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ABSTRACT
Unmanned Aerial Vehicles (UAVs) have traditionally been
used for short duration missions involving surveillance or
military operations. Advances in batteries, photovoltaics
and electric motors though, will soon allow large numbers of
small, cheap, solar powered unmanned aerial vehicles (UAVs)
to fly long term missions at high altitudes. This will revo-
lutionize the way UAVs are used, allowing them to form
vast communication networks. However, to make effective
use of thousands (and perhaps millions) of UAVs owned by
numerous disparate institutions, intelligent and robust co-
ordination algorithms are needed, as this domain introduces
unique congestion and signal-to-noise issues. In this pa-
per, we present a solution based on evolutionary algorithms
to a specific ad-hoc communication problem, where UAVs
communicate to ground-based customers over a single wide-
spectrum communication channel. To maximize their band-
width, UAVs need to optimally control their output power
levels and orientation. Experimental results show that UAVs
using evolutionary algorithms in combination with appropri-
ately shaped evaluation functions can form a robust com-
munication network and perform 180% better than a fixed
baseline algorithm as well as 90% better than a basic evolu-
tionary algorithm.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Multiagent systems

General Terms
Algorithms, Performance, Reliability
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UAVs, Evolution, Multiagent Systems
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1. INTRODUCTION
Traditionally, unmanned aerial vehicles (UAVs) have been

used for targeted surveillance and military operations. Whether
they are powered for many hours by jet engine, or for a
fraction of an hour by electric motor, UAV missions tend to
have the same profile: They are launched, they carry out a
mission, then they return [5]. Such missions are naturally
time-limited, labor intensive and logistically challenging, es-
pecially since the repeated takeoff and landings need to be
coordinated with air traffic control. Currently the number of
simultaneous UAV missions is in the single digits. However,
technology may soon change this. For more than a decade,
development has progressed on solar powered UAVs with
battery reserves, allowing them to fly for a certain amount
of time after dark. Rapid industry advancements in battery
capacity, electric motor technology and solar cell efficiency,
is allowing the progression of solar powered UAVs to proceed
even faster [17]. Once UAV technology goes over the criti-
cal hump, where they can fly all night on charges received
during the day, the mission profiles of UAVs will change rad-
ically: they will go up, and stay up. UAV missions could
last for months if not years, with just a small turnover for
maintenance.

In fact, at the margins, we are already there as the solar
powered QinetiQ’s Zephyr has been demoed, flying for more
than two weeks [15]. Permanently flying UAVs allow aircraft
to be used in domains currently monopolized by satellite
and ground based-systems, including two-way communica-
tions, continuous surveillance and broadcasts. In addition
the technologies in solar UAVs are relatively cheap, with
continual price declines. Soon these aircraft will be available
to nearly all nations, institutions and perhaps even individ-
uals. Also since they do not need oxygen to burn fuel, they
can be designed to fly at altitudes much higher than conven-
tional aircraft can fly, allowing them be used independently
of the current air traffic system. Due to these factors, there
will likely be an explosion in the number and uses of UAVs
in the future [3].

We believe that genetic and evolutionary algorithms in
combination with multiagent techniques will have a key role
in the complex problem of controlling such a large diverse
set of aircraft. Multiagent systems match the distributed
nature of the problem, while evolution addresses the messy
nonlinear control and coordination issues. While the po-
tential applications of these UAVs are vast, we believe that
evolution and multiagent systems are applicable to a wide
range of UAV applications that share these common prop-
erties:
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• Long distance communication is easy due to UAVs be-
ing line-of-sight to each other and to ground.

• Communication congestion is severe due to UAVs be-
ing line-of-sight.

• Coordination of UAVs should be distributed due to
their large numbers, their geographic separation, and
UAVs being owned by different institutions.

• Hardware failures and integration failures will be com-
mon, due to differing age, types, manufactures and
sheer volume of UAVs.

These properties make efficient control difficult with a top-
down approach, but are a natural for adaptive and dis-
tributed approaches such as evolutionary algorithms and
multiagent systems.

