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ABSTRACT
Advances in miniaturization will allow for the commoditi-
zation of tiny satellites, known as “CubeSats.” This com-
moditization in addition to reducing price and increasing
the numbers of satellites, will also result in the “democra-
tization” of small space missions where numerous institu-
tions and can launch their own satellites. However, current
algorithms made for small tightly-managed space missions
are ill-designed to take advantage of the huge amount of
resources available in a decentralized collection of Cube-
Sats. We believe that multiagent evolutionary algorithms
are ideally suited to exploit the distributed nature of this
new problem. This paper presents a solution where a cus-
tomer in need of satellite observations can reliably obtain
these observations at low cost, through the help of a multi-
agent system as an intermediary. Each agent in this system
is assigned to a single CubeSat. Given a set of the cus-
tomer’s observational needs, and models of the CubeSats’
salient properties, the agents evolve policies that attempt to
purchase an appropriate set of observations at a low price.
This system is especially flexible as it demands no central-
ized resource broker, contracts or commitments of resources.
We perform a series of experiments on an Earth-observition
domain. The results show that the evolutionary methods
combined with multiagent techniques have three times the
performance of a simple hand-coded allocation algorithm,
and twice the performance of simple evolving agents.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Multiagent systems
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1. INTRODUCTION
Currently, satellites are very expensive resources that need

to be coddled carefully. The costs of satellite missions can
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exceed billions of dollars, with teams of engineers, managers
and scientists working together to extract all the informa-
tion they can out of these missions. These missions are care-
fully planned and orchestrated by large institutions over a
period of many years. However, in the near future this tra-
ditional satellite paradigm could change dramatically with
the introduction of very small satellites known as “Cube-
Sats.” The number of CubeSats will dramatically increase
due to reduced costs coming from platform standardization,
availability of COTS (commercial off-the-shelf) parts and
reduced launching costs [15, 18]. These satellites will have
numerous capabilities, including in situ measurements of the
thermosphere, interferometry, communication and Earth ob-
servation [13]. Collaborative networks of CubeSats offer mis-
sion capabilities that are impractical for larger satellite plat-
forms due to cost restrictions, including simultaneous in situ
measurements of multiple locations in space and temporally
separated measurements of precise points in space[17, 12]. In
addition, they offer lower cost and increased robustness com-
pared to traditional satellites due to system reconfigurability
[3]. In addition, networking clusters of CubeSats together in
order to boost performance is becoming a popular concept,
similar to computer clusters[1, 9]. However, while having
numerous advantage, making effective use out of large num-
bers of heterogenous CubeSats is a difficult problem.

1.1 Motivation
As an example, consider an instance where a small com-

munity needs to observe the realtime progress of a local for-
est fire. There are many aspects of this fire that can be
observed from orbit, including fire intensity, distribution,
and movement. A few dozen observations would be use-
ful, but with diminishing returns beyond this number. Cur-
rently, making these observations is difficult and expensive
due to the limited number of satellites; However, in the fu-
ture, there may be tens of thousands of tiny CubeSats able
to make these observations. How can this small community
in an economical way take advantage of these resources?

A straight forward solution to this problem is a central-
ized satellite resource broker. Under this scenario, our small
community would register its fire observation needs to the
broker, and the broker would try to find the resources, trad-
ing off the costs and benefits of all the other request that
were registered. While this method is attractive for networks
of large satellites, there are three main difficulties this cen-
tralized system might have with a large, but disorganized
collection of CubeSats: 1) CubeSats are likely to be owned
by many different countries and institutions that may not
trust having their resources used by a centralized resource



broker, 2) CubeSats will be in unpredictable states of repair
and may be owned by institutions unable to make reliable
commitments, 3) There may be so many CubeSats (perhaps
millions), that a centralized system could simply not scale
efficiently.

