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ABSTRACT
Modern cars contain large amounts of safety-relevant soft-
ware, which requires proof of achievement of certain safety
integrity levels. A major task is to demonstrate that the de-
veloped software fulfills its specification and does not contain
undesired functionality. Due to their size and complexity
testing of this software has become an extreme bottle neck.

To evaluate the completeness of test cases and to demon-
strate that there is no unintended functionality, the cover-
age of requirements at the software level shall be determined
and the structural code coverage shall be measured, e.g.
statement coverage, branch coverage or Modified Condition-
/Decision Coverage, short MC/DC. In this context the model-
based software development raises additional questions that
are currently discussed. A central question here is for ex-
ample what is meant by a meaningful model coverage with
respect to embedded code?

In this paper, we discuss these items on a specific type of
code: Small support routines (e.g., for trigonometric func-
tions, table look-up, or interpolation) are usually left out of
these considerations and assumed to be fully correct. How-
ever, such functions can contain far from trivial code that
can produce bad surprises, in particular if the code is exe-
cuted on a platform different from the modeling platform.
We present a method for the automatic generation of test
stimuli for support functions, which uses the KLEE tool and
some promising results.

Categories and Subject Descriptors
D.2.5 [Software]: Testing and Debugging; D.2.8 [Software]:
Metrics—code coverage metrics

1. INTRODUCTION
Modern cars heavily depend on software for safe and reli-
able operation. Not only the engine and drive train is con-
trolled via software, but many components like brakes, park

assistants, power windows, communications, and entertain-
ment are implemented in software and run on one or mul-
tiple processors. It is estimated that a modern mid-size car
is running more than 100 millions lines of code [2]. With
the increase of software size and complexity, model-based
approaches have found their way into safety-relevant auto-
motive applications. In a typical model-based development
environment (Figure 1, middle column), the specification
model is first designed using a high-level, domain-oriented
modeling tool. Typically,1such tools, like Mathworks’ Simu-
link/Stateflow [21] facilitate quick design, modeling, and
analysis on a graphical level. Many safety and performance
analyses can be directly performed on that model level, e.g.,
model reviews to ensure the intended functionality.

Such a specification model represents the so-called high-level
application that is then automatically translated by transla-
tion, implementation, and generation steps into embedded
C-code. For example, Mathworks’ RealTime Workshop is
used to generate code from Simulink and Stateflow models.
Other available commercial modeling environments provide
tools of similar functionality e.g. TargetLink form dSPACE
[6] or ASCET from ETAS [8]. Such C-code generators play a
central role in model-based development approaches. These
generators work (in the sense of computer science) like com-
pilers, e.g., [10], from a (semi-)graphical representation into
a C-code representation of the translated function. The gen-
erated code is finally embedded into the software load run-
ning on a (usually small) processor or microcontroller. To
give an idea what a typical high-level application in a car
needs for representation: either 150 (semi-)graphical dia-
grams or 80,000 lines of generated C-Code.

For many applications, the automotive industry is using
OSEK [25] as the underlying operating system. The OS
kernel, (hand-coded) drivers, and the autogenerated appli-
cation code are linked to form the executable. As shown in
Figure 1, compilation and linking also has to be performed
on hand-coded legacy code and the basic software. That
software contains a number of support routines, which are
being used by the application. Such routines typically in-
clude advanced floating point operations (like trigonometric

1A worthwhile alternative modeling language is Modelica,
which is a non-proprietary, object-oriented, equation based
language to conveniently model complex physical systems
containing, e.g., mechanical, electrical, electronic, hydraulic,
thermal, control, electric power, or process-oriented subcom-
ponents [23].
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Figure 1: The generic build process for a model-
based development toolchain with an automatic
code generator (from [19])

functions, exponentials, logarithms, square roots) as well as
support functions for the auto-generated code (e.g., table
look-up, interpolation, or integrators). Many (embedded)
compilers use the Netlib [24] math library, or parts thereof
like FDLIBM [9]. Also, John Hauser’s SoftFloat [12] is being
widely used. Most underlying algorithms, approximations,
and tables are based on [11].

