Technology and Tool Development to Support Safety and Mission Assurance

Ewen Denney and Ganesh Pai

ISRDS 2
SGT Technology Day, Houston, TX
Oct. 30, 2017
Summary

• How we are (and have been)
 – Defining the state of the art
 ▪ Foundational research in assurance technology
 – Pushing the state of the practice
 ▪ Application of research to enable application of emerging technologies
 ▪ Unmanned aircraft systems (UAS) missions
 – Developing supporting tools and technologies
 ▪ AdvoCATE (Assurance Case Automation Toolset)
 ▪ Proven application in unmanned aircraft systems (UAS) missions
Outline

- Motivation
- Assurance Cases
- Example
- Tool support
- Outlook
• Motivation

• Assurance Cases

• Example

• Tool Support

• Outlook
Research Motivation

• High-hazard industries are moving to *active safety management*
 – Safety management system (SMS) in aviation
 – Need to
 ▪ Unify reasoning about technical aspects of safety
 ▪ Support safety-related decision making

• *Goals-based* regulation is attractive for novel applications
 – When performance standards are absent
 ▪ Unmanned aircraft systems (UAS), Autonomous systems, …
 – Increases flexibility for regulated entity
 – Evidence-based assurance → *safety case*

Foundational research in languages, methodology, and automation support
Practical Motivation

• MIZOPEX (2013)
 – NASA Earth science mission with Sierra UAS off Alaska coast
 – Flight in combination of US National Airspace + Oceanic Airspace
 – Use of air defense radar for detect and avoid
 – Project needed FAA approval through submission of safety case – a detailed safety justification

• UTM (2016 – Ongoing)
 – Fleet of small UAS demonstrating low-altitude traffic management system
 – Flight in US national airspace, over sparsely populated land
 – Use of ground-based radar for detect and avoid
 – Project needed FAA approval through submission of safety case

Practical application of our research solutions in response to customer needs
• Motivation

• **Assurance Cases**

• Example

• Tool support

• Outlook
‘A safety case is a structured argument, supported by a body of evidence, that provides a compelling, comprehensible and valid case that a system is safe for a given application in a given operating environment’

- UK MOD, DS-00-56 Issue 4 (2007)

• Essentially, a safety risk management artifact
 – Other compatible definitions and guidance on content
 ▪ Based on application domain, standard, regulatory paradigm, etc.
 – FAA: Order 8900.1, FSIMS, vol. 16, UAS
 – NAVAIR: Instruction 13034.4
 – ICAO and Eurocontrol: Safety case development manual
 – Automotive: ISO 26262
 – FDA: Infusion pumps total product lifecycle guidance
Safety Case Content

- FAA (8900.1, FSIMS, vol. 16, UAS)
 - Core content
 - Environment (airspace system) description
 - System description and system change description
 - Airworthiness description of affected items
 - Aircraft capabilities and flight data
 - Accident / incident data
 - Pilot / crew roles and responsibilities
 - Hazard analysis and details of risk analysis, risk assessment, and risk control
 - Emergency and contingency procedures
 - Safety risk management plan
 - Hazard tracking and treatment
 - Safety performance monitoring
Safety Case Content

• In general,
 – Explicit statement of safety assurance objectives
 – Heterogeneous evidence
 ▪Datasheets, design and analysis, verification, operational testing,…
 – Structured argument
 ▪Capturing rationale why evidence supports the claims made

• Additionally,
 – Safety architecture providing a risk basis
 – Hazard log and hazard analyses
 – Evidence model
 – Monitoring and update
‘A documented body of evidence that provides a convincing and valid argument that a specified set of critical claims regarding a system’s properties are adequately justified for a given application in a given environment’

- MITRE (2005)

‘A reasoned and compelling argument, supported by a body of evidence, that a system, service, or organization, will operate as intended for a defined application, in a defined environment’

- Goal Structuring Notation Standard (2011)

‘A structured set of arguments and a body of evidence showing that an (information) system satisfies specific claims with respect to a given quality attribute’

- National Institute of Standards and Technology (2013)

Generalization of safety cases to other assurance properties: security, dependability, …
Safety Risk Management Approach