As an alternative to a centralized solution, our community
could buy observations directly from the owners of the Cube-
Sats. For this process to be effective, the community needs
to do two primary things, 1) Buy the appropriate number of
observations taking into account the unreliability of Cube-
Sats, 2) Buy the observations at the lowest possible price.
For these two things to happen, the reliability and expected
cost of each of the CubeSats needs to be modeled so that
an appropriate combination of request for observations can
be made. While taking all these considerations into account
would ordinarily be difficult for a small institution or com-
munity, an agent based system can help by modeling the
satellites behavior and evolving policies to maximize value.

1.2 Decentralized Agent Solution
We propose to have a decentralized solution to this prob-

lem, through the use of an “agent” intermediary. But first
we have to decide what an agent is in this domain.

1.2.1 What is an agent?
There are numerous ways agents can be used and defined.

Here we explore a few alternative types of agents:

1. Trivial: Just pass information between CubeSats and
customer.

2. Owned by Customer: Every customer has its own
agent buying observations for that customer.

3. Owned by CubeSat: Every CubeSat has its own
agent selling observation for that CubeSat.

4. Independent: One agent per CubeSat, buying obser-
vations for customer.

In the first definition, the agent is a simple intermediary.
While this solution may work for a very sophisticated cus-
tomer, in general it does not solve the problem of how a
customer can buy an appropriate set of observations at a
low price. In the second definition, each customer has an
intelligent agent that tries to make these purchases for the
customer. However, this solution has similar limitations to
the trivial agents, as the agent would have to be sophisti-
cated enough to know the properties the thousands of Cube-
Sats in existence and come up with a policy satisfying the
customer’s demands at a low price. In the third definition,
the task of the agent is much simpler. It knows all the prop-
erties of the single CubeSat that owns it, and knows at what
price points it can sell its observations for. However, the is-
sue with this approach is that it can be very inefficient, since
agents trying to maximize revenue for its CubeSat may try
to sell observations that are not valuable to the customer.

In this paper we focus on the final definition for an agent,
where agents are independent, there is one agent per Cube-
Sat and the task of the agents is to buy an appropriate set
of observations for a given customer. With this definition,
the requirements of an agent is relatively simple. It needs
to model the capabilities, reliability and price point of only
a single CubeSat. Then when a customer makes an obser-
vational request to a set of agents, the agents coordinate

to purchase an appropriate set of observations. This agent
model has a number of advantages:

1. CubeSats with any price structure can participate.

2. Unreliable CubeSat can participate.

3. CubeSat owner can choose not to participate on case
by case basis.

4. Customers can choose not to buy resources from par-
ticular CubeSats.

5. Agents can scale with number of CubeSats

With independent agents, CubeSats of all types can partic-
ipate. An agent can simply decide not to use its CubeSat if
it is inappropriate for the task. The most difficult task for
an agent is to coordinate effectively with other agents. In
this paper, we will focus on this coordination problem, and
how policies can be evolved that allow agents to coordinate
well.

1.2.2 Proposed Solution

Agent
Agent

Agent
Agent

Agent

Figure 1: Small community needs CubeSat obser-
vations of forrest fire. Agents handle observation
request. Using one agent per CubeSat, an agent
bids for the observation of a particular CubeSat. As
a collective agents as a whole must bid for an appro-
priate number of observations with minimal cost.

This paper proposes a multiagent solution, where inde-
pendent agents help a consumer of satellite resources, buy
an appropriate combination of resources at low cost (see
Figure 1). In this algorithm an agent is assigned to every
CubeSat, and is responsible for making a monetary bid to
its CubeSat for its observation. The consumer makes a re-
quest to all of the agents for satellite observations, giving
the agents a utility equation representing the value of the
benefit it would receive from different numbers and types of
observations. Each agent then makes a bid for an observa-
tions, using a bidding policy. This policy is evolved from a
population of policies, using the value benefit equation given
by the consumer, in combination with the agent’s model of
its CubeSat. These bids take into account the value of an
observation, the likelihood that the CubeSat will be able to
carry out an observation, and the likelihood that the Cube-
Sat will be willing to carry out an observation given the



value of a bid. All these values have uncertainty, making
this a difficult problem. In addition the agents’ will need
to coordinate the evolution of their policies so that the col-
lection of observations derived from all the winning bids is
beneficial to the customer and bought at a low cost. In this
paper, we will explore these aspects in more detail.