For any safety-relevant software, the necessity to evaluate
the completeness of test cases and to demonstrate that there
is no unintended functionality also holds for such small sup-
port functions. In this paper, we use the advanced sym-
bolic virtual machine KLEE [1] to automatically generate
test cases (i.e., stimuli) to provide the required code cover-
age during testing. As the decision procedures available with
KLEE are very weak in handling floating-point arithmetic,
we use code abstraction and an iterative test case generation

mechanism, which will be discussed in detail and which will
be illustrated with two numerical support functions.

The reminder of the paper is structured as follows: in Sec-
tion 2, we give an overview over testing according to code
coverage metrics and discuss some applicable standards. Sec-
tion 3 focuses on specific issues on testing of automotive
software. In Section 4, we will present major related work
on automated test case generation. We will demonstrate
our approach for test case generation with a numerical sup-
port function calculating the sin of a value (Section 5). In
Section 6, we discuss, how KLEE can be used for our pur-
poses and describe the abstractions necessary. We present
experimental results for our example. Section 7 discusses
a second example, a table lookup (interpolation) function,
which is found in most model-based development environ-
ments. Section 8 finally concludes and discusses future work.

2. TESTING FOR CODE COVERAGE
Developing such huge amounts of code and “getting it right”
has become a huge challenge for car manufacturers and sub-
system vendors, and a large amount of money is spent on
verification and validation (V&V). For example, a single
code review of the 80,000 lines of C-code mentioned above
costs at least 300,000 US Dollars. This figure is only rea-
sonable if everything works as expected; otherwise the costs
will be much higher. And there are some dozens of such
functions in a car.

Over the years, many safety and development standards
have been developed to address this functional safety aspects
of the software development. One of the recently published,
prominent standards is ISO 26262 road vehicles [14]. Here,
and in similar standards like the new version DO 178-C [30]
the interpretation of the validation standards play an im-
portant role for the automated generation of test cases (of
automated generated code).

Code coverage is a common metric to evaluate the complete-
ness of test cases and to demonstrate that there is no dead
code, deactivated code, or unintended functionality. Code
coverage is therefore an important test end criteria. Such
metrics were originally introduced in [22] and popular met-
rics include (e.g., [32])

statement coverage: each statement of the code must cov-
ered by at least one test case,

decision coverage (also branch coverage): each condi-
tional statement (e.g., if, switch, for, while) must be
executed in its true and false condition,

condition coverage: each Boolean subexpression must be
evaluated to true and false,

Modified Condition/Decision Coverage (MC/DC):
each entry/exit point must be tested; all possible out-
comes in a decision have to be tested. Furthermore,
each condition has to be shown to affect the decision
outcome independently, and

path coverage: every possible route through the code must
be exercised by at least one test case.



In most cases, obtaining path coverage for a larger piece of
software is not feasible. Therefore, MC/DC had been in-
troduced and is required by several safety standards (e.g.,
DO-178B [29] for level A safety-critical code in civil avia-
tion). This metric is stronger than decision coverage, but
does not nearly need as many test cases as path coverage.
With higher requirements to the coverage, the number of
test cases increases tremendously, motivating the use of au-
tomatic test case generators.

3. AUTOMOTIVE COVERAGE REQUIRE-
MENTS

The standard 26262 Road vehicles – Functional safety [14]
is an adaptation of IEC 61508 [4] in order to comply with
requirements specific to the application sector of electrical
and/or electronic (E/E) systems within road vehicles. Part
6: Product Development at the Software Level, Chapter 9
Software Unit Testing is describing the sub-phase software
unit testing. Here, the major objective is to demonstrate
that software units fulfill the software unit design specifica-
tions.

The required structural coverage metric at the software unit
level depends on the so-called Automotive Safety Integrity
Level (ASIL) and is shown in Table 1.

Methods ASIL
A B C D

1a Statement Coverage ++ ++ + +
1b Branch Coverage + ++ ++ ++
1c MC/DC Coverage + + + ++

Table 1: Different coverage metrics according to [14]
6-9, Table12. The symbol ++ indicates highly rec-
ommended and + recommended for the identified
ASIL.

