
Statechart Analysis with Symbolic PathFinder

Corina S. Păsăreanu
CMU-SV/NASA Ames

NASA Ames Research Park, MS 269-2, PO Box 1
Moffett Field, CA 94035

Email: corina.s.pasareanu@nasa.gov

!"#$%&'()

!"#$%&'
*+,-.+/01*2#234&5)

6.-77#8.3)*3,#/9:%)

;3/3<+:)=>3:-9&/)=/?+<&/,3/2)

@AB) !"#$%&'()

()*)+',*-./0+',12+3'/0'4*5*'

67#$%&'

(8,913/-'#*).:/02+;'

*2#234&5)

C#2#)+/23<D#:3)

A&'3.+/7)1))
E/23<,3'+#23)!3$<3%3/2#9&/)

)

=<<&<)
!3$&<2)

*(%23,#9:)
F/#.(%+%)

*(,)=>3)G<33)

G3%2)
*3H-3/:3%)

I&/%2<#+/2)
*&.?+/7)

Figure 1. The Polyglot Framework

I. STATECHART MODELING WITH POLYGLOT

We report here on our on-going work that addresses the
automated analysis and test case generation for software
systems modeled using multiple Statechart formalisms. The
work is motivated by large programs such as NASA Ex-
ploration, that involve multiple systems that interact via
safety-critical protocols and are designed with different
Statechart variants. To verify these safety-critical systems,
we have developed Polyglot [1], a framework for modeling
and analysis of model-based software written using different
Statechart formalisms. Polyglot uses a common intermediate
representation with customizable Statechart semantics and
leverages the analysis and test generation capabilities of the
Symbolic PathFinder tool [2]. Polyglot is used as follows
(see Figure 1). First, the structure of the Statechart model
(expressed in Matlab Stateflow or Rational Rhapsody) is
translated into a common intermediate representation (IR).
The IR is then translated into Java code that represents
the structure of the model. The semantics are provided as
“pluggable” modules.

Currently, Polyglot includes modules that implement the
semantics of Matlab Stateflow, Rational Rhapsody, and
UML Statemachines; the framework can be extended easily
with other statechart semantics. The Java code representing
the structure of the model is combined with one of these
semantic modules, resulting in an executable component.
Analysis and test case generation is then performed using
Symbolic PathFinder (SPF). Polyglot can be used to execute
and analyze systems that contain interacting components
modeled with the different Statechart formalisms.

II. ANALYSIS WITH SYMBOLIC PATHFINDER

Symbolic PathFinder (SPF) [2] is an analysis tool for Java
bytecode that performs symbolic execution to generate test
cases that achieve high test coverage. Symbolic execution
is a systematic program analysis that uses symbolic values
instead of actual data inputs and symbolic expressions to
represent the values of program variables. The state of a
symbolically executed program includes the symbolic values
of program variables, a path condition (PC), and a program
counter. The path condition is a Boolean formula over the
symbolic inputs, encoding the constraints which the inputs
must satisfy in order for an execution to follow the particular
associated path. These conditions are solved using off-the-
shelf constraint solvers to generate test cases guaranteed to
exercise the analyzed code. Symbolic PathFinder generates
both test vectors and test sequences; the latter are necessary
for testing looping, reactive programs, such as the ones
translated from the Statechart models. During test case
generation, SPF checks the properties of the code, expressed
as assertions or property automata.

We have applied SPF to the analysis and test case gen-
eration of Statecharts in Polyglot. The analysis uncovered
subtle interaction errors between components modeled with
Statecharts, for the flight software developed for NASA
Exploration. To increase the speed of our analysis, we are
investigating program specialization via symbolic execution.
This involves using SPF to specialize the Polyglot semantic
modules with respect to particular Statechart models. Our
preliminary results are encouraging, showing 3x improve-
ment in analysis time, with 10x fewer instructions being
executed by SPF.

ACKNOWLEDGMENT

This is joint work with D. Balasubramanian, M. Whalen,
G. Karsai, T. Pressburger and M. Lowry.

REFERENCES

[1] D. Balasubramanian, C. S. Păsăreanu, M. W. Whalen, G. Kar-
sai, and M. R. Lowry, “Polyglot: modeling and analysis for
multiple statechart formalisms,” in ISSTA, 2011, pp. 45–55.

[2] C. S. Păsăreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-
Burlet, M. Lowry, S. Person, and M. Pape, “Combining unit-
level symbolic execution and system-level concrete execution
for testing nasa software,” in ISSTA, 2008, pp. 15–26.