Section 2 provides a background on distributed evolution-
ary methods and simple negotiation mechanisms related to
the work performed in this paper. Section 3 provides an in-
troduction to CubeSats, a popular small satellite platform.
Section 4 outlines our problem domain, key learning issues,
and our specific algorithm. Section 5, provides a detailed de-
scription and analysis of the experiments and experimental
results. Section 6 provides a discussion and conclusion.

2. BACKGROUND
Evolution and genetic algorithms have been used exten-

sively with satellites in a diverse set of domains, including
observation scheduling, channel allocation and communica-
tion routing [8, 16, 21, 10, 22]. In [8] a genetic algorithm is
successfully used to schedule Earth-observing satellites un-
der numerous constraints such as power limitations, ther-
mal constraints and ground station communication. In [16]
communication channels are efficiently assigned through a
genetic algorithm used to solve global optimizations is com-
bined with a hopfield network used to solve local optimiza-
tions. In [22] a genetic algorithm is used to perform com-
munication routing among satellites to improve quality of
service. In all these cases genetic algorithms are able to
improve performance in a non-linear domain and maximize
use of the limited resources available from a small set of
satellites. However, they are not designed for allocating
abundant resources likely to be available in the CubeSat
paradigm.

In addition to evolution and genetic algorithms, agents
methods have been used successfully to promote resource
sharing within constellations of autonomous heterogeneous
satellites. To date, agent-based satellite coordination re-
search has included: resource allocation between on-board
peripherals of individual satellites (processor and power allo-
cation), autonomous coalition formation based upon negoti-
ation mechanisms, and additional satellite-to-satellite coor-
dination and resource sharing mechanisms to complete com-
plex missions [4, 6, 7, 14, 5].

3. CUBESATS
In this paper, we are concerned with collecting resources

from a constellation of CubeSats. A CubeSat is a type
of small satellite that measures 10cm x 10cm x 11cm and
weighs 1 kg or less. These devices carry various scientific
payloads and can be launched for around $100k per satellite
[13]. Existing CubeSat missions include: Earth Quake Mon-
itoring (Quake-SAT); Monitoring lightning storms in the
Low-Earth atmosphere; and Solar flare and gamma ray burst
detection. The diverse capabilities of these small satellites,
coupled with their low mission costs make them an ideal
space-based research platform for universities and small or-
ganizations, which historically have not been able to afford
access to space.

Space-based research has gone away from large one-of-a-
kind spacecraft, towards smaller, less expensive spacecraft [3].
In recent years, it has been demonstrated that coordinated

teams of smaller spacecraft can carry out traditional satel-
lite missions, as well as novel missions involving spatially and
temporally separated measurements [3]. This shift towards
smaller, less expensive devices is similar to the paradigm
shift that has happened over the last few decades in the
computer industry, as focus has shifted from large, expen-
sive mainframes towards smaller, cheaper sets of coordinated
workstations. Through coordination and resource sharing,
teams of smaller spacecraft can have the same mission ca-
pabilities of a large spacecraft, at a fraction of the cost.

4. COORDINATING CUBESATS
Academic and industrial programs continue to launch Cube-

Sats equipped with scientific instruments into Low Earth
Orbit (LEO) [11]. The capabilities of individual CubeSats
are fairly limited due to their size and mass restrictions. Yet,
coordinating multiple CubesSats and collecting their com-
bined resources greatly increases their overall value. In this
paper, we focus on a particular instance of a CubeSat coor-
dination problem where a customer can coordinate resource
purchases for a set of existing CubeSats.

v
1

vc

v
2

v
3

Figure 2: A set of CubeSats gain different levels of
value, vi, from observing their own point of interest.
A potential customer would like satellites observa-
tions of its own point of interest. The value of these
observations to the customer, vc depend on mix and
number and locations of satellites involved.