The ASIL provides an automotive-specific risk-based ap-
proach to determine integrity levels four levels to specify
the item’s or element’s necessary requirements of ISO 26262
and safety measures to apply for avoiding an unreasonable
residual risk, with D representing the most stringent and A
the least stringent level.

Unfortunately, there is no example given how coverage should
be measured in a given project. Especially for model-based
software development, there is an on-going discussion on the
interpretation of these coverage measurements. A central
question here is whether the autocoder provides a clean 1-
to-1 mapping of model elements to code or whether addi-
tional conditional statements or other code fragments are
generated.2

2For example, Note 4, 9.4.6, ISO 26262-6 proposes to per-
form back-to-back comparison tests to ensure that the be-
havior of the model with regard to the test objectives is
equivalent to the automatically generated code. This is a
clear indication that, at least from the point of view of the
authors, a detailed knowledge is necessary on how the code
is generated. Once all possible execution paths and their
statements are known, e.g., from the specification, it is easy
to derive stimuli for the models.

4. RELATED WORK
Because of the necessity to have large sets of test cases in or-
der to test embedded software according to applicable stan-
dards, substantial research has been put into the topic of
automatic testcase generation. The underlying idea of such
tools is to generate, based upon information given by re-
quirements, specifications, or the actual code, a set of test
cases (usually pairs of stimuli and desired result) such that
required testing metrics are met. In the realm of model-
based development, several commercial tools are available.

Mathworks’ Design Verifier [20] can analyze a Simulink-
/Stateflow model and generate test cases that cover the en-
tire signal and control flow of the model. These test cases
can be used to exercise code that has been generated by the
Realtime Workshop code generator. T-VEC [31] and the
tool sl2tvec provide a tool chain that again takes Simulink-
/Stateflow models and produces test cases, using a formal-
methods (theorem proving) based approach. The T-VEC
tool itself can generate test cases from table-based specifi-
cations.

The Reactis tool suite [28] translates Simulink/Stateflow
models into RSML-e before other tools analyze the model
or generate test cases. Finally, symbolic PathFinder [27] is
a tool for the automatic generation of test cases for Java
programs. It is an extension of the Java Pathfinder (JPF)
model checker [15]. A tool-chain developed by Vanderbilt
University translates relevant subsets of Simulink and State-
flow into Java code. The produced code then is used as an
input to the symbolic pathfinder.

All tools discussed above (except symbolic pathfinder) use
the model as their input specification and generate test cases
that fully cover the model (given the model semantics). Thus,
there is an ongoing discussion on the suitability of autogen-
erated test cases, which are based on the model semantics.
If, for example, the code generator does not produce code,
which is fully compatible to the model semantics, or ad-
vanced code optimizations take place, a full code coverage
cannot be obtained. On the other hand, automatic test case
generators, which directly work off the generated code might
not be able to produce a fully covering set and does not fea-
ture traceability between test cases and the model.

5. RUNNING EXAMPLE
For the discussion of our method on the automatic test case
generation for numerical support function, we use a stan-
dard implementation of the trigonometric function sin as
our running example. Listing 3 shows a slightly abstracted
version of a typical implementation; for details see [3, 11].
This function takes as argument a double value x and re-
turns a numerical approximation of y = sin x as a double
value. In a first step, the argument of type double is pulled
apart into its components: the exponent exp, the mantissa
m1, m2, and the sign. This is a typical operation according
to the IEEE floating point standard 754 [7] (more details
can be found in, for example, [26] or [13]). Listing 1 shows
the C data structure for 64 bit floating-point number and its
components (according to IEEE [7]). This data structure is
defined in such a way that construction and deconstruction
of the floating point number is possible. Please note that
this format usually is machine-dependent. Typical code con-



tains a large amount of C-macros to configure the code for
the target hardware. For simplicity reasons, we assume a
fixed target architecture (intel) but want to point out that
such configuration mechanisms open up another space to be
covered by testing.