System Analysis
Concept of Operations,
System/change description,
Regulations, …

HazID

Risk Analysis
and Assessment

Design target

Risk scenarios, design targets, risk evaluation

Risk Control

Barrier Modeling – Abstract Safety Architecture

Assurance Rationale
(Structured Argument)

Evidence Artifacts
Design, Analysis, Verification,
Testing,
Assurance claims, strategies, context, rationale, …

Operational Evidence
Verification of safety performance targets,
Assumption corroboration,
Hazard tracking, Precursors, …

Operational Safety Assurance
(Monitoring and Update)

Safety measures, monitors, …

Safety Requirements Implementation

Oct. 30 - 31, 2017

SGT Technology Day. Houston, TX

• Motivation
• ASSURANCE CASES
• Example
• Tool Support
• Outlook
This Talk

System Analysis
Concept of Operations,
System/change description,
Regulations, …

HazID

Hazard Analysis
Operational, functional, …

Risk Analysis
Concept of Operations,
System/change description,
Regulations, …

Barrier Modeling – Abstract Safety Architecture

Risk Control
Threats / Causes / Initiating Events or States
Prevention / Preventative Barriers

Recovery / Mitigative Barriers
Hazard
Loss of Control State

Structure of Argument

Evidence Artifacts
Design, Analysis, Verification Testing,

Operational Safety Assurance
(Monitoring and Update)

Safety Requirements Implementation

Operational Evidence
Verification of safety performance targets
Assumption corroboration
Hazard tracking, Precursors, …

Safety performance measures, monitors, …

Mitigations
Safety requirements
Barrier and Control functions

Assurance claims, strategies, context, rationale, …

Operational Evidence
Verification of safety performance targets
Assumption corroboration
Hazard tracking, Precursors, …

Safety performance measures, monitors, …

Motivation
ASSURANCE CASES
Example
Tool Support
Outlook

Oct. 30 - 31, 2017
SGT Technology Day. Houston, TX
• Collection of barrier models providing a *risk basis*
 – Collection of all factors affecting risk
 – Model for risk qualification/quantification

Event chain / accident trajectory

Barrier compromise/breach
Bow Tie Diagram (BTD)

Prevention Barrier
- Prevention Control (2)
- Barrier Integrity: 0.999

Hazard
- IR: 5B (Low)
- RR: 5E (Low)

Threat
- Likelihood: Probable

Escalation Factor
- Escalation Factor Control

Consequence
- IL: B (Probable)
- IS: 5 (Minimal)
- IRL: 5B (Low)
- RL: E (Extremely Improbable)
- RS: 5 (Minimal)
- RRL: 5E (Low)

Prevention Barrier
- Prevention Control (1)
- Barrier Integrity: 0.99

Recovery Barrier
- Recovery Control
- Barrier Integrity: 0.99
Example: Loss of Separation

Threat
- Non-cooperative aircraft intrudes into the OR when UAVs are airborne
 - Likelihood: Remote

Escalation Factor
- Loss of voice communication capability

Barrier & Control
- Safe nominal operating procedures
 - All RF frequencies to be utilized are verified to be free of interference through frequency use approval. A spectrum analyzer deployed during operations provides confirmation that there is no RF interference
- Spectrum Management
 - Prior to each flight, all RF links, including equipment and signals for voice communication are tested to verify that they are performing as expected, without interference
- Redundancy
 - Multiple aviation band VHF radios provide redundant voice communication capability

Hazard
- Airborne UAs operating BVLOS within the OR
- Airborne conflict from a loss of separation
 - IR: 1B (High)
 - IR: 1E (Medium)

Consequence
- Midair collision (MAC) between UA and non-cooperative manned aircraft
 - LI: B (Probable)
 - LII: 1 (Catastrophic)
 - LIII: 1B (High)
 - LIV: E (Extremely improbable)
 - R1: E (LII: 1 (Catastrophic)
 - RII: 1E (Medium)

Top Event
- Escalation Factor Barriers
- Barrier Integrity: 0.99

Example: Loss of Separation

Ground-based Surveillance
- Radar scans the airspace and RO monitors the surveillance display, to detect and track intruder heading, altitude, and speed
 - Barrier Integrity: 0.99