4.1 Observational Values
In this paper we assume that there is a set of Earth-

observing CubeSats in low Earth orbits, where each satellite
is owned by a separate institution 1. Each of these CubeSats
is interested in observations of a particular geographic re-
gion of interest for reasons such as crop monitoring, volcano
monitoring, fire monitoring, reconnaissance, search and res-
cue, and weather monitoring. We assume that each CubeSat
places some value on observing a particular point of interest
(POI), but is able to observe any region of interest beneath
its orbit (see Figure 2). Each CubeSat places a different
value on monitoring its own POI. In addition, this value de-
pends on the distance between the CubeSat and its POI.

1For simplicity, we will anthropomorphize the CubeSats by
treating a CubeSat and the institutions that own it, as the
same thing.



In general the further the CubeSat is from its POI the less
value it will have in monitoring it. Formally we express this
value for CubeSat i as:

vi(d
p
i ) , (1)

where dp
i is the distance between the CubeSat and its POI.

The goal of this paper is to figure out how a customer,
with no satellites of his own, can make use of these existing
satellites to observe a point of interest that this customer
is interested in. In general the value of a set of CubeSat
observations to a customer is a function of the observational
capabilities of the CubeSats (e.g. resolution, heat sensing,
particle sensing, etc.) and the distance of the satellite to the
customer’s POI. Formally we define this value function for
the customer as:

vc(dc) , (2)

where dc is the vector of distances between the CubeSats
and the customer’s POI (note for simplicity the observa-
tional capabilities are rolled into vc). In general, the more
observations are better and observations closer to the cus-
tomer’s POI are better.

4.2 Customer Objective
The objective of the customer is find a set set of observa-

tions that have high value to him, vc, at a low cost:

G(dc, dp) = vc(dc) −
X

i

ci(d
p
i ) , (3)

where ci is the cost to get an observation from CubeSat i.
While we assume that there is no direct cost for a CubeSat
to observe a POI, we assume that a CubeSat will not make
an observation for a customer unless it is paid approximately
its opportunity cost for not observing its own POI vi(d

p
i ).

While in some cases this opportunity cost is very high and
a CubeSat will never offer to make an observation for a cus-
tomer, in other cases in could be close to zero, especially if
the CubeSat is not within range of its own POI.

4.3 Agent Model
Our overall goal is to figure out how a customer can max-

imize G; i.e. purchase a set of observations that have high
value to him at a low cost. In general this will be possi-
ble when a set of CubeSats with appropriate capabilities is
close to the customer’s POI, increasing his value, and far
from their own POIs, reducing their opportunity cost. This
leads to our central problem: How can a customer sensibly
buy a set of satellite resources, when he knows little about
the CubeSats’ capabilities, their cost model, or even their
willingness observe the customer’s POI?

In this paper, we propose to address this problem using
agents combined with evolution. In this paradigm a single
agent is assigned to a single CubeSat, and the action of
an agent is to bid on the observations from its CubeSat on
behalf of the customer. As a whole, the goal of the agents is
to balance the value of all the observations to the customer,
vc, with the cost of these observations. Note that to do this
effectively each agent has to take into account both local
and global considerations: 1) Locally an agent will make
bids when its CubeSat has likely high value, such as when
it is close to the customer’s POI, and when its CubeSat has
likely low cost, such as when the CubeSat is far from its own
POI, 2) Globally an agent should only bid for an observation,

when that observation increases the total value, vc, for the
customer - agents should not bid for observations that are
not needed or have low marginal value.

For an agent to accomplish its task, we assume that each
agent is given the value function for the customer vc(dc). We
also assume that each agent has some approximate model for
the value of its CubeSat, vi(d

p
i ). However, we make little as-

sumptions of the quality of this model or where it came from.
For some agents vi(d

p
i ), may be given to it directly from the

CubeSat. For other agents, its model for vi(d
p
i ) may be

a crude approximation generated through previous interac-
tions with the CubeSat. Given these value functions, we
have the agents maximize the customer’s objective through
evolution.