In this paper we apply these multiagent techniques com-
bined with evolution to the specific domain of creating an
air-to-ground communication network over a single channel.
In some ways this model is related to current WiFi networks
that can share many users over a single channel. However,
the dynamics of having the signals come from high altitude
UAVs make the problem considerably different than that
of terrestrial communication: Huge numbers of UAVs may
be accessible at once, congestion may be severe, and many
failed or uncooperative UAVs will be line-of-sight and will
have to be dealt with. In these senses, this domain shares
many of the qualities that we expect future UAV problems to
have. In addition this domain is important in itself as it al-
lows UAV based communication networks to be used for such
purposes as voice communication and data networks with-
out the need of expensive and difficult to maintain ground-
based hardware. In addition it allows such networks to be
created in an adhoc way, where different aircraft are owned
by different institutions. If setup properly, this paradigm
may open the path for UAV based communications to be
as ubiquitous for long-range communication, as WiFi is for
short-range communication today.

The main contribution of this paper is to present an ap-
plication of evolutionary algorithms to the domain of UAV
communication that is both useful for downlink communi-
cation and shows the potential for swarms of high-altitude,
low-cost UAVs likely to be common in the future. In Sec-
tion 2 we describe current and future UAV systems as well
as multiagent communication. In Sections 3 and 4 we de-
scribe details of the UAV communication domain used in
this paper. In Section 5 we discuss how the evolving agents
can be used to maximize customer communication bit rates.
In Section 6 we present experimental results, showing how
the evolving agents are able to perform well under varying
conditions. Finally in Section 7 we provide a discussion on
the impact of this application and the implications of the
results.

2. BACKGROUND
In the near future, solar UAVs will play critical roles in

the military, industrial, scientific, and academic communi-
ties [14, 17, 18]. These devices have seemingly limitless
applications including communications, reconnaissance mis-
sions, space launch platforms, and wireless power beaming
[10, 14]. Recent missions including NASA’s Pathfinder-Plus
and QinetiQ’s Zephyr (which remained airborne for over two

weeks nonstop) have advanced the state of the art in so-
lar powered UAVs, taking them from limited mission life
and endurance to the point they can remain operational for
weeks at a time [10, 15]. As a result of the increasing capa-
bilities and availability of these devices coupled with their
falling costs, a plethora of novel domains and applications
will emerge to utilize the newly developed technological ca-
pabilities of these platforms [14].

Methods of controlling and coordinating networks of UAVs
have been researched including genetic and evolutionary al-
gorithms and reinforcement learning methods[9, 2, 16, 13,
11, 7, 6]. Genetic algorithms have been used to evolve de-
cision trees that allow UAV teams to collaborate in search
missions, and to facilitate UAV task assignments [16, 19]. In
addition evolutionary algorithms have been shown to be ef-
fective in single player and multi-player UAV path planning
domains [8]. Genetic programming has also been shown ef-
fective in UAV multi-task allocation domains when there is
limited communication [4].

In addition to evolutionary and genetic algorithms, swarm
techniques have also been used to coordinate UAVs. In the
cooperative hunters domain a swarm of UAVs, using hand
coded optimization methods, is used to search for one or
more “smart” targets [2]. Another UAV control problem
focuses on an NP-complete task allocation problem which
assigned tasks to swarms of UAVs [12]. Frequently UAVs
are utilized in reconiassance tasks involving Automatic Tar-
get Recognition (ATR). In such domains it is desired to have
a balance between high coverage of discovered targets and
broad area coverage. One high-performing approach to solv-
ing this coordination and control problem utilizes ant-based
swarm methods [12].

3. UAV TO EARTH COMMUNICATION
As we progress into the information age, communication

becomes an increasingly critical component of every day life.
Today, cellular phones, laptops, hand held computers, and
other wireless electronic devices have changed the way we see
and interact with the world. At the core of these advance-
ments is a well designed wireless communication network,
which handles the workload and facilitates information shar-
ing between devices connected to the network. Current net-
works rely on a series of radio towers to facilitate this infor-
mation sharing work load. Traditional towers have worked
well to date, but they have several key drawbacks:

1. They are expensive to build.

2. They are expensive to maintain.

3. They have limited communication due to obstructions
(cannot communicate “around” obstructions).

4. They have static placement (holes in coverage areas).

In this paper we focus on a subset of this domain where
there is a set of UAVs that are flying at fixed locations (flying
in small circles) for long periods of time (perhaps months
or years) and are transmitting data to a set of customers
below (see Figure 1). UAVs have an advantage in sending
data from high altitude in that they can have line-of-sight
communication to many customers. In addition by virtue
of being overhead, such UAVs can focus on what areas of
the surface they will project most of their signal power to,
allowing for better coverage.
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In this domain, each UAV can communicate to multiple
customers. In addition communication is done over a shared
channel (over the same frequency band) analogous to the
way WiFi networks transmit data. Using a shared channel
allows the system to be very adhoc, where UAVs can come
and go, and can decide whether or not to participate in the
system without any need for channel arbitration. Note that
for simplicity we only look at the download problem, where
UAVs are sending information down to customers. Also we
make no assumptions on how the UAVs get their data feeds.
We believe that this half of the problem is the most im-
portant, as typical internet use tends to be dominated by
download traffic. Although the uplink problem is fairly sim-
ilar as long as it is done on a different channel than the
downlink.

Figure 1: UAV Communications. A set of UAVs at
high altitude transmit data to a set of customers on
ground over a single communication channel. The
task of the system is to maximize average bitrate
customers receive. Multiple UAVs may communi-
cate to single customer. A UAV communicates to
at most one customer.

4. SIGNAL DYNAMICS
We assume that the UAVs are all at similar altitudes and

communicate through directional antennas pointed towards
the ground. The amount of area on the ground that is cov-
ered by the UAV is determined by the gain of its antenna.
Antennas with low gain, transmit over a wider area, but
within that area the strength of the signal is lower (see Fig-
ure 2). Antennas with high gain, have more signal power in
the center of their area, but transmit over a smaller area.
The maximum signal received from a UAV is proportional
to the inverse square of the gain radius for the antenna:

Smax
j = aPj/r

2
j (1)

where a is a constant, Pj is the power transmitted from
UAV j, and rj is the signal half-power radius for UAV j.
Smax
j is the amount of signal received directly at the center

of the transmission. Further from the center, the amount
of signal received decreases exponentially according to the
signal radius:

Si,j = e
−b

ri,j
rj Smax

j (2)

where b is a constant and ri,j is the distance from customer i
and the center of UAV j’s transmission. The noise received

by customer i is simply the sum of the signal from all the
UAVs it is not communicating with:

Ni =
∑
j /∈Ji

Si,j + k , (3)

where Ji is the set of UAVs customer i is communicating
with and k is a constant for background noise. The maxi-
mum communication rate for customer i can then be esti-
mated from the signal-to-noise ratio using Shannon’s law:

Ci,j = B log2(1.0 + Si,j/Ni) , (4)

where B is the bandwidth of the channel in Hz 1. The total
data rate for customer i is the sum of the data rates for each
UAV the customer is communicating with:

Ci =
∑
j∈Ji

Ci,j . (5)

rj

High Gain Low Gain Attenuation

ri,j

Figure 2: Signal Dynamics. UAVs with high-gain
antennas throw a strong signal over a small area.
UAVs with low-gain antennas throw weaker signal
over larger area (Left). The strength of the signal
depends on how far the customer is away from the
center of the signal cone (Right).

5. SYSTEM EVALUATION FUNCTION AND
AGENTS

The objective of this problem is to maximize the average
data rate of each customer:

G =
1

n

n∑
i=1

Ci , (6)

where there are n customers, and G is the system evaluation
function. Combining equation 1, 2, 3, 4, 5, we obtain:

G =
1

n

n∑
i=1

∑
j∈Ji

B log2

1.0 +

aPj

r2j
e
−b

ri,j
rj

∑
j /∈Ji

aPj

r2j
e
−b

ri,j
rj + k

 , (7)

putting our global objective in terms of our control vari-
ables: UAV power level, Pj , and indirectly, ri,j , through the
orientation of the UAV.

