the adverse event and aim to find precursors. The adverse event is flagged if a flight is above the defined
altitude limits of a waypoint. Although intentional non-adherence may not involve any safety risk, any non-
intentional ones could be potentially dangerous and create inefficiencies. For this case study, we looked at a
subroute (POTTY.JOVEM1) from the JOVEM1 procedure at Dallas-Fort Worth Intl Airport, and applied
ADOPT to find precursors to altitude excursion (from above) at the MSSLE waypoint. The sequence of
waypoints in the subroute is shown in Figure 6.

The MSSLE waypoint has an “at” restriction where the crossing altitude should be at 11,000 ft within
a tolerance of +/-300 ft. The data for this study comes from the Center-TRACON Automation System
(CTAS) at NASA, Aviation System Performance Metrics (ASPM), procedure definitions from the Coded
Instrument Flight Procedures (CIFP) data defined by the FAA for every 56 day chart cycle release. The
time-stamped data is grouped based on flight identifier to get a time series of variables for each fligh. Then,
we divided them into nominal and adverse data sets as required by ADOPT; the ones that had an altitude
excursion (altitude above the procedure specified value at MSSLE waypoint) constitute the adverse flights.
The data had about 35 variables from which a subset were chosen based on domain knowledge. The variables
that we chosen include altitude, ground speed, tail wind, descent rate at the waypoint and required slope to
reach the next waypoint. In addition, we also included some artificially made binary variables to characterize
the flight path including lateral skip feature (to flag if the flight skipped a waypoint laterally), altitude skip
feature (to flag if the flight had an excursion above the limits), slope-possible feature (flags if the required
slope is higher than the slope defined by the current and the next waypoint), late-entry feature (flags if the
flight entered the route from a waypoint other than a defined entry point) and early-exit feature (flag if the
flight left the route from a waypoint other than a defined exit point). The data was preprocessed by ADOPT
to split the data into a set each for nominal and adverse time series, normalization, cleanup, splitting into
training and validation sets etc. The training set had about 400 examples each for nominal and adverse
flights while the test set had about 50 examples each.

The SVM model for ADOPT’s value function was learned with parameters Gaussian kernel, γ = 5,
C = 1 with an overall accuracy of 61%. The accuracy at specific waypoints varies (see Figure 7) as data
early in the flight may not have enough information to predict the excursion far in the future. The model
was applied on the training data to find the precursor scores for both the nominal and the adverse time
series. A simple threshold was learned from this data so that when applied on the precursor score, it rightly
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classifies the data as being nominal or adverse. The threshold was learned independently at every time
step. The corresponding accuracies are shown in Figure 7. It can be seen that the training and testing
accuracies follow the same trend. Also, the accuracy is 100% at JOVEM waypoints indicating that the state
transitions at JOVEM can predict the altitude excursions at MSSLE with a high accuracy. ADOPT was
able to automatically identify this from data. We also analyzed several flights which is discussed below.
Similar to the previous case studies, the results were qualitatively evaluated by subject matter experts. In
the analysis, the waypoints POTTY, COWNE, JEYAR, DEBB, JOVEM and MSSLE are labeled as P, C,
Je, D, Jo, M respectively to make easy appearance in the plots. The adverse event is checked at waypoint
M (for MSSLE). The abnormalities at the previous waypoints (P through J) are detected as precursors.

Similar to the previous case study, we refer the flight evaluated by ADOPT as the “test flight”. The
plots show nominal distribution of parameter values in green (10-90 percentile) and blue (25-75 percentile)
as references. The blue area shows what a nominal flight (with no adverse event) values look like. The green
area includes more variations in the nominal flights and thus shows possible values that may be slightly
off-nominal but still ends up with no adverse event. Note that these distributions are not given to ADOPT
during learning and are available only to serve as references. The flight progress (or time) is along the x-axis
from left to right where the right most data point corresponds to the adverse event. Markers of type ‘X’ will
be used to indicate precursor time instances in the flight.

1. Flight Analysis 1: Consistent high altitude profile

This is an example of a Boeing 747-8 descending with an altitude higher than nominal at the waypoints
C, Je, D and Jo (see Figure 8 for the black curve outside distribution). Consequently, the required slope
to reach the next waypoint is also higher than nominal (more negative indicates steeper slope down). The
ground speed and tailwind are marginally high during these times because of which further descent may
have been difficult. The flight not being able to descend faster, has an excursion at waypoint M. ADOPT
identifies the flight to have precursors throughout its path in the route and ranks the slope possible feature,
descent rate and tail winds as the top precursors (Figure 8 gives the probability of excursion at M while the
Table 4 for precursor ranking).
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Figure 8: Precursor analysis of a Boeing 747-8 showing flight data as a black curve in each subplot. The
nominal data distribution are shown in blue (25-75 percentile) and green (10-90 percentile) as references.
The X marker in red shows the precursors identified by ADOPT.