Agent
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Figure 3: An agent evolves by cycling through a
process where at each time step it 1) picks a bid
policy from its population, 2) has its policy make a
bid based on the location of the satellite, 3) evalu-
ates the benefit of the bid against the observations
bought by all the other agents, 4) updates its pop-
ulation based on the evaluation.

4.4 Agent Evolution
The job of each agent is to evolve a policy that makes bids

for CubeSat observations in such a way as to maximize the
overall customer’s objective G. In this paper we evolve poli-
cies that map the location of the satellite (from which the
distances dc and dp can be derived) to a bid value that the
agent will make to the CubeSat. This process is shown in
Figure 3. The agent is assumed to have a model of the satel-
lite’s orbit, a model of the satellite’s value function, vi, and
the true value function for the customer, vc. The evolution-
ary process of the agent is a fairly simple one used previously
in online evolution [2]. At every time step, the agent chooses
a policy from its population using an epsilon greedy selec-
tor. Then it uses this policy to determine a bid amount for
its CubeSat, based on the location of the CubeSat. Next
it samples its model to determine if it wins this bid. Then
it looks at all the winning bids of all the agents and eval-
uates the effectiveness of the chosen policy. The policy’s
evaluation table is updated with a learning rate α such that
evaluation = α ∗ newevaluation + (1 − α) ∗ oldevaluation.
After updating the evaluation table, it updates its policy.
This policy update is done by removing the worst performing



member with probability P and replacing it with a mutated
copy of the best performing member.

This process continues until the agents have produced
policies that lead to high values of the customer’s objective
G. Critical to achieving this is to choose good evaluation
functions. An agent’s evaluation function has to take into
account bid actions of all the other agents so that it can
bid on observations that will be useful in the context of all
the other observations that are bid on. However, it cannot
have an evaluation function so complex and noisy that it will
never evolve effectively. We shall explore these tradeoffs in
the next section.

4.5 Agent Evaluations
Many different types of evaluation functions are possible

for agent evolution. The first and most direct approach is
to let each agent use the global system objective, G. How-
ever, in many domains, especially domains involving large
numbers of agents, such an evaluation often leads to slow
evolution [2]. This is because each agent has relatively little
impact on its own evaluation. For instance if there were 100
agents and an agent takes an action that improves the sys-
tem evaluation, it is likely that some of the 99 other agents
will take poor actions at the same time, and the agent that
took a good action will not be able to observe the benefit of
its action.

Another possibility for an evaluation is to use a local
agent-specific evaluation that only accounts for the action
of the particular agent. While with such evaluations, an
agent can easily see the impact of its action on its evalua-
tion, in most domains, the local evaluations are not aligned
with the global system objective G. In such domains, an
agent can maximize its own local evaluation, but in doing
so it can reduce the overall system performance. Local eval-
uations are primarily useful in problem domains in which
the local evaluations can be created in such that they are
directly aligned with the system performance. However, in
many complex problem domains it is notoriously difficult to
derive local evaluation that are well aligned with the system
objective function.

Our approach to the problem is based on selecting an eval-
uation with the benefits of both the global and local evalua-
tion functions, without the drawbacks associated with them.
In this work, we focus on “difference evaluations” which aim
to provide an evaluation that is both sensitive to that agent’s
actions and aligned with the overall system evaluation [2, 19,
20].

4.5.1 Difference Evaluation Function
The difference evaluation function used in this paper is

of the form [19, 20]:

Di = G(b) −G(b− bi) , (4)

where b is a vector of the bid actions of all the agents, and
b−bi are the bid actions of all the agents except with the bid
action of agent i removed. Intuitively this causes the second
term of the difference evaluation to evaluate the performance
of the system without agent i and therefore D evaluates the
agent’s contribution to the system performance. There are
two advantages to using D: First, bids taken by other agents
that are not tightly coupled to agent i’s bid will be sub-
tracted out by the second term of D, significantly reducing
the “noise” in the evaluation. Second, because the second

term does not depend on the bids of agent i, any bid by
agent i that improves D, also improves G. This means that
agents that evolve policies that tend to maximize D will tend
to also maximize G and will likely do so more quickly.