1For simplicity, certain factors, such as relative inverse
square distance signal attenuation are ignored that were de-
termined to have little impact on performance.
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These controls allow us to change the signal-to-noise char-
acteristics at different locations on the ground. However,
this is a difficult problem as increasing the signal for one
customer may increase the noise for another. It is especially
difficult, since we want this communication network to be
adhoc, where it is controlled in a distributed way: UAVs
are entering and leaving the system, and some UAVs fail
to cooperate or operate correctly. Fortunately, evolutionary
algorithms and multiagent techniques are a natural match
to this problem.

There are many possible agent definitions and controls for
the UAVs in our domain, including altitude, antenna gain,
power levels and antenna angle. Here we focus on the last
two: adjusting the power level Pj and orientation (the direc-
tion the transmitter points to) of each UAV (see Figure 3).
We control each of these actions through agents. The so-
lution to the full problem consists of the power level and
orientation values for all the UAVs. However to simplify
the problem, we break the task into a multiagent system,
where a single agent controls both power level and orienta-
tion for each UAV. To perform control, each agent makes
discrete actions. For adjusting power, the action is scaled
exponentially to the action:

Pj = Pez
p
j , (8)

where P is the base power and zpj is the action of the agent
for UAV j controlling its power. To control orientation, an
agent chooses one of nine directions: either straight down, or
one of eight cardinal directions around the UAV. The angle
of the pointing is fixed so that the center of the new orien-
tation is moved a distance of r what it would have been if it
had pointed strait down (see Figure 3 - right). As described
in the next section, the values of the controls for each agent
are determined by an evolutionary algorithm.

High Power Low Power Orientation

Figure 3: Agent Actions. An agent can choose
power level of UAV within certain range. An agent
can also choose orientation of antenna. The Agent
must choose power levels and orientations to balance
giving more signal to their customers and less noise
to other customers.

5.1 Evolving Agents
The objective of each agent is to evolve the best values of

power level and orientations that will lead to the best system
fitness evaluation function, G. The value of power level and
orientation is determined by the agent’s current policy. Each
policy contains a discrete value of zpj determining power level

and a discrete value of zoj determining orientation direction.
The power level is discretized to 10 different values. Along
with the 9 possible orientations each policy for each agent
has a total of 90 different possible values.

An agent’s policy is determined by an evolutionary algo-
rithm, where an agent evolves a population of policies. At
every time step, an agent chooses a policy from its popula-
tion of policies using an epsilon-greedy selector, where the
best policy is chosen with probability 1 − ε and a random
policy is chosen with probability ε. The chosen policy table
determines the power and orientation of the UAV for that
time step. Once all the power levels and orientations are
chosen the performance of the system is evaluated (see Fig-
ure 4). The types of evaluations that can be used is discussed
in Section 5.2.

Once the current choice of policy has been evaluated, the
evaluation of the policy is updated with a learning rate al-
pha: New Value = (1 − α) * Old Evaluation + α * New
Evaluation. Each agent then updates its population by elim-
inating the lowest value member of the population, and then
copies the highest value member of population and mutates
it. Mutation is applied by taking a random table entry and
setting each value to a number between 0 and 9 taken from
a uniform random distribution. Various other forms of mu-
tation were tried including mutating more table entries at
each evolution step, but they did not improve performance.

Agent 1

Population 1

Policy
Policy

Policy

Agent 2

Population 2

Policy
Policy

Policy

Agent n

Population n

Policy
Policy

Policy

Power Level,

Orientation for

UAV 1

Global Evaluation

Agent (Difference) Evaluations

Power Level,

Orientation for

UAV 2

Power Level,

Orientation for

UAV n

Figure 4: Evolving Populations of Agents. Each
agent has its own population of policies. At every
step a policy is chosen from the population, which
determines the power level and orientation of a sin-
gle UAV. The choice of power level and orienta-
tion can then be evaluated in two different ways:
1) Global evaluation looks at the value of all of the
actions of all of the agents and returns the same
value for all agents, 2) Shaped agent-specific evalua-
tions (implemented with the “difference evaluation”
in this paper) make a separate evaluation for each
agent using information about all of the actions from
all agents.