Listing 1: Memory format for double floating point
numbers and data structure for bitwise access.

union i e e e b i t s {
double d ; // doub le
struct { // mantissa+exponent

unsigned int m2: 3 2 ; // mantissa2
unsigned int m1: 2 0 ; // mantissa1
unsigned int exp : 1 1 ; // exponent
unsigned int s i gn : 1 ;
} b ;

struct {
unsigned int i 1 ; // 32 b i t package
unsigned int i 2 ;

} i ; } ;

In Lines 6–12 of the sin algorithm (Listing 4), special cases
like not-a-number, short NaN, or infinity is handled. If x is
very small, the result is approximated by x−x2 or by Taylor
series approximation (x−x3/3!). Then the input argument is
the normalized into a range between 0 and π/2. Because this
has to be accomplished without loss of accuracy, a relatively
complex algorithm is used (Lines 22–46). Finally the value
is mapped to a range between 0 and 1 and a polynomial
approximation of order 7 (Line 50) yields the final result.
The evaluation of the polynomial POLYNOM(x2) is done
using a Horner schema and implemented as a set of C macros
(not shown).

Although there are no loops in this code, there is a sub-
stantially complex control flow with nested if-then-elses and
case statements, which makes a manual development of test
cases that fully cover all paths of the code very hard. In gen-
eral, most of the support functions are very small (up to a
few hundred lines of C-code), but the algorithms that they
encode are far from trivial. Typical language at language
constructs that are found include3:

Macro Expansion: Often configuration details and vari-
ants are implemented using #define macros and con-
ditional compilation. Depending on the application,
exactly the target configuration is used (“test what you
run”), or testcases for all potential configurations can
be generated. In this paper, we always executed the
testcase generation with a given configuration, but be-
ing able to test all possible configurations can add a
layer of confidence.

Control Flow: The full set of control flow constructs (con-
ditional expressions, if-then-else, case statements, and
loops) are used. Loops with fixed upper bounds as well
as endless loops for(;;){...} with exit conditions are
found,

Data Types and Operations: Besides the common data
types for floating point numbers and integers, struct,

3Here, we just analyze C code functions.

union, and bit vectors are common. Arrays and data
structures are of fixed size. Conversion of data types
by casting or the use of union to construct and decon-
struct floating-point numbers can be found frequently.

6. TEST CASE GENERATION WITH KLEE
In our approach, we use the tool KLEE to automatically gen-
erate test cases. KLEE [16, 1] is a symbolic virtual machine,
which runs on the LLVM (Low-Level Virtual Machine) com-
piler infrastructure [18]. For the explanation of the test case
generation, let us consider this small program snippet

i f ( x < 0 | | x > 100)
stmt A ;

else
stmt B ;

This small program has three paths; two reach statement A
(via a true in the first part of the condition, and via a true
in the second part), and the third path reaches statement
B. In a traditional, concrete execution the variable x has
to have a numeric value, and thus execution only hits one
of the three paths. In symbolic execution, the variable x
is declared to be symbolic. Then, all paths are executed
using a backtracking search and assembling so-called path
constraints, i.e., constraints about the symbolic variables
that need to be satisfied to reach that path. Table 2 shows
our path conditions.

Path# Path Constraint
1 [X < 0] : A
2 [X > 100] : A
3 [¬X < 0 ∧ ¬X > 100] : B

Table 2: Path numbers and path constraints with
symbolic variable X

Once all paths have been searched, the set of path con-
straints are tried to be solved for the symbolic variables.
Powerful constraint solvers are used for this purpose. If a
solution is not unique (as in our case), a random value in
the applicable range is chosen. Such a solution, in our case,
for example, 〈−1, 121, 55〉 then comprises a set of test cases,
which fully cover all paths of the program.

KLEE performs it search for test cases using many refine-
ments and optimizations of this basic algorithm. Constraint
solvers for integer arithmetic, as well as some other popular
data types are built into this tool. Since, however, there is
no solver for full floating-point arithmetic, KLEE only sup-
ports very few operations, although it can (syntactically)
handle float and double data types. In most cases, KLEE
silently instantiates the variable with a random value, which
is not of much use.

