
Learning Probabilistic Systems from Tree Samples
Anvesh Komuravelli∗, Corina S. P̆as̆areanu†, Edmund M. Clarke∗

∗Computer Science Department, Carnegie Mellon University,Pittsburgh, PA, USA
†Carnegie Mellon Silicon Valley, NASA Ames, Moffett Field, CA, USA

Abstract—We consider the problem of learning a non-
deterministic probabilistic system consistent with a given finite
set of positive and negative tree samples. Consistency is defined
with respect to strong simulation conformance. We propose
learning algorithms that use traditional and a new stochastic
state-space partitioning, the latter resulting in the minimum
number of states. We then use them to solve the problem ofactive
learning, that uses a knowledgeable teacher to generate samples
as counterexamples to simulation equivalence queries. We show
that the problem is undecidable in general, but that it becomes
decidable under a suitable condition on the teacher which
comes naturally from the way samples are generated from failed
simulation checks. The latter problem is shown to be undecidable
if we impose an additional condition on the learner to always
conjecture a minimum state hypothesis. We therefore propose a
semi-algorithm using stochastic partitions. Finally, we apply the
proposed (semi-) algorithms to infer intermediate assumptions
in an automated assume-guarantee verification framework for
probabilistic systems.

I. I NTRODUCTION

We study the problem of learning an unknown non-
deterministicLabeled Probabilistic Transition System(LPTS)
from tree samples. The motivation for this work was to in-
vestigate learning techniques for automating assume-guarantee
style [1] compositional verification of strong simulation con-
formance [2] between LPTSes. Strong simulation for LPTSes
is decidable in polynomial time [3] and yieldsstochastic tree
counterexamples when it fails [4]. Stochastic trees aretree-
shapedLPTSes (see Section II) with probabilities appearing
on the transitions.

Compositional verification [5] is a promising approach for
alleviating the state explosion problem in model checking [6].
Learning from trace [7], [8] and tree [9] counterexamples
has been successfully applied before for automating the
approach in a non-probabilistic setting, for checking trace
inclusion [10] and simulation conformance [9], respectively.
The most closely related work [9] reduces simulation con-
formance totree languageinclusion and uses learning for
deterministic tree automata to automatically generate theas-
sumptions used in compositional reasoning. In the probabilistic
setting, existing literature has dealt with learning from samples
consisting of trees with information regarding the probability
of acceptance [11], but learning from stochastic trees has
not been considered before. Moreover, there is no existing
probabilistic variant of a tree automaton to recognize stochastic

This research was sponsored by DARPA META II, GSRC, NSF,
SRC, GM, ONR under contracts FA8650-10C-7079, 1041377 (Princeton
University), CNS0926181/CNS0931985, 2005TJ1366, GMCMUCRLNV301,
N000141010188, respectively, and the CMU-Portugal Program.

tree languages. This motivated us to consider learning an LPTS
directly, without working with tree languages or tree automata.

We consider first the problem of learning a non-
deterministic LPTS that isconsistentwith respect to a set of
positive and negative stochastic tree samples, where consis-
tency is defined with respect to strong simulation conformance.
For the purpose of verification, we want the learnt models to
be minimal or at least to have a good upper bound on their
size. We describe two algorithms, each using a different wayof
partitioning the state-space of the positive samples. One algo-
rithm uses traditional state-space partitioning (SectionIII-A)
resulting in the least number of partitions, while the otheruses
a newstochasticpartitioning (Section III-B) resulting in the
least number of states.

We then apply the above algorithms to solve the problem of
learning an unknown target in Section IV. This is done in the
framework ofactive learningwith the help of a knowledgeable
teacher. Typically active learning algorithms assume a teacher
that answers two types of queries -membership(of a sample in
the unknown target) andequivalence(between the conjectured
model and the unknown target) [7]. However we observe
that membership queries are not straightforward to create in
our case as the learner would need to guess the transition
probabilities, along with the tree-structure. Therefore,we only
assume the teacher can answer equivalence queries – the
teacher checks simulation equivalence (two-way simulation
conformance) between a conjectured LPTS and the target
LPTS and returns positive or negative stochastic trees when
the check fails.