5.2 Agent Evaluation Functions
The final issue that needs to be addressed is selecting the

fitness evaluation function for the evolving agents. The first
and most direct approach is to let each agent receive the
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system performance as its evaluation function. However, in
many domains using such an evaluation function leads to
slow evolution. We will therefore also set up a second evalu-
ation function based on an agent-specific evaluation. Given
that agents aim to maximize their own evaluation functions,
a critical task is to create “good” agent evaluation functions,
or evaluation functions that when maximized by the agents
lead to good overall system performance. In this work we
focus on “difference” evaluation functions which aim to pro-
vide an evaluation function that is both sensitive to that
agent’s actions and aligned with the overall system evalua-
tion function [1, 20].

5.2.1 Difference Evaluation Function
Consider difference fitness evaluation function of the form

[1, 20]:

Di = G(z) −G(z − zi) , (9)

where zi is the action of agent i (determined by its policy)
as defined in Subsection 5.1, and z− zi are the actions of all
the agents with the action of agent i removed. The second
term of the difference evaluation, G(z − zi), represents a
counterfactual of what the performance of the system is like
when agent i is removed from the system (i.e. its power
level is dropped to zero). By subtracting the counterfactual
from the original evaluation, this difference in some sense
evaluates the agents contribution to the system.

There are two advantages to using D: First, the second
term removes a significant portion of the impact of other
agents in the system. This happens since the impact of ac-
tions that are irrelevant to agent i are removed by the sub-
traction. This benefit has been dubbed“learnability”(agents
have an easier time evolving) in previous literature [1, 20].
Second, because the second term does not depend on the ac-
tions of agent i, any action taken by agent i that improves
D, also improves G. This happens since any action that the
agent takes can only affect the first term, because its ac-
tion has been eliminated from the second term. This benefit
which measures the amount of alignment between two eval-
uation functions has been dubbed “factoredness” in previous
literature [1, 20].

Substituting Equation 7 into Equation 9, we obtain

Dj′ =
1

n

n∑
i=1

∑
j∈Ji

B log2

1.0 +

aPj

r2j
e
−b

ri,j
rj

∑
j /∈Ji

aPj

r2j
e
−b

ri,j
rj + k

−

1

n

n∑
i=1

∑
j∈Ji,j 6=j′

B log2

1.0 +

aPj

r2j
e
−b

ri,j
rj

∑
j /∈Ji,j 6=j′

aPj

r2j
e
−b

ri,j
rj + k

 ,

where we are calculating the difference evaluation for agent
j′. Note that the second term of the difference evaluation
both removes the signal received from this agent’s UAV and
also removes its noise.

6. EXPERIMENTS
To test the effectiveness of evolving agents in this UAV

communication domain, we perform an extensive set of ex-
periments in simulation. In these simulations, (unless other-
wise specified, such as in the scaling experiments) 100 UAVs

are placed at an altitude of 20 miles (representing approxi-
mately the maximum altitude a solar powered aircraft can
achieve). These UAVs are placed above a 10x10 mile square
area. The task of the UAVs is to transmit data to customers
within this 10x10 mile area. In all experiments the channel
bandwidth is B = 1Mhz and the noise floor is k = 0.2.
In addition, the gain radii, rj , are distributed randomly,
uniformly between 0.35 miles and 1.05 miles to represent
a heterogeneous set of UAVs. For evolution, α = 0.2 and
ε = 0.25. All experiments results are performed over 30 tri-
als. In additional all of our major performance conclusions
are statistically significant with p < 0.05. In this setup we
test the performance of the evolving agents in cases where:

1. Agents control UAVs with no failures and full commu-
nication.

2. UAVs (i) fail; (ii) do not coordinate; or (iii) are incom-
patible.

3. UAVs have restrictions on their observation capabili-
ties.

4. The number of UAVs is scaled to 1000 UAVs.

In all of our scenarios, the number of customers is the same
as the number of UAVs. We do this to model the situation
where a ground-based “customer” is likely to be a hotspot or
signal repeater. In situations where customers were individ-
uals, the number of customers would likely be considerably
more than the number of UAVs.

For each of the cases above, we report results on four
different types of agents to control the power and orientation
of the UAVs:

• Static agents always choose maximum power, and strait
down orientation (M).