6.1 Abstraction for test case generation
We therefore apply abstraction to our program under consid-
eration. Figure 2 shows the details of this process. Starting
with the original source code P (here the code in file sin.c),
we apply an abstraction A to it. Then the abstracted pro-
gram is given to KLEE, which in turn automatically pro-
duces test cases T that, when executed provide a full path



coverage on the abstracted program. We, however, will ap-
ply T to the original program.

If the abstraction A was strongly preserving (with respect
to the desired code coverage metric), T would provide our
desired set of test cases. However, due to the undecidabil-
ity of real numbers, no such abstraction exists in general.
We therefore use an iterative process: starting with an ab-
straction A1, we generate test cases T1, which fully cover
the abstracted program. We then execute the test cases on
the original code and measure the coverage. If we obtain
100% coverage, we take this set. Otherwise, we start KLEE
again to obtain a new set of test cases,4 or refine the abstrac-
tion. For our examples, obtaining a suitable abstraction was
straight-forward, but there is no guarantee.

By using abstraction, we also cannot use the obtained ab-
stracted function result as an oracle. Rather, we have to use
an external reference implementation of our support func-
tion to compare the results of the tests.

Figure 2: The use of abstraction for the automated
testcase generation. Starting with an initial abstrac-
tion, test cases are generated by KLEE for the ab-
stracted program. These are executed on the origi-
nal program P and code coverage is measured. If the
desired coverage criteria are not met, the abstrac-
tion is refined and the process starts over again.

Specifically, we use the following abstraction elements:

• All double definitions were replaced by int.

• All floating-point constants in the code (e.g., for π)
were multiplied by 10N and converted to an integer.
The parameter N (usually 5–7) is modified during the
abstraction loop.

• All floating-point arithmetic operations were adjusted
accordingly to accommodate the abstracted data type.
For example, floor(x) was replaced by x.

• Where appropriate, floating point arguments for the
support functions were taken apart (Figure 1) and the

4In many cases, KLEE uses random selection during the
generation process. Thus, multiple runs can yield different
sets of test cases.

individual parts were passed as arguments. For ex-
ample, sin (double x) was converted into abs_sin

(long l1, long l2). These individual variables l1,

l2 then were defined as symbolic for the test case
generation. Another possibility for passing the indi-
vidual parts could be abs_sin (int exp, int sign,

int m1, int m2).

This abstraction is extremely simple. However, it showed
to be suitable for our analyzed examples. The reason is
that most Boolean conditions in the code are not results of
comparisons of results of floating point operations (e.g., x*y
≥ π), but concern integer-based comparisons (e.g., exp ≥
5).

6.2 Experimental Results
Table 3 lists the test cases that have been generated for the
sin function. A total 44 test cases are produced in about one
second CPU time (on an Intel Macbook Pro). The table lists
the input parameter xn (double) and the Error Eref with
respect to the reference implementation, when the original
sin function is executed on an Intel Macbook Pro. Test
cases 3 and 22 trigger code for “inaccurate results” in the
utility function; in these cases, the error calculation is not
applicable N/A. Otherwise, the error is smaller than 1e-11
except for two test case, 31 and 32. It seems that the large
error in these cases also correspond to the handling of large
arguments, which lead to inaccurate results.

Table 3 shows that most arguments show up with a positive
and negative sign. It also shows that the arguments of 0
and NaN (“not a number”) show up multiple times. In these
cases, KLEE produced test cases with different abstracted
values. When combining these pairs 〈l1, l2〉 into a double,
identical values are the result.

The code coverage was measured with different tools. We
used gcov (a part of the GNU C-compiler suite) for state-
ment and branch coverage, and LDRA [17] to measure state-
ment as well as MC/DC coverage. The initial results of
measurements were surprising: whereas gcov reported 100%
statement coverage, LDRA claimed that Line 42 in List-
ing 4 was not covered. Obviously, the empty statement in
the default branch cannot be reached because of the value
restriction of variable bot2. Thus, according to LDRA, this
piece of code cannot obtain a 100% MC/DC coverage. In-
terestingly, if Line 42 is removed, 100% statement coverage
is obtained, but a branch of the case statement is uncovered;
hence again no full MC/DC coverage.