2. Flight Analysis 2: Marginally high altitude

In this example, the flight was an Embraer E170 aircraft having nominal tail wind and ground speed with
altitudes marginally higher (see Figure 9). However, the flight does not descend fast enough at waypoints D
and Jo causing an excursion at waypoint M. At Jo, the slope-possible feature changes to 1 (flagged ON which
means the slope required to reach the next waypoint is higher than slope defined by the waypoints). This
indicates that the flight was managed sub-optimally from waypoint D to Jo increasing the precursor score.
At these waypoints, ADOPT identifies this feature along with improper altitude and descent rates to be the
main precursors (see Figure 9 for precursor scores and Table 5 for the precursor ranking). This example
shows a case of marginal drift in energy management that is left uncorrected just before the waypoint at
MSSLE which ADOPT identified.
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Table 3: Precursors ranked by ADOPT at various points during the flight after lift-off. The precursor at the
top is contributing most to the high precursor score.

Time = 1s 20s 25s 30s 35s

Tailwind Pitch Angle Pitch Angle Autopilot Autopilot

Roll Angle Autopilot Roll Angle Roll Angle Auto-throttle

Pitch Angle Roll Angle Tailwind Auto-throttle Roll Angle

Altitude PFD Spd PFD Spd Pitch Angle Tailwind

Auto-throttle Tailwind Auto-throttle Tailwind Pitch Angle

Table 4: Precursors ranked by ADOPT at various waypoints for the Boeing 747-8 flight example.

P C Je D Jo

Altitude Slope-possible Slope-possible Slope-possible Slope-possible

Ground Spd Descent Rate Ground Spd Descent Rate Altitude Skip

Descent Rate Tailwind Descent Rate Tailwind Descent Rate

Tailwind Ground Spd Tailwind Ground Spd Ground Spd

Altitude Skip Altitude Altitude Altitude Tailwind

Slope-possible Altitude Skip Altitude Skip Altitude Skip Altitude
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Figure 9: Precursor analysis of an Embraer E170 showing flight data as a black curve in each subplot. The
nominal data distribution are shown in blue (25-75 percentile) and green (10-90 percentile) as references.
The X marker in red shows the precursors identified by ADOPT.

Table 5: Precursors ranked by ADOPT at various waypoints for the Embraer E170 flight example.

C D Jo

Altitude Slope-possible Altitude Skip

Tailwind Altitude Slope-possible

Descent Rate Descent Rate Descent Rate

Ground Spd Tailwind Tailwind

Altitude Skip Ground Spd Ground Spd

Slope-possible Altitude Skip Altitude
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3. Flight Analysis 3: Nominal flight having precursors but corrected

This is an example of flight Embraer E170 aircraft that has some mild factors but are corrected just before the
excursion checkpoint at M. The tailwind and ground speed are moderate but the transition from waypoint
D to Jo does not have sufficiently descent rate which makes it high in altitude at waypoint Jo. This is very
similar to the previous example. However, this was corrected before it reached waypoint M making sure the
altitude was within acceptable window. This is an example where a marginal suboptimal state transition
is seen at waypoint D which was corrected between Jo and M. ADOPT identifies altitude, slope-possible
and descent rates as the top precursors for waypoint D shown in Table 6. The flight data distribution and
prediction probabilities are shown in Figure 10.
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Figure 10: Precursor analysis of an Embraer E170 showing flight data as a black curve in each subplot. The
nominal data distribution are shown in blue (25-75 percentile) and green (10-90 percentile) as references.
The X marker in red shows the precursors identified by ADOPT.

Table 6: Precursors ranked by ADOPT at various waypoints for the Embraer E170 flight example.

C D

Altitude Slope-possible

Ground Spd Altitude

Descent Rate Descent Rate

Tailwind Tailwind

Altitude Skip Ground Spd

Slope-possible Altitude Skip

4. Flight Analysis 4: Nominal flight with no precursors

This is an example of a Boeing 737-8 flight that was nominal in all variables (see Figure 11) and thus ADOPT
in this case identifies no precursors.