5. EXPERIMENTS AND RESULTS
We perform extensive simulations to test the effective-

ness of different satellite evaluation functions and different
agent types under a wide variety of environmental condi-
tions. In all experiments a customer has a set of agents that
bid on CubeSat observation. The goal is always to maxi-
mize the system evaluation function of the customer defined
in Equation 5. However the goals of the agents may not be
to directly maximize the system evaluation. Instead we test
five different types of agents, to see their effectiveness in the
overall maximization of the system evaluation.

5.1 Setup
In our experiments we simulate the movements of satel-

lites within the 10x10 grid near a POI. Unless otherwise
stated, all simulations have 100 satellites. The maximum
distance satellites can move in a given time step is dmax,
which corresponded to 1/100 of the individual satellites or-
bital angular period. In these experiments, the POI loca-
tions are randomly chosen, but remained constant over all
time steps in a given trial. The allowed bid values are set
to between zero and nine, based upon a discretization of
the maximum and minimum inverse-euclidean-distance be-
tween a satellite and a POI. The experiments are run for
10000 time steps, and the environment is static. All results
are averaged over at least one hundred independent trials.
All primary results are statistically significant with p < 0.05.
For each experiment the 95% of the initial policy bids are set
to 0, with the remaining 5% set to a random value between
0 and 9. For evolution ε = 0.1, α = 0.2 and P = 0.2.

In our experiments the system objective function is:

G = vc −
X

i

ci

=

sX
i

(vc
i )2 −

X
i

ci , (5)

where vc
i is the value of the local information gained from

the use of CubeSat i, and ci is the cost of acquiring resources
from CubeSat i. Overall our model for the customer’s value
for a set of satellites vc =

pP
i (vc

i )2 provides diminishing
returns for increasing levels of information. As in many real
world problem domains, there exists a saturation point, be-
yond which additional information or resources become less
beneficial for the system, even if the per unit cost remains
constant. This problem is difficult, as agents are coupled.
Each agent not only has to figure out what to bid for an
observation, but has to figure out if an additional observa-
tion would actually be useful since its value reduces with the
number of observations.

5.2 Agent Types
In these experiments, the five types of agents used are as

follows:

1. Random: Agents evolve using random evaluation func-
tion.



2. Strawman: An agent’s bid is precisely equal to the
CubeSat’s opportunity cost vi .

3. Local: Agents try to maximize a local objective.

4. Global: Agents try to maximize the system objective.

5. Difference: Agents try to maximize difference objec-
tive.

These different types of agents are designed to test perfor-
mance on a wide number of plausible solutions. The straw-
man agents are assumed to know the value the CubeSat
places on observing its own POI and make a bid just above
its expected value (equal to its value plus an arbitrarily small
epsilon). If the CubeSat always accepts bids higher than its
opportunity cost, then the strawman always wins the bid.
However, if Gaussian noise is added to the CubeSats decision
threshold then the strawman wins the bid approximately
half the time. This is the model used in this paper.

While the policies of strawman agents are fixed, the other
types of agents use evolution to try to maximize an evalua-
tion function. Local agents try to maximize a local fitness
evaluation that is a function of only the action of the agent:

L = vc
i − ci , (6)

measuring the local net benefit of an observation from from
CubeSat i without taking into consideration any other ob-
servations. Global agents try to maximize the global evalua-
tion functions directly as defined in Equations 5. Difference
agents use the difference evaluation defined in Equation 4
applied to the global objective functions:

D =

sX
i

(vc
i )2 −

sX
i 6=j

v2
i − ci . (7)

Where a is a system scaling constant. Note that while most
of the cost terms in the difference evaluation cancel out, the
value terms do not.