This observation is an indication, how careful unit testing
has to be performed, as different tools can have subtle dif-
ferences in their semantics of certain language constructs.
The C case statement is such a typical example, which also
produces detailed discussions in coding standards.

7. EXAMPLE II: TABLE LOOKUP
One of the most common block types in model-based sys-
tems like Simulink is the “Table Lookup” or interpolation
block. Given an input u, it calculates an approximation of
f(u), whereby values of f for monotonously increasing values
of x are given. In other words, a vector ~x = 〈x0, x1, ..., xn−1〉



n xn Eref

1 0.0488281250 1.9e-11
2 0.048828145354091221 1.9e-11
3 590295810358705651712.0 N/A
4 137438954176.75451660156250 0
5 131072.02110725082457065582 1.1e-16
6 1.021675541361788 0
7 2048.0 5.6e-17
8 2097152.28180931787937879562 1.1e-16
9 1048576.0440363052263855934 1.1e-16

10 512.011448051895968092 0
11 8192.0103308404868585058 1.1e-16
12 8192.0195236411855148617 0
13 2097152.13230490731075406075 0
14 68719477974.53822326660156250 0
15 68719484038.4492340878906250 1.1e-16
16 1.022142187527940 0
17 8192.0189697450514358934 0
18 137438958099.9297790527343750 3.5e-18
19 32.070940668450703 1.1e-16
20 -0.0488281250 1.9e-11
21 -0.048828146286775316 1.9e-11
22 -590295810358705651712.0 N/A
23 -1.017512665761998 1.1e-16
24 -4096.026914338559436146 1.1e-16
25 -2199023747489.17871093750 1.1e-16
26 -137438977261.382751464843750 0
27 -2097152.39780779741704463959 2.2e-16
28 -2097152.28940287604928016663 1.1e-16
29 -2097152.37323756702244281769 0
30 -524288.0 0
31 -137438963969.7497253417968750 3.4e-06
32 -68719489512.50517272949218750 3.8e-06
33 -1.01257808057709 0
34 -1.017452079403846 1.1e-16
35 -33554434.43163714557886123657 0
36 -32.0541842897661127 1.1e-16
37 -524288.05263395013753324747 5.6e-17
38 -1.0749030579782 1.1e-16
39 0.044409 0
40 0.0 0
41 0.0 0
42 inf NaN
43 NaN NaN
44 NaN NaN

Table 3: Generated Testcases for the sin support
routine, and the error with respect to a reference
implementation.

of monotonously increasing values and a vector of function
values ~F = 〈f(x0), . . . , f(xn−1)〉 are given. Whenever the
code for the table lookup block is executed with a value u,
the following steps are performed:

1. if u is outside the range of ~x, return f(x0) or f(xn−1),

2. otherwise, determine the index 0 ≤ i < n such that
xi ≤ u ≤ xi+1, and

3. calculate the table lookup value as 1
2
(f(xi) + f(xi+1))

or by linear interpolation.

For efficiency reasons, step (2) is usually implemented using
an iterative binary search.

We have analyzed a generic version of a 1-dimensional table
lookup function, which is somewhat similar to Mathworks

rt_look.c.5 Listing 2 shows a sketch of such a function.

The original code contains an optional assertion assert (...) ,
which can check the loop invariant during runtime. For the
use of this code in a safety-relevant embedded environment,
software tests must be carried out that fully cover this sup-
port routine. We are again using the tool KLEE to automat-
ically generate test suites that provide full code coverage. In
this case, we generate test cases for the following two sce-
narios:

1. given a vector ~x of monotonously increasing values and
vector ~F , find values for u such that all paths in the
look-up support function are covered, and

2. given the length n of interpolation table, generate pairs
(~x, u) such that the code is fully covered.

In both cases, we assume, without loss of generality, F to
be the identity function, i.e., f(ind) = ind.