5. Discussion

While the take-off stall hazard is an example of high frequency data (measured every second) , the RNAV
case study is an example of a coarsely sampled data where the data is recorded only at waypoints (measured
every tens of seconds to minutes). This is reflected in ADOPT’s low accuracy for the RNAV study as
the level of uncertainty increases with coarse sampling. For the RNAV case study with altitude excursions
from above at MSSLE waypoint, it appears that majority of the flights failed to descend fast enough at
previous waypoints could be the main reason for not able to descent enough at MSSLE. Sometimes this was
corrected while sometimes not depending on many factors including ground speed, aircraft type, controller
communication etc. For some cases, a combination of altitude and ground speed is higher than nominal which
doesn’t give any room for the crew to descend at the required rate, causing an excursion. The recovery in
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Figure 11: Precursor analysis of a Boeing 737-8 showing flight data as a black curve in each subplot. The
nominal data distribution are shown in blue (25-75 percentile) and green (10-90 percentile) as references.
The X marker in red shows the precursors identified by ADOPT.

this case would be difficult. It would be interesting to know the operational factors involved such as if there
was restriction from the controllers on the ground or if the crew was unaware etc. Unfortunately, it is not
easy to make a conclusion without having the voice communication or other data to confirm. However, for
the case study, ADOPT was able to take time series flight data and just minimal knowledge of the adverse
event’s occurrence, and able to identify precursors to such incidences.

IV. Literature Review

Precursor analysis is a recent area of research and very few algorithms exist that can automatically mine
the data and identify precursors.4,9 Other data mining algorithms such as rule mining,10,11 causal mining12

and motif mining13 may be adapted to find precursor rules. However, such methods are often limited because
of the exponential growth in the number of rules14,15 for systems involving multiple sensory variables such
as Aviation. This problem is prevented by directly operating in a continuous vector space which avoids
the need for discretization of continuous data. Relevant to Aviation, precursors are usually analyzed using
anomaly detection methods.16 For example, issues in flight deck human-automation interactions may be
detected using anomaly detection.17,18 Our prior work involved finding precursors to go-arounds,4 high-
energy approach and landing issues19 and stall hazard6 using the ADOPT algorithm discussed in this paper.
This paper is an extension of the previous works that includes several scenarios of safety precursors under
different problem setups.

V. Conclusions

ADOPT is a recently developed data mining algorithm that can help discover latent factors indicative
of adverse events using data. A characteristic feature of ADOPT is in its ability to observe the temporal
nature of the problem and retrospectively identify the time instances corresponding to precursors. This paper
detailed the application of the ADOPT algorithm to find aviation safety precursors using real operational
data. The ideas behind precursor discovery is described followed by analysis using two adverse events
including take-off stall hazard and RNAV procedure adherence. For each of the cases, the motivation,
problem setup, data and model building are discussed followed by flight analyses that demonstrate the use
of ADOPT algorithm in finding precursors. The results are validated qualitatively by subject matter experts
and precursors are identified for the two adverse events early in the flight which gives significant lead time
before the incidents occur. A list of features and benefits of ADOPT are summarized below

• The data input to ADOPT include a set of time series data leading up to the adverse event and a set of
nominal time series data. The data may be multivariate and may contain continuous and categorical
variables. ADOPT operates in a continuous vector space and needs no prior discretization of variables.

• ADOPT’s results include a set of time instances in the time series data that correspond to precursors, a
ranked list of variables that are precursors at each of the time instances, recommended actions (increase,

12 of 14

American Institute of Aeronautics and Astronautics



decrease or stay constant) for each of the precursor variables, probability of the adverse event at each
time-step useful for further risk analysis and forecasting.

• Any domain knowledge may be used for feature selection or select time periods for ADOPT to analyze
which speeds up modeling.

• The underlying model in ADOPT may be any classifier of choice. In this paper, we used support vector
machines (SVM) but any other classification model such as decision trees or neural networks may be
used.

• ADOPT algorithm can be modified to find precursors to multiple adverse events simultaneously.

• ADOPT can be easily parallelized by performing precursor discovery on independent batches of flights.

• A Python based open source version of ADOPT algorithm will be made available in the future for
further development and industrial applications.

ADOPT is a general algorithm that can be applied to a wide variety of aviation adverse events. It has to
be noted that ADOPT only identifies correlation and not causation. While the precursors may indicate an
impending safety event by showing an abnormality in certain measured quantities, further investigations are
usually required to identify root causes. However, ADOPT identifies the time instances in the flight as well
as the variables in ranked order as precursors, which helps speed up this process. In other words, ADOPT
“simplifies” the data from a flight or an airspace (often in the order of hundreds of variables sampled at a
high frequency) and outputs a condensed information set (the precursors) so that safety analysts can start
from the precursors instead of the original data. Future work will focus on implementing the knowledge base
of ADOPT in an online system that proactively detects safety precursors and recommends corrective actions
to pilots or controllers to aid in proactive safety management.
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