• Random agents have random evaluation function (R).

• Evolving agents directly maximize system evaluation
function (G).

• Evolving agents use difference evaluation function (D).

The first two form baselines to asses performance. The next
two compare learning rates of traditional agents maximizing
a common system evaluation function, and agents indirectly
maximizing the system evaluation function by directly max-
imizing the difference evaluation function.

6.1 UAV Performance
In the first set of experiments, we have a single agent con-

trol both power level and orientation for a UAV. The results
displayed in Figure 5 show how the first baseline algorithm
is able to achieve a data rate of 200Kbits/s to each customer.
The results also show that evolving agents maximizing the
system evaluation function directly (G) perform significantly
better, performing up to 300Kbits/s. This result shows that
evolution can be very helpful in choosing control policies
in this large system. However, agents evolved using the D
evaluation function are able to perform even better, nearly
doubling the performance of the system. The improved per-
formance of the difference evaluation has to do with it being
more specific to the actions of the agent. When an agent
chooses a good policy that policy is likely to be evaluated
well using the difference evaluation. In contrast when using
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Figure 5: System of 100 UAVs where each agent op-
timizes both power and orientation. Agents evolved
using D evaluation function outperforms all other
methods by nearly 2-to-1. This is due to the D eval-
uation eliminating irrelevant actions.

G to evaluate that policy it may not get a good evaluation,
since the evaluation depends equally on the policy choices
of the 99 other agents.

6.2 Robustness to Failures, Non-coordination,
and Incompatibility

For an adhoc UAV communications network to function
properly, it must be robust to many types of failures. UAVs
may be of different ages, be in different states of repair and
may fail without notice. Even worse than failing completely,
a UAV may still be transmitting at high power, but not com-
municating with any customer, causing them to add noise
without any benefit. In this section we show how robust
an evolved agent based UAV network can be against these
various forms of failures.
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Figure 6: Performance under transmission failures.
D agents outperform all other methods with up to
95% failures.

6.2.1 Failure to Transmit
First we consider the case where UAVs must turn off all

transmissions due to failure or in order to conserve power.
As agents fail, other agents must find ways to adapt to make
up for the loss. As seen in Figure 6, agents using D are able
to perform well, even under high failure rates. While agents
using the baseline policy as well as agents using G are not
hurt significantly from the failures, they still perform worse
than agents evolved using D up to a 95% failure rate.
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Figure 7: Performance when agents fail to coordi-
nate. D agents outperform all other methods.
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Figure 8: Performance under “incompatible” agents.
Agents evolved using D evaluation function outper-
form all other methods with up to 90% failures.

6.2.2 Failure to Coordinate
Next we consider the case where some UAVs fail to co-

ordinate with the rest of the system and end up taking un-
coordinated locally greedy actions. To maximize local per-
formance, these agents simply maximize their power level,
without regard for the noise they are adding to the system.
These agents still contribute to the overall system band-
width, but they can potentially harm the system by raising
the noise levels of other agents. As shown in Figure 7, agents
evolved using D are able to outperform all other methods.

1028



In fact even when 100% of agents greedily maximize their
power levels, agents evolved using the difference evaluation
still perform better since they are still able to efficiently
choose good orientations.

6.2.3 Failure of Compatibility
In our final case, we consider the situation where some

of the UAVs are incompatible with the current network. In
this case, incompatible UAVs still send out noise, but do
not actually send data to any of the customers in the sys-
tem. Such cases may be common, when protocols change,
software is not written to specification or there are multiple
different networks communicating in the same channel. Fig-
ure 8 shows that this type of failure can be very harmful.
Still, with a moderate number of incompatible UAVs, agents
evolved using the difference evaluation are able to perform
well.