Listing 2: Simplified Pseudo-Code for Table Lookup.

double lookup (double ∗x , double ∗ f ,
int len , double u){

i f (u <= x [ 0 ] ) // ou t s i d e the t a b l e ( l e f t )
return f [ 0 ] ;

else i f (u >= x [ len −1]) // ou t s i d e ( r i g h t )
return f [ len −1] ;

else
for ( ; ; ) { //do b inary search

a s s e r t ( ( x [ bot ] < u) && (u < x [ top ] ) ) ;
ind = ( bot + top ) /2 ;
i f ( . . .

top = . . .
bot = . . .

else
return f [ ind ] ;

. . .
}

}

For this function we again used our abstraction mechanism
as discussed in Section 6 above. The driver code to force
KLEE to generate test cases is very straight-forward. For
scenario (1), Listing 3 shows the code.

Listing 3: KLEE Test Driver
main ( ){

const stat ic int x [ ] = {−2 ,−1 ,0 ,1 ,2} ;
const stat ic int F [ ] = {0 , 1 , 2 , 3 , 4} ;
const int l en = 5 ;
int u , va l ;

k lee make symbol ic (&u , s izeof (u ) , ”u” ) ;
va l = lookup (x ,F , len , u ) ;

}

5rtw_demos/rt_look.c is found in Mathworks’ distribution
of RealTime Workshop.



Obviously, the test stimuli ui depend on the given vector ~x.
For our example, for ~x = {−2, 0, 3, 5, 8}, the following six
test cases are generated in less than 0.1 seconds:

u = {−2147483648,−1, 0, 2, 4, 6, 8}

Again, abstraction is necessary to achieve full coverage. In
particular, the minimal distance between xi and xi+1 in the
abstracted program must be at least 2 in order to trigger the
divide-and-conquer paths in the code. Otherwise, a vector
like ~x = {−2,−1, 0, 1, 2} would only generate an incomplete
set of 5 test cases. The use of a scaling factor during ab-
straction easily avoids that problem.

All these test cases have been generated with the assertion
in the code turned off. When the assertion is turned on, it is
textually replaced by a conditional statement that aborts the
execution if the assertion is not met. Interestingly, KLEE
still finds a test set, which covers the code to a full 100%.
This indicates that there exist stimuli u, which, for a given
table ~x cause the abortion of the execution. In an embed-
ded system, such a behavior could have disastrous conse-
quences. A closer look at the code reveals that the actual
binary search loop is correct, but the assertion in rt_look.c

is wrong (R2011b).

Our second scenario produces test cases for the table lookup,
which are independent of the actual interpolation table ~x.
Rather, stimuli in the form of a vector and a lookup value
u are produced as test cases. This means that we force
KLEE to also handle all the values of ~x symbolically. Table 4
shows a generated test suite for a vector of 5 elements. By
definition of the lookup function, the elements of ~x must
have monotonously increasing values. In order to enforce
this precondition, we simply add this constraint to the code
in our test driver:

i f ( x [ 0 ] < x [ 1 ] && x [ 1 ] < x [ 2 ] && . . )
r=lookup ( . . ) ;

else
r=−1;

Thus KLEE generates testcases for covering the actual lookup
plus test cases for yielding a dummy result of r = −1. Ta-
ble 5 shows the number of all test cases C0 and valid test
cases C to cover the lookup function, generated for different
numbers of n, as well as the execution time (on a 2.4GHz
Macbook Pro in seconds). Although it is obvious, that, due
to the infinite loop, no finite set of test cases is sufficient to
fully test this code, we demonstrated that automated test
case generation can be used to easily generate sets of fully
covering test cases for commonly used lengths of interpola-
tion tables.

8. CONCLUSIONS
Despite numerous software development standards and pro-
cesses, numeric support functions are often left out in safety
considerations. Even if these numeric support functions are
considered “proven in practice”, subtle differences in target
architecture or configuration can yield bad surprises. A full
test on the model level does not suffice if there is a chance
that support functions might work incorrectly.