We show that active learning for LPTSes is undecidable
in general. We then propose a learning algorithm that works
under an assumption on the teacher which comes naturally
from the way the tree counterexamples are generated from
failed simulation checks. As we are interested in learning an
LPTS of the least number of states, we also consider imposing
a restriction on the learner to always conjecture aminimum
statehypothesis. Learning with this restriction also turns out
to be undecidable and we propose a semi-algorithm using
stochastic partitions.

LPTSes are related toprobabilistic automata(PA) [12].
Algorithms to learn PAs have only been proposed in re-
stricted settings of stronger assumptions on a teacher [13]
or approximate learning [14], [15]. Algorithms to learn a
multiplicity automaton, which generalizes a PA by replac-
ing the probabilities with arbitrary rationals, have also been
proposed (e.g., [16]). Adapting these to solve verification
problems involving probabilistic transition systems is difficult

and results in non-terminating algorithms [17]. On the other
hand, we show in Section V that one can readily apply the
algorithms we propose to infer intermediate assumptions inan
automated assume-guarantee style framework for the verifica-
tion of strong simulation conformance between LPTSes. This
yields the first complete and fully automated learning frame-
work for compositional verification of probabilistic systems.
Moreover, one can extend this framework to check logical
properties, such as the fragmentweakly safe PCTL[18],
which are preserved by the conformance and also have tree
counterexamples.
Other Related Work. Learning for automating compositional
reasoning of probabilistic systems has been proposed be-
fore [19] in the context of checking probabilistic reachability
properties, which are refuted by sets of trace counterexamples.
The approach uses a variant of L* [7], a learning algorithm
for DFAs, to automatically learn deterministic assumptions,
following previous work in the non-probabilistic setting [10].
The approach uses a sound but incomplete rule, and therefore,
it is not guaranteed to terminate (completeness is necessary for
termination). A complete rule for such properties restricted
to systems without non-determinism has been considered
recently [17]. It uses learning withprobabilistictrace inclusion
as the conformance relation which is undecidable. Also, the
learning algorithm is not guaranteed to terminate. In contrast,
we use simulation conformance which is decidable in polyno-
mial time and leads to a sound and complete rule (Section V).
We are also able to guarantee termination for the algorithm
proposed in Section V when using classical partitions to infer
a consistent LPTS.

Our work draws inspiration from a previous work [20] that
automates assumption generation by using an algorithm for
learning theminimal separating automatonfrom positive and
negative trace counterexamples. The counterexamples are pro-
vided via model checking using assume-guarantee reasoning.
Similar to our work, they use apartitioning approach, where
the goal is to find afolding of the counterexamples into the
learnt model. A different approach has been proposed to find
the separating automaton based on L* which makes use of
membership queries, in addition to equivalence queries [21].
All these works were done in the context of non-probabilistic
reasoning under trace semantics and thus, are different from
our setting.

Learning a minimum-state automaton from positive and
negative samples is a well studied problem [22], [23], [24] that
is known to be hard [25]. Algorithms have also been proposed
for samples with stochastic information,i.e. the probability of
acceptance of a trace or a tree [26], [11], learning stochastic
finite (tree) automata. As also previously said, we cannot
immediately borrow existing results from the above automata-
theoretic approaches.

II. PRELIMINARIES

Labeled Probabilistic Transition Systems.Let S be a non-
empty set.Dist(S) is defined to be the set of discrete proba-
bility distributions overS. We assume that all the probabilities

a

c

a

a

b

b c

1
3

1
2 p

1
2

1
3

1
3

L1 L2 Cp

1
−

p

b c

(s1)

(s1)
(s2)

(s2) (s2)

s1

s2

Fig. 1: Three reactive LPTSes.p ∈ (0, 1) for Cp.

specified explicitly in a distribution are rationals in[0, 1]1. For
s ∈ S, δs is the Dirac distribution ons, i.e. δs(s) = 1 and
δs(t) = 0 for all t 6= s. For µ ∈ Dist(S), the supportof µ,
denotedSupp(µ), is defined to be the set{s ∈ S|µ(s) > 0}
and for X ⊆ S, µ(X) stands for

∑

s∈X µ(s). The models
we consider, defined below, have both probabilistic and non-
deterministic behavior. Thus, there can be a non-deterministic
choice between two probability distributions, even for thesame
action. Such modeling is typically used for underspecification.
Moreover, the theory described does not become any simpler
by disallowing non-deterministic choice for a given action(see
the discussion on counterexamples at the end of this section).