6.3 Observation Restrictions
In order to demonstrate the concept and the suitability

of the multiagent evolutionary approach to this domain, the
results reported above assume that there are no restrictions
in the observational capabilities of the agents (for example in
computing or receiving the system objective and difference
evaluation functions, or in communicating signal-to-noise ra-
tios for all of the customers). Because such assumptions are
not realistic, in this section we explore the impact of such
limitation on the performance of each of the algorithms (note
that “observation restrictions” here also includes inter-UAV
communication, but we use the term “observation” to differ-
entiate from the main application of UAV to ground com-
munication).
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Figure 9: Performance of a 100 UAV system in the
presence of observation restrictions. Agents can
only observe actions of other agents that lie within
a given radii from their location. Agents using D
are able to effectively use additional observational
information to coordinate and improve system per-
formance, whereas agents using G can be negatively
impacted by an increased amount of information.

As seen in Figure 9, agents evolved using D and G per-
form equally when no observations are possible (agents have
access to only their own local information). As the level
of observation increases and agents receive more informa-

tion, an increase in performance could be expected. That
is not what happens however; agents evolved using G actu-
ally experience a decrease in performance as they gain ad-
ditional information. This is because the agents don’t know
what to do with the extra information they receive. Agents
evolved using D are able to handle this information in a way
that benefits the system performance, allowing them to co-
ordinate and make decisions that positively improve system
performance. Agents evolved using G begin to improve per-
formance when the observation radius is below 2.25. This
happens since the agents are receiving enough information
to make more informed decisions, but not enough informa-
tion to negatively impact their performance (too much in-
formation causes noise on the agents’ evaluation function).
After this point however, the amount of information each
agent receives becomes overwhelming and they are unable
to coordinate their actions.

6.4 Scalability
While all of the previous experiments have been performed

with 100 UAVs, we expect future UAV systems to be much
larger. In this section we test the scalability of our approach
by measuring the system performance when the number of
UAVs is scaled from 10 to 1000. To make scaling compa-
rable, we also scale the number of customers and the area
of the land serviced by the same amount. The results show
that for more than 100 UAVs, the amount of data each cus-
tomer receives is highly stable (see Figure 10). This re-
sult suggests that agents evolved using difference evaluation
functions should be able to efficiently control this system,
even when there are a very large number of UAVs.
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Figure 10: Performance versus scalability where the
number of customers, agents, and world size are
scaled proportionally. As seen, agents evolved us-
ing D are able to outperform all other methods by
nearly 50% to 100% for any given system size. Agents
using D with a system size of 1000 UAVs perform
nearly as well as agents evolved using G when the
system size is 50 UAVs. This is a twenty fold increase
in system size while maintaining good performance.

7. DISCUSSION AND CONCLUSION
In this paper, we present an important application of mul-

tiagent evolution: Coordinating large numbers of UAVs to
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form an air-to-ground communication network. Due to ad-
vances in solar, battery and motor technology, such large
UAV networks are becoming an attractive alternative to
both Earth-based and satellite based communication sys-
tems. Indeed, such networks will be increasingly powerful,
allowing for voice and data networks anywhere in the world
without need for expensive and brittle ground-based infras-
tructure, or the need for expensive-to-launch and maintain
satellite systems. In addition, with minor modifications, the
UAV coordination algorithms can be adapted for other types
of large scale UAV applications, ranging from observation
systems to microwave power delivery systems.

The application chosen in this paper exhibits a number
of salient features that we expect large UAV networks to
have. Due to their high altitude, long-range point-to-point
communication is easy. However, long-range signal conges-
tion is prevalent. These properties contrast with terrestrial
networks where point-to-point communication tends to be
short-range and congestion is localized. Such topological
difference make UAV-based networks much different than
ground-based networks, and necessitates a higher level of
coordination.

This paper shows how multiagent evolution can be used
to effectively coordinate these UAV networks. In our exper-
iments even basic evolution (i.e. evolved using G) is shown
to be helpful, performing considerably better than simple
baseline algorithms. However, agents evolving to maximize
the “difference evaluation function” achieve twice the level of
performance. In addition agents using the difference evalua-
tion are able to scale effectively to systems with large num-
bers of UAVs. These results are also shown to be robust with
respect to numerous types of failures, incompatibilities and
observational restrictions that will be common in real-world
adhoc networks. The key to these results is that they are
based on large scale UAV coordination, and will extend to
other domains where similar congestion exists. For example,
two way communication and UAV-to-UAV communication
are natural extensions.
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