In this paper, we describe an approach of using KLEE to

n C0 C t[s]

5 15 11 0.3
10 32 9 1.2
20 66 19 4.6
30 96 29 10.2

100 330 231 130

Table 5: The number of test cases generated for dif-
ferent lengths of the lookup table. C0 is the number
of test cases generated by KLEE, C is the number of
valid test cases (i.e., vectors with increasing values),
and run-time t for their generation.

automatically generate suitable sets of test cases. We use
abstraction to overcome KLEE’s weak handling of floating
point numbers. Of course, in such an environment, the test
case generator should be complete and correct, properties,
which are in general lost with our abstraction. However,
we are not using KLEE’s results as oracle and the degree of
coverage is tested on the target code by an external tool. Re-
dundant test cases are not harmful. Nevertheless there are
strong economical needs to reduce number of tests. Again,
redundant test cases can be easily detected.

Our method of automatically generating sets of test cases for
a multitude of numerical support function is is in particular
of interest for all model-based approaches and applications
where test cases are to be generated from a specific formal
test specification, e.g., as described in the VASE method for
the qualification of software development tools in automo-
tive applications [19].
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Listing 4: Simplified Code for Numeric Support Function sin.
1 s i n (double x ) {
2

3 md. d = x ; // break the argument up in t o par t s
4 xexp = ( int ) md. b . exp ;
5 // handle boundary cond i t i on s
6 i f ( xexp == IEEE MAX) { // x i s Not−a−Number or i n f i n i t y
7 i f (md. b .m1 | | md. b .m2)
8 return x ; // x i s Not−a−Number
9 else

10 return NaN; // 0 .0/0 .0
11 } else i f ( xexp == 0) // x i s i n f i n i t y or denormal ized
12 return x ;
13 else i f ( xexp <= (IEEE BIAS − IEEE MANT − 2) )
14 return x − x∗x ; // x i s very sma l l
15 else i f ( xexp <= (IEEE BIAS − IEEE MANT/4) )
16 return x − x ˆ3/6 ; // x i s sma l l
17 }
18 i f ( x < 0) {
19 s e t s i gn to 1 ; // nega t i v e
20 x = − x ;
21 }
22 // map to range o f argument to x <= pi /2
23 i f ( xexp < IEEE BIAS) { // 2ˆ52/4 < x < 1
24 sk ip ; // x a l r eady < p i /2
25 else i f ( xexp <= (IEEE BIAS + IEEE MANT) ) {
26 xm = b ∗ 2 p i h i + 1/2 c
27 xn . d = xm + mag52
28 bot2 = xn . b .m2 & 3u
29 // s p l i t xm in to top 26 and bottom 26 b i t s
30 s p l i t ( a1 , a2 , xm) ;
31 exactmul2 ( x3 , x4 , xm, a1 , a2 , p i 2 h i , p i 2 h i h i , p i 2 h i l o ) ;
32 exactmul2 ( x5 , x6 , xm, a1 , a2 , p i 2 l o , p i 2 l o h i , p i 2 l o l o ) ;
33 x = ( ( ( ( x − x3 ) − x4 ) − x5 )− x6 ) − xm∗ p i 2 l o 2 ;
34 // reduce to 0 <= x <= pi /2
35

36 switch ( bot2 ) {
37 case 0 : i f ( x < 0 . 0 ) { x = −x ; s i gn ˆ= 1 ; } break ;
38 case 1 : i f ( x < 0 . 0 ) { x = p i 2 h i + x ; } else { x = p i 2 h i − x ; } break ;
39 case 2 : i f ( x < 0 . 0 ) { x = −x ; } else { s i gn ˆ= 1 ; } break ;
40 case 3 : s i gn ˆ= 1 ; i f ( x < 0 . 0 ) {x = p i 2 h i + x ;} else {x = p i 2 h i − x ;}break ;
41 default : ;
42 }
43 } else { // 2ˆ53 <= x
44 return LOSS ;
45 }
46 x = x∗ 2 p i h i ; // map to range 0 <= x <= 1
47 i f ( x > X EPS) {
48 x2 = x∗x ;
49 x = POLYNOM(x2 ) ; // Horner 7 th degree
50 } else {
51 x = x ∗ p i 2 h i ;
52 }
53 i f ( s i gn ) x = −x ;
54 return x ;
55 }

Figure 3: The Pseudo-Code for the Argument Qualification and Polynomial Approximation of the Numeric
Support Function (double) sin((double) x).