5.3 Performance
In our first set of experiments, we test the performance of

the five types of agents (R, L, S, G, D) in a noisy environ-
ment (zero-mean Gaussian noise with variance of 1.0) with
100 satellites. Figure 4 shows the performance of each evalu-
ation function. In all cases, performance is measured by the
same global objective function, regardless of the evaluation
function used to evaluate the agents in the system. The fig-
ure shows a number of interesting results. Not surprisingly,
the strawman bidders do poorly. This bidding strategy is
not trying to maximize any sort of objective function and
does not actually look at the total value of the observations
purchased. Surprisingly, agents that use evolution to try to
maximize a local evaluation function perform even worse.
These agents evolve an extremely poor policy because their
fitness evaluation function only tells them how they are per-
forming in their local area and do not provide any infor-
mation on how they impact the system performance. This
shows that an agent can be evolving solutions that maxi-
mize its local evaluation, while simultaneously harming the
global system performance. In particular, the local agents
tend to overbid for observations, since they do not take into
account the diminishing value of the observations. In con-
trast, the difference evaluation function, D, allows agents to
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Figure 4: Performance of a 100 CubeSat system for
4 evaluation functions. Difference evaluation func-
tion provides the best system-wide performance be-
cause it is sensitive to the actions of its agent, yet
still aligned with the system evaluation function.
Results statistically significant p < 0.05.

simultaneously determine how they are impacting their eval-
uation as well as the system performance. Using D, agents
are able to determine how their evaluation is affected by the
action they take and how their action impacted the system
as a whole. The ability of agents to see the impact of their
actions on their own evaluation, as well as the system evalu-
ation enables agents using the difference evaluation to evolve
faster and converge to a higher system level performance.

Not surprisingly agents evolving using random evaluations
perform poorly. In fact after a small initial increase, their
performance actually goes down with time. This occurs be-
cause because in this particular problem, most good solu-
tions evolve relatively few bids. We chose a sparse initial-
ization of the bidding tables to reflect this. As evolution
goes on, agents using random evaluations tend to keep mu-
tating the table, making it less and less sparse. Since the
global evaluation does not provide a good measure of per-
formance for an individual agent, an agent cannot readily
tell that most mutations lead to worse policies. Agents us-
ing the difference evaluation are able to avoid this fate and
perform much better.

Note that agents trying to maximize the global evaluation
perform poorly, even though in principle the global evalu-
ation function takes into account the value and costs of all
the the satellite observations. This lower performance is
a result of the low “signal to noise” properties of evolving
using the global evaluation directly. In a 100 satellite sys-
tem, whenever an agent chooses a policy, 99 other agents
are choosing a policy at the same time. Even if an agent
chooses a good policy, the global evaluation may not go up
because some of the 99 other policies chosen by the other
agents may have been poor. Therefore a choice of good or
bad policy will rarely get the proper credit when the global
evaluation is used. Similarly to agents using random eval-
uations, the performance of these agents tends to go down
with time. However, since the global evaluation does give
some useful feedback the performance is not quite as bad.