Avoidance Maneuvers
- Based on the encounter geometry, i.e., the location of the UA relative to the intruder and/or a DCP / FTP, the RSO directs the PIC to initiate an appropriate avoidance maneuver (divert and land immediately, terminate), who commands it via the GCS.
 - Barrier Integrity: 0.99

Independent Flight Abort
- The PIC invokes an independent flight abort capability immediately shutting off engines and halting forward motion
 - Barrier Integrity: 0.999
Rationale Capture

Safety / Dependability Claims

Chain of reasoning

Developed claims

Documentation and Details

Item of Evidence

Goal Structuring Notation (GSN)
Example Structured Argument

- Motivation
- Assurance Cases
- Example
- Tool Support
- Outlook

J1: LiPo battery system failures are characterized by the different failure modes

S1: Show toleration over all identified failure modes

G1: LiPo battery system failures are acceptably tolerated

C1: FMEA of LiPo Battery System

S2: Usage of redundancy

G2: Battery system short circuits are eliminated

G3: Thermal runaway of the battery packs is mitigated

E1: Results of short circuit analysis

A1: Independence in failures of the primary and the spare battery systems
Tiered Assurance Framework

<table>
<thead>
<tr>
<th>Tier</th>
<th>Core Assurance Concerns and Scope</th>
<th>Additional Assurance Qualities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Safety Objectives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Safety</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Safe concept (safety designed-in)</td>
<td>Due diligence Reduction of risk</td>
</tr>
<tr>
<td></td>
<td>- Safety in design</td>
<td>- ALARP</td>
</tr>
<tr>
<td></td>
<td>- Safety in implementation</td>
<td>- SFAIRP</td>
</tr>
<tr>
<td></td>
<td>- Safe transition into service</td>
<td>- ASARP</td>
</tr>
<tr>
<td></td>
<td>Concerns</td>
<td>Compliance with Aviation Regulations</td>
</tr>
<tr>
<td></td>
<td>and Scope</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safety in operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- TLOS / Acceptable level of risk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Safe disposal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tier</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Overall Assurance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All hazards / hazard risk statements, i.e., combination of hazardous situation, hazard release.</td>
<td>All applicable regulatory requirements</td>
</tr>
<tr>
<td></td>
<td>All relevant consequences across all BTDs.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Profile of Risks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For each hazard, all risk scenarios (consequences), e.g., midair collision, near midair collision, ground collision, ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific consequence, e.g., midair collision</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All causal chains, threats, and dangerous interactions across all hazards.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Individual Risks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific risk scenario, i.e., causal chain of consequence, top event, threats, causes/precursors</td>
<td>Depth; Independence;</td>
</tr>
<tr>
<td></td>
<td>Applicable system of barriers / safety measures</td>
<td>Proactiveness: Prevention vs. Recovery;</td>
</tr>
<tr>
<td>4</td>
<td>Barriers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Functional safety / fitness for purpose</td>
<td>Reliability and effectiveness;</td>
</tr>
<tr>
<td></td>
<td>Delivery of required service</td>
<td>Availability; Functional / safety integrity;</td>
</tr>
<tr>
<td>5</td>
<td>Controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Functional safety / fitness for purpose</td>
<td>Resilience; Fail safety; Data integrity;</td>
</tr>
<tr>
<td></td>
<td>Delivery of required service</td>
<td>Verifiability;</td>
</tr>
</tbody>
</table>

- **Motivation**
- **ASSURANCE CASES**
- **Example**
- **Tool Support**
- **Outlook**

Oct. 30 - 31, 2017

SGT Technology Day. Houston, TX
Outline

• Motivation

• Assurance Cases

• Example

• Tool support

• Outlook
Factors Affecting UAS Safety

Diverse environment
- Populated / urban / built-up areas
- Uncontrolled / controlled airspace
- Low / high density airspace

Varying mission concepts
- Package delivery
- Surveillance
- Aerial inspection
- Mapping, …

Combination of operating modes
- Visual line of sight (VLOS)
- Beyond visual line of sight (BVLOS)
- Beyond radio line of sight (BRLOS)

Different configurations
- Airborne sensors (Lidar, sonar, FPV camera, Radar)
- Ground sensors (Radar)
- Multiple GCS, Roaming GCS, …

Varying access profiles
- Operating range
- Terminal airspace
- Transit (vertical / lateral)

Increasing complexity in mission and operations

Motivation
- Assurance cases
- EXAMPLE
- Tool Support
- Outlook

Oct. 30 - 31, 2017 SGT Technology Day. Houston, TX
UAS Safety Assurance

• Scope of UAS safety
 – Design assurance
 – Prior to deployment
 – Engineering evidence from development of fitness for purpose

• Operational assurance
 – Post-deployment, runtime evidence
 – Corroboration of expected safety performance

• Safety measures should be commensurate with the risk posed by the intended operations
 – Level of risk posed dictates safety measures employed and the extent of assurance provided

• Preferred form of safety justification (FAA Order 8900.1)
 – Safety Case
 – Assessment of Acceptable Level of Safety (ALoS)
Notional CONOPS

- Surveillance Requirements
- Avoidance maneuvers, Procedures, etc.
- Justification and Rationale

UTM / UAS Safety

Identified Hazards

- Primary hazards
 - PH1: NMAC with non-cooperative airborne entities
 - PH2: NMAC between UAs
 - PH3: Collision into ground / structures / people / vehicles
 - PH4: Rapid onset of inclement weather
 - PH5: GPS signal outage
 - PH6: UAs exiting the QR

- Secondary hazards
 - SH1: Lithium fire and/or explosion

Contributory hazards

- CH1: Loss of surveillance
- CH2: Loss of command and control (C2) links
- CH3: Loss of ground control station (GCS)
- CH4: Unrecoverable UA failures/malfunction in flight
- CH5: UA deviation from approved flight path and/or exiting the QR
- CH6: Human factors
- CH7: Loss of voice communication links

Airspace / Threat Modeling

Traceability from Hazards to Mitigation Barriers

Cross References: Mitigation Barriers

Primary and Secondary Hazards

- PH1: NMAC with non-cooperative airborne entities
- PH2: NMAC between UAs
- PH3: Collision into ground / structures / people / vehicles
- PH4: Rapid onset of inclement weather
- PH5: GPS signal outage
- PH6: UAs exiting the QR
- SH1: Lithium fire and/or explosion

Mitigation Barriers

<table>
<thead>
<tr>
<th>Cross References</th>
<th>Mitigation Barriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.2 M1</td>
<td>Conservation of QR</td>
</tr>
<tr>
<td>Section 2.3 M2</td>
<td>Expanded surveillance</td>
</tr>
<tr>
<td>Section 3.1 M3</td>
<td>Maintains for safe separation</td>
</tr>
<tr>
<td>Section 3.3 M4</td>
<td>Avoids maneuvers and contingency procedures</td>
</tr>
<tr>
<td>COA Application</td>
<td>Aircraft flight control and air traffic management</td>
</tr>
<tr>
<td>Section 6.6 M8</td>
<td>On-board equipment and ground safety equipment</td>
</tr>
<tr>
<td>Section 9.1 M7</td>
<td>Reliability</td>
</tr>
<tr>
<td>Section 9.4 M9</td>
<td>Airspace deconfliction</td>
</tr>
<tr>
<td>Section 6.3 M6</td>
<td>Pre-flight checks and flight maintenance and safe control operations</td>
</tr>
<tr>
<td>COA Application</td>
<td>Spectrum management</td>
</tr>
</tbody>
</table>

Hazard Analysis Worksheets: Table 9 - Table 14

- Alkaline earth (Lithium) fire and explosive
• Residual risk = Consequence probability x severity
 – Probability of disjunction of all paths leading to consequence
 ▪ Inclusion exclusion principle
 – Path probability = Joint probability of all events on path
 ▪ Barrier integrity, threat event probability
 – Assumptions and data
<table>
<thead>
<tr>
<th>Tier</th>
<th>Core Assurance Concerns and Scope</th>
<th>Additional Assurance Qualities</th>
</tr>
</thead>
</table>
| Safety Objectives | **System Safety**
- Safe concept (safety designed-in)
- Safety in design
- Safety in implementation
- Safe transition into service
- **Safety in operations**
 - TLOS / Acceptable level of risk
 - Safe disposal

| Due diligence
| Reduction of risk
| - ALARP
| - SFAIRP
| - ASARP |
| Compliance with Aviation Regulations | **Processses;**
|
- Maturity, ...
- Input data;
- People;
|
- Competence, ...
- Method and Tools;
- Qualification, ...
- Safety management system;
- Lifecycle |
| **Overall Assurance**
| All hazards / hazard risk statements, i.e., combination of hazardous situation, hazard release.
| **All relevant consequences** across all BTDs. |
| **Profile of Risks**
| For each hazard, all risk scenarios (consequences), e.g., midair collision, near midair collision, ground collision, ...
| **Specific consequence**, e.g., midair collision
| All causal chains, threats, and dangerous interactions across all hazards. |
| 2 | **Individual Risks**
| **Specific risk scenario**, i.e., causal chain of consequence, top event, threats, causes/precursors
| **Applicable system of barriers / safety measures** |
| **Barriers**
| Functional safety / fitness for purpose
| Delivery of required service |
| 4 | **Controls**
| Functional safety / fitness for purpose
| Delivery of required service |
| 5 | **Motivation**
| **Assurance cases**
| **EXAMPLE**
| **Tool Support**
| **Outlook** |
Argument-based Assurance

<table>
<thead>
<tr>
<th>Tier</th>
<th>Core Assurance Concerns and Scope</th>
<th>Additional Assurance Qualities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>System Safety</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Safe concept (safety designed-in)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Safety in design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Safety in implementation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Safe transition into service</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Safety in operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- TLOS / Acceptable level of risk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Safe disposal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Due diligence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduction of risk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ALARP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- SFAIRP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ASARP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compliance with Aviation Regulations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Processes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Maturity, ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>People</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Competence, ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Method and Tools</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Qualification, ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safety management system; Lifecycle</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Overall Assurance</td>
<td>All applicable regulatory requirements</td>
</tr>
<tr>
<td></td>
<td>All hazards / hazard risk statements, i.e., combination of hazardous situation, hazard release.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All relevant consequences across all BTDs.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Profile of Risks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For each hazard, all risk scenarios (consequences), e.g., midair collision, near midair collision, ground collision, …</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific consequence, e.g., midair collision</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All causal chains, threats, and dangerous interactions across all hazards.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Individual Risks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specific risk scenario, i.e., causal chain of consequence, top event, threats, causes/precursors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applicable system of barriers / safety measures</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Barriers</td>
<td>Depth;</td>
</tr>
<tr>
<td></td>
<td>Functional safety / fitness for purpose</td>
<td>Independence;</td>
</tr>
<tr>
<td></td>
<td>Delivery of required service</td>
<td>Common causes/modes, ...</td>
</tr>
<tr>
<td></td>
<td>Reliability and effectiveness; Availability; Functional / safety integrity; Resilience; Fail safety; Data integrity; Verifiability; ...</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Functional safety / fitness for purpose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delivery of required service</td>
<td></td>
</tr>
</tbody>
</table>
Barrier Fitness for Purpose

- Motivation
- Assurance Cases
- EXAMPLE
- Tool Support
- Outlook

Oct. 30 - 31, 2017

SGT Technology Day, Houston, TX
Barrier Fitness for Purpose

Ground-based surveillance can adequately detect and track intruders.

Detection and tracking in the radar cone of silence

Detection and tracking in the radar cone of silence that poses a credible threat are detected and tracked.

Radar detection and tracking

Use of visual surveillance

Radar detection and tracking

Use of onboard equipment

ADS-B tracking

Use of onboard equipment

Data displayed

Range safety display provides adequate situational picture

Range safety display is capable of displaying the OR, the augmented TV, and the SV.

Display calibration

The RSD is calibrated and centered to provide easily comprehensible view of the OR that is consistent with reality.

Pre-flight checks

Pre-flight check for surveillance verify that the RSD display is calibrated, centered, and consistent with reality.
Outline

- Motivation
- Assurance Cases
- Example
- Tool support
- Outlook
Developing Structured Arguments

Assurance Case Automation Toolset (AdvoCATE)
AdvoCATE

Automated View Extraction

Bow Tie Modeling
AdvoCATE

- Hazard analysis and safety requirements capture

- Structured arguments
 - *Pattern* specification and automated pattern *instantiation*
 - Integration of formal methods and formal tool-based evidence
 - *Hierarchical* and *Modular* refactoring
 - Argument *queries* and *views*
 - Argument *verification*
 - Metrics
 - Report generation

- Safety architectures
 - Bow tie modeling
 - Views
 - Transformations (event and barrier split / merge)

- Evidence management

- **Safety, Mission Assurance, and Risk management** (SMART) Dashboard
Outline

• Motivation
• Assurance Cases
• Example
• Tool support
• Outlook
RISC and OHs

• NASA adoption of safety case paradigm

• Promulgated by Office of Safety and Mission Assurance (OSMA)
 – Objective hierarchies (OHs)
 ▪ Decomposition of assurance objectives
 – Safety, reliability and maintainability, software assurance, range safety, …
 – Risk informed safety case (RISC)
 ▪ System Safety Handbook, vols. 1 & 2
 ▪ Elaborates
 – NASA acquisition process based on safety performance
 – Supplier requirements for justification of safety performance
 – Argumentation for rationale capture
 – Risk assessment and cost-benefit analysis for decision making
Software assurance research program funding (FY18)
- Retrospective characterization of assurance afforded by RISC and Software OH against an assurance baseline

- Assurance baseline from NASA ARC BioSentinel mission
 - CFS/CFE
 - V&V artifacts
 - Current NASA assurance standards and guidelines

- Mapping to RISC and OH to assurance artifacts
 - Analysis of potential gaps and assurance deficits

- Tool support via AdvoCATE
Conclusions and Future Work

• Development of end-to-end assurance methodology and tool support

• Foundational research, informed by and corroborated in practical application

• Safety cases created were the first of their kind
 – MIZOPEX: First civil safety case to be approved
 ▪ NASA Honor Award
 – UTM Safety Case: First civil safety case to be approved for using ground-based detect and avoid to conduct BVLOS operations in the NAS
Conclusions and Future Work

• Ongoing focus on design-time assurance
 – Artifacts and rationale from development, prior to release-into-service

• Outlook towards operational assurance through lifecycle
 – In-service safety performance monitoring

• Dashboard for stakeholder-specific assurance

• Current focus on safety
 – Expansion in focus to mission assurance
 – Expansion in application domain to spaceflight
 ▪ Initially robotic
 ▪ Eventually, human spaceflight

Looking for opportunities to infuse our technology into other SGT customer projects
The Assurance Case approach is being adopted in a number of safety/mission-critical application domains in the U.S., e.g., medical devices, defense aviation, automotive systems, and, lately, civil aviation. This paradigm refocuses traditional, process-based approaches to assurance on demonstrating explicitly stated assurance goals, emphasizing the use of structured rationale, and concrete product-based evidence as the means for providing justified confidence that systems and software are fit for purpose in safely achieving mission objectives. NASA has also been embracing assurance cases through the concepts of Risk Informed Safety Cases (RISCs), as documented in the NASA System Safety Handbook, and Objective Hierarchies (OHs), as put forth by the Agency’s Office of Safety and Mission Assurance (OSMA). This talk will give an overview of the work being performed by the SGT team located at NASA Ames Research Center, in developing technologies and tools to engineer and apply assurance cases in customer projects pertaining to aviation safety. We elaborate how our Assurance Case Automation Toolset (AdvoCATE) has not only extended the state-of-the-art in assurance case research, but also demonstrated its practical utility. We have successfully developed safety assurance cases for a number of Unmanned Aircraft Systems (UAS) operations, which underwent, and passed, scrutiny both by the aviation regulator, i.e., the FAA, as well as the applicable NASA boards for airworthiness and flight safety, flight readiness, and mission readiness. We discuss our efforts in expanding AdvoCATE capabilities to support RISCs and OHs under a project recently funded by OSMA under its Software Assurance Research Program. Finally, we speculate on the applicability of our innovations beyond aviation safety to such endeavors as robotic, and human spaceflight.