Definition 1 (LPTS). A Labeled Probabilistic Transition Sys-
tem (LPTS) is a tuple〈S, s0, α, τ〉 whereS is a set of states,
s0 ∈ S is a distinguished start state,α is a set of actions and
τ ⊆ S×α×Dist(S) is a probabilistic transition relation. For
s ∈ S, a ∈ α and µ ∈ Dist(S), we denote(s, a, µ) ∈ τ by
s

a
→ µ and say thats has atransitionon a to µ.
An LPTS is calledreactive if τ is a partial function from

S×α to Dist(S) (i.e. at most one transition on a given action
from a given state).

Throughout this paper, we use filled circles to denote start
states in the pictorial representations of LTPSes. For example,
Figure 1 shows three LPTSes. Forµ = {(s1,

1
2), (s2,

1
2)},

L1 has the transitions1
a
→ µ. All the LPTSes in the figure

are reactive as no state has more than one transition on a
given action. In the literature, an LPTS is also called asimple
probabilistic automaton[2]. Similarly, a reactive LPTS is also
called a (Labeled)Markov Decision Process. Also, note that an
LPTS with all the distributions restricted to Dirac distributions
is the classical (non-probabilistic)Labeled Transition System
(LTS); thus areactiveLTS corresponds to the standard notion
of a deterministicLTS. We only consider finite state, finite
alphabet and finitely branching (i.e. finitely many transitions
from any state) LPTSes. We use〈Si, s

0
i , αi, τi〉 for an LPTS

Li and 〈SL, s
0
L, αL, τL〉 for an LPTSL.

We are also interested in LPTSes with a tree structure,i.e.
the start state is not in the support of any distribution and every
other state is in the support of exactly one distribution. Wecall
such LPTSesstochastic treesor simplytrees. For example,Cp,
p ∈ (0, 1), in Figure 1 is a tree.
Strong Simulation. In the non-probabilistic case, for two
labeled transition systems (LTSes), a pair of states belonging to

1There is no unique representation for all real numbers on a computer and
floating-point numbers are essentially rationals.

1/2 1/2

1/21/2

s1 s2

t1 t2

s1Rt1
s2Rt2

µ1(s1) = µ1(s2) = 1/2

µ2(t1) = µ2(t2) = 1/2

Fig. 2: A simple example where matching probabilities (solid edges) directly
provesµ1 ⊑R µ2.

µ1(s1) = µ1(s2) = 1/2

µ2(t1) = µ2(t2) = µ2(t3) = 1/3

1
3

1
3

s1 s2

t1 t2

1
6

1
6

1
3

1
31

6
1
6

t3

1/2 1/2

1/3 1/31/3

s1Rt1
s1Rt2
s2Rt2
s2Rt3

Fig. 3: An example where probabilities are split (arrows) before matching
(solid edges) to proveµ1 ⊑R µ2.

a strong simulation relation depends on whether certain other
pairs of successor states also belong to the relation [27]. For
LPTSes, one has successordistributions instead of successor
states; a pair of states belonging to a strong simulation relation
R should now depend on whether certain other pairs in the
supportsof these successor distributions also belong toR.
We thus need a binary relation between distributions,⊑R,
which depends on the relationR between states. Intuitively,
two distributions can be related if we can pair the states in
their support sets, the pairs contained inR, matching all the
probabilities under the distributions.

Consider an example withsRt and the transitionss
a
→ µ1

and t
a
→ µ2 with µ1 andµ2 as in Figure 2. In this case, one

easy way to match the probabilities is to pairs1 with t1 and
s2 with t2. This is sufficient ifs1Rt1 and s2Rt2 also hold,
in which case, we say thatµ1 ⊑R µ2. However, such a direct
matching may not be possible in general. As shown in Figure
3, we need a more general notion of matching the probabilities.
One can achieve that bysplitting the probabilities under the
distributions in such a way that one can then directly match
the probabilities as in Figure 2. Now, ifs1Rt1, s1Rt2, s2Rt2
and s2Rt3 also hold, we say thatµ1 ⊑R µ2. Note that there
can more than one possible splitting.

This is the central idea behind the following definition
where the splitting is achieved by aweight function. For
the rest of the section, letL1 and L2 be two LPTSes,
µ1 ∈ Dist(S1), µ2 ∈ Dist(S2) andR ⊆ S1 × S2.

Definition 2 ([2]). µ1 ⊑R µ2 iff there is a weight function

w : S1 × S2 → Q ∩ [0, 1] such that

1) µ1(s1) =
∑

s2∈S2
w(s1, s2) for all s1 ∈ S1,

2) µ2(s2) =
∑

s1∈S1
w(s1, s2) for all s2 ∈ S2,

3) w(s1, s2) > 0 impliess1Rs2 for all s1 ∈ S1, s2 ∈ S2.

µ1 ⊑R µ2 can be checked by computing the maxflow in
an appropriate network and checking if it equals1.0 [3]. If
µ1 ⊑R µ2 holds,w in the above definition is one such maxflow
function. As explained above,µ1 ⊑R µ2 can be understood
asmatchingall the probabilities (after splitting appropriately)
underµ1 andµ2. ConsideringSupp(µ1) andSupp(µ2) as two
partite sets, this is the weighted analog of saturating a partite
set in bipartite matching, giving us the following analog ofthe
well-known Hall’s Theorem for saturatingSupp(µ1).

Lemma 1 ([28]). µ1 ⊑R µ2 iff for every S ⊆ Supp(µ1),
µ1(S) ≤ µ2(R(S)).

It follows that whenµ1 6⊑R µ2, there exists a witness
S ⊆ Supp(µ1) such thatµ1(S) > µ2(R(S)). For example,
if R(s2) = ∅ in Figure 2, its probability12 underµ1 cannot
be matched andS = {s2} is a witness subset.

Definition 3 (Strong Simulation [2]). R is a strong simulation
iff for everys1Rs2 and s1

a
→ µa

1 there is aµa
2 with s2

a
→ µa

2

and µa
1 ⊑R µa

2 .
For s1 ∈ S1 ands2 ∈ S2, s2 strongly simulatess1, denoted

s1 � s2, iff there is a strong simulationT such thats1Ts2. L2

strongly simulatesL1, also denotedL1 � L2, iff s01 � s02. For
the latter, alternatively, we say thatsimulation conformance
holds betweenL1 andL2.

Definition 4 (Strong Simulation Equivalence). The strong
simulation equivalence, denoted≃, is defined as the kernel
of strong simulation,i.e. ≃=� ∩ �.

Definition 3 generalizes the one in the non-probabilistic
setting [27] and has the following immediate consequence.

Lemma 2. � is the coarsest strong simulation,i.e. � is a
strong simulation and contains every strong simulation.

Simulation conformance is decidable in polynomial time [3]
and can be checked with a greatest fixed point algorithm that
computes the coarsest simulation betweenL1 and L2. The
algorithm uses a relation variableR initialized toS1×S2 and
it checks the condition in Definition 3 for every pair inR,
iteratively, removing any violating pairs fromR. The algorithm
terminates when a fixed point is reached showingL1 � L2

or when the pair of start states is removed showingL1 6� L2.
Several optimizations exist [28] but we do not consider them
here, for simplicity.

Lemma 3 ([2]). � is a preorder(i.e. reflexive and transitive).

Finally, we find the following characterization of� useful
in the algorithms we will discuss later on.

Lemma 4. LetL1 be a tree ands1Rs2 iff for everys1
a
→ µ1,

there existss2
a
→ µ2 with µ1 ⊑R µ2. Then,R =�.

a

b

a a

b
b

c

s1

s2

t1

t2 t3

L1 L2

Fig. 4: An example showing that Lemma 4 does not hold, in gen-
eral, if L1 is not a tree. LetR = {(s1, t1), (s2, t2)}. Note that�=
{(s1, t1), (s2, t2), (s2, t3)} andR ⊂�.

Proof Sketch:R ⊆� by Def. 3.�⊆ R can be proved by
induction on theheightof a state ofL1 using Lemma 2.

Note that the condition onR in the lemma is stronger than
the one to make it a strong simulation (Definition 3). Also, if
L1 is not a tree, we can only conclude thatR ⊆�, in general.
See Figure 4 for an example whereR ⊂�.
Counterexamples to�. In the active learning problem we
are interested in (Section IV), a learner uses counterexamples
to simulation conformance as diagnostic information. We will
now briefly discuss what these counterexamples are. LetL1

andL2 be two LPTSes.

Definition 5 (Language of an LPTS). Given an LPTS
L, we define its language, denotedL(L), as the set
{L′|L′ is an LPTS andL′ � L}.

Lemma 5. L1 � L2 iff L(L1) ⊆ L(L2).

Proof: Necessity follows trivially from the transitivity of
� and sufficiency follows from the reflexivity of� which
impliesL1 ∈ L(L1).

Thus, a counterexampleC can be defined as follows.

Definition 6 (Counterexample). A counterexample toL1 � L2

is an LPTSC such thatC ∈ L(L1) \ L(L2), i.e. C � L1 but
C 6� L2.

Now, L1 itself is a trivial choice forC but it does not give
any more useful information than what we had before checking
the conformance. Moreover, it is preferable to haveC with a
special and simpler structure to efficiently work with coun-
terexamples. Fortunately, we have a simpler characterization
using trees.

Theorem 1 ([4]). If L1 6� L2, there is a tree which serves as
a counterexample.

Proof Sketch: One can instrument the algorithm to
compute a coarsest strong simulation described earlier to
obtain a tree counterexample whenever a pair of states is
removed from the current relation, making use of Lemma 1.

For example,Cp in Figure 1, forp ∈ (0, 1
2], is a counterex-

ample toL1 � L2. In another work, we showed that structures
simpler than trees are not sufficient as counterexamples, even
when one of the models is reactive [4].

We note an important feature of the algorithm used to prove
the above theorem [4]. A counterexampleC generated by the
algorithm is essentially a finitetree executionof L1. That

is, there is a total mappingM : SC → S1 such that for
every transitionc

a
→ µc of C, there existsM(c)

a
→ µ1 such

that M restricted toSupp(µc) is an injection and for every
c′ ∈ Supp(µc), µc(c

′) = µ1(M(c′)). Note thatM is also
a strong simulation. We call such a mapping anexecution
mapping fromC to L1 in the rest of the paper. An execution
mapping is shown in brackets beside the states ofCp for
p = 1

2 in Figure 1. While our algorithm always generates
counterexamples with anexecution mapping, it is possible
to have a tree counterexample, as per Definition 6, without
such a mapping. For example,Cp in Figure 1 forp ∈ (0, 1

2)
is also a counterexample with no suchexecution mapping.
The condition we impose on a teacher in the active learning
problem (Section IV) is regarding this execution mapping.

III. L EARNING A CONSISTENTLPTS

We are interested in the problem where we are given a
finite set of positive stochastic trees (i.e. in the language of
an LPTS), sayP, and another finite set ofnegativestochastic
trees (i.e. not in the language of an LPTS), sayN . These trees
constitute the samples for a learner. The goal is to learn an
LPTSL such thatP ⊆ L(L) andN ∩ L(L) = ∅, i.e. P � L
for every P ∈ P and N � L for no N ∈ N . Such anL
is said to beconsistentwith the tree samples. Without loss
of generality, assume thatP 6= ∅ as otherwise, a single state
LPTS with no transitions is trivially consistent. Also, note that
the LPTS obtained by merging the start states of all trees in
P, sayLP , trivially satisfiesP � LP for everyP ∈ P. Now,
if L is a consistent LPTS, it can be shown thatLP � L and
hence, by Lemma 3,LP is also consistent. Thus, one can
easily check, in polynomial time, if there exists a consistent
LPTS by checkingN � LP for everyN ∈ N . For this reason,
we always assume the existence of a consistent LPTS. Clearly,
the size ofLP is as large as that ofP.

If possible, we would like to learn a model with the least
size, or at least have a good upper bound on its size. Such
models would be useful when automating assume-guarantee
reasoning (see Section V). The algorithms we propose draw
inspiration from the ones used to infer consistent non-
probabilistic automata from counterexample traces [23], [24],
[26], [20] which are based on partitioning the state space ofthe
counterexamples. LetSP =

⋃

P∈P SP andSN =
⋃

N∈N SN .
First, we consider an algorithm based on the traditional state
space partitioning ofSP . While there is an upper bound on
the size of the learnt model, we show that such partitioning is
insufficient to obtain a minimum state consistent probabilistic
system (LPTS). However, as we will see in Section IV, we find
it useful in learning an unknown target LPTS. We will then
introduce a new way of partitioning the state space, which we
call stochasticpartitioning, enabling us to obtain a minimum
state consistent LPTS.

A. Using State Partitions

The first algorithm uses traditional partitions ofSP . For
a partition Π of SP , let EΠ denote the set of equivalence
classes underΠ and for a states ∈ SP , we let [s]Π denote

a b

c

a

a

b

b
P

Na Nb N
β,γ
c

c

a β

1
−

β

γ

1
−

γ

β > 0

γ > 0

s1

s2
s3

s4

Fig. 5: Positive (P) and negative (Na, Nb, N
β,γ
c) tree samples.

the equivalence class ofs (we drop the subscriptΠ when it is
clear from the context). Unless specified otherwise, we assume
that [s0P]Π = [s0Q]Π for everyP,Q ∈ P, i.e. the start states
of all the positive counterexamples are mapped to the same
equivalence class.

Definition 7 (Quotient LPTS). Given a partition Π of
SP , define thequotient LPTS, denotedP/Π, as the LPTS
〈EΠ, e

0, α, τ〉 where e0 = [s0P]Π for every P ∈ P, α =
⋃

P∈P αP and (e, a, µ) ∈ τ iff there exists(s, a, µp) ∈ τP
for someP ∈ P with [s]Π = e such thatµ = lift (µp) where
lift (µp)(e

′) =
∑

s′∈e′ µp(s
′) for all e′ ∈ EΠ.

It can be easily shown that a quotient is always a well-
defined LPTS. In the following,Π is a partition ofSP .

Lemma 6. P/Π is consistent withP for all Π.

Proof Sketch: One can show that{(s, [s]Π)|s ∈ SP } is
a strong simulation betweenP andP/Π for everyP ∈ P.

Definition 8 (Consistent Partition). Π is defined to becon-
sistent iff P/Π is consistent withN , i.e. for everyN ∈ N ,
N 6� P/Π.

Thus, we reduce the problem of finding a consistent LPTS
to that of finding a consistent partition. As we show below,
we can always find a consistent partition with abounded size,
where thesizeof Π is |EΠ|.

Lemma 7. If L is an LPTS ofk states consistent withP, then
there is aΠ of size at most2k such thatP/Π � L. 2

Proof Sketch: Let P ∈ P. As P � L, there is a strong
simulationRP ⊆ SP × SL with s0PRP s

0
L. As P is a tree,

assume without loss of generality thatRP (s
0
P) = {s0L}. Let

R =
⋃

P∈P RP . Now,R induces a partitionΠ of SP such that
for s1, s2 ∈ SP , [s1]Π = [s2]Π iff R(s1) = R(s2). Note that
[s0P]Π = [s0Q]Π for P,Q ∈ P. The size ofΠ is clearly bounded
by 2k. Now, it suffices to show that{([sp]Π, sl)|spRsl} is a
strong simulation betweenP/Π andL.

The following is now immediate, using Lemmas 3 and 6.

Corollary 1. For every consistent LPTS ofk states, there is
a consistent partition of size at most2k.

Observation. This shows that ifL is a minimum state consis-
tent LPTS, there exists a consistent partition ofSP of size at
most exponential in|SL|. While there may be a better bound,
this way of partitioningSP can not guarantee a minimum state

2If L and everyP ∈ P is an LTS, an upper bound ofk on the size can
be shown by choosingRP in the proof to be a function.

a b

c c

1 − λ

λ ∈ (0, 1)
b

a

H1 Hλ

Fig. 6: Quotients for least size partition (H1) and stochastic partition (Hλ)
of P in Figure 5.

consistent LPTS in general. For example,H1 in Figure 6 is
the quotient for a least sized consistent partition ofP for the
trees in Figure 5 (obtained by mergings3 ands4). On the other
hand,Hλ, whereλ is any value in(0, 1), is another consistent
LPTS with one less state.
Algorithm. A näıve algorithm for finding aleast-sized con-
sistent partition is to enumerate all the partitions ofSP ,
with increasing size, and for each of them, check if the
corresponding quotient simulates any tree inN . Alternatively,
we can cast it as an instance of a satisfiability problem
over linear rational arithmetic. This is more efficient thanthe
exhaustive search in the naı̈ve algorithm, and also prepares the
ground for an algorithm we discuss in the next subsection.

First, we describe the encoding to check if there is a
consistent partition of size at most a givenk. Let ei denote the
equivalence classi for 1 ≤ i ≤ k. For eachi and states ∈ SP ,
we introduce a new boolean variable, sayv[s]=i, to denote
[s] = ei. We add the constraintxor(v[s]=1, . . . , v[s]=k) for
every s ∈ SP for the partition to be well-defined. Moreover,
we fix e1 to be the start state of the resulting quotient and
have a constraint thatv[s0

P
]=1 for everyP ∈ P as e1 should

now contain all the start states (Definition 7).
Now, to encode consistency, we want to say that no tree

N ∈ N is simulated by the resulting quotient. We can
avoid introducing a universal quantification over all possible
strong simulations by finding a way to say that(s0N , e1) is
not in the coarsest strong simulation, for everyN ∈ N .
Fortunately, we can make use of Lemma 4 to achieve exactly
this. We introduce a boolean variableRs,i to denote that
s ∈ SN is related toei by the coarsest strong simulation. Let
tn = (sn, a, µn) andtp = (sp, a, µp) be a transition ofN and
P, respectively, on the same actiona and1 ≤ i ≤ k. Consider
the expressiondµn,µp

∧ v[sp]=i, denotedσtn,i,tp . If dµn,µp

denotesµn ⊑R lift(µp), then this expression has the meaning
that [sp] = ei and the corresponding transitionei

a
→ lift(µp)

(which exists by Definition 7) in the quotient simulatestn. If
X(s) denotes the set of all transitions outgoing froms ∈ SN ,
Y (a) denotes the set of all transitions inP on actiona and
act(t) denotes the action for the transitiont, we add

Rs,i ⇐⇒
∧

tn∈X(s)

∨

tp∈Y (act(tn))

σtn,i,tp

according to Lemma 4.
lift(µp)(ei) can be encoded as

∑

s∈Supp(µp)
lµp,i,s where

lµp,i,s denotes thecontributionof s to the lifted probability of

ei underµp and satisfies

(v[s]=i =⇒ lµp,i,s = µp(s)) ∧ (¬v[s]=i =⇒ lµp,i,s = 0).

dµn,µp
is encoded as follows. If we use Definition 2 alone, we

need to introduce a nested existential quantifier for the weight
function (to say thatdµn,µp

iff there is a weight function
satisfying the conditions). To avoid this nested quantification,
we also make use of Lemma 1. First, we introduce a vari-
able for the weight function and encode the constraints of
Definition 2 if ⊑R holds between the distributions. We also
introduce a variable for the witness subsetS ⊆ Supp(µp) and