5.4 Scalability
To test whether our system will work with a wide range

of satellites constellation, we perform experiments where we
vary the number of satellites in the system. Figure 5 shows
the performance of each evaluation function over 100 or-
bits in a noisy environment (zero-mean Gaussian noise with
variance of 1.0) for constellation sizes ranging from 1 to 300
satellites. As the size of the constellation increases, an in-
teresting trend emerges: The performance of L continues to
grow more and more negative, the performance of G begins
to degrade. However, the performance of D continues to in-
crease slowly as the number of satellites within the system
is increased. Again, this is because agents evolved using
G cannot distinguish their individual impact on the system
performance from the impact of other agents present within
the system. The problem becomes more pronounced as the
number of agents within the system increases. Similarly, as
the number of satellites increases, agents evolved using L
continue to optimize their own individual evaluation, while
ignoring the state of the rest of the system become increas-
ingly problematic. The random agents at least get an even
mix of accepted and declined bids, which gives them a poor
performance, but is still better than S. The agents using
the difference evaluation on the other hand handle the in-
creasing number of satellites well. Because the second term
in Equation 4 removes the impact of other agents’ actions
from agent i ’s evaluation, increasing the number of satel-
lites does very little to limit the effectiveness of the agent
evaluation function. In fact the performance as the system
using D even goes up with the number of satellites, as the
degrees of freedom are increased. This is a powerful result
suggesting that agents evolved using the difference evalua-
tion are well suited to large collectives in this and similar
domains where the interaction among the agents prevents
both G and L from performing well.
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Figure 5: Performance of CubeSat system in a noisy,
non-linear environment based upon the number of
satellites present within the system. The D evalu-
ation function is superior, allowing the system to
maintain performance as the number of satellites
within the system increases, even under noisy con-
ditions. Results statistically significant p < 0.05.

5.5 Robustness
An important property for any system combining a het-

erogenous array of resources is to be robust against fail-
ures and unexpected occurrences. Especially in the CubeSat
paradigm with various institutions owning satellites in dif-
ferent states of degradation, it should not be expected that
all resources that are bought will actually work. Satellites
working beyond their nominal lifespan can fail, or institu-
tional bureaucracies may simply prevent information from
being collected. To test that our evolving agent system is
robust against these failures, we conduct a series of experi-
ments where 20% of the satellites fail to make their obser-
vations, but where failures are refunded so that the average
expected cost stays the same. The results shown in Figure 6
shows that our system is highly robust to such failures. In
fact the results are almost identical to the experiments with
no failures. This adaption to failures happens because poli-
cies are being evolved, instead of being implemented in a
top-down fashion. In a system with numerous failures, poli-
cies are evolved that simply bid for more resources with the
assumption that a certain percentage of them will fail.
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Figure 6: Performance of System with Failures.
Here 20% of the satellites that are bid on fail to
work. These failures have almost no impact on the
system, since agents are able to evolve policies that
bid for more resources, assuming some will fail. Re-
sults statistically significant p < 0.05.

6. DISCUSSION AND CONCLUSION
Evolution, combined with techniques from multiagent sys-

tems can play an important role in the new paradigm of
CubeSat missions. Instead of carefully managing the re-
source from a few expensive satellites in a top-down way,
we can collect resources using classical market mechanisms
more fitted to a paradigm where there is a large amount of
spare capacity of satellites, owned by a growing collection of
small institutions. The non-linear nature of collecting infor-
mation from multiple satellites, and the on-demand nature
of collecting this information in real-time, make evolution
and multiagent systems a perfect fit.

In this paper, we show how evolution and agents can be
used together to allow a customer to purchase observations
from a large collection of CubeSats. In this problem, there



are two simultaneous tasks: 1) effectively value a single satel-
lite observation in the context of other observations, and 2)
obtain these satellite observations in a cost-effective manner.
The results show that our system can achieve high levels
of performance even in the presence of high levels of noise
and satellite failure. By using agents that are evolved with
well-designed agent-specific fitness evaluation functions, the
system is able to achieve up to a three fold increase in per-
formance over a simple strawman allocation algorithm and
up to double the performance of the system using standard
evaluation functions (as compared to agents using random
evaluations).

While our experimental domain shows the flexibility and
robustness of multiagent systems when applied to satellite
coordination, we do not intend for it necessarily to be a
reference model to how satellite coordination will be im-
plemented. For instance, in real applications, credits may
be used instead of monetary exchanges. In addition it is
likely that some teams of satellite owners will want to max-
imize a joint objective among themselves instead of selling
resources to a customer. However, in most cases, the coor-
dination algorithm will need to be flexible and robust. Our
experiments show that evolution combined with multiagent
systems are capable of being effective in this domain, and
we believe that they will be used more frequently as small
satellite constellations become increasingly common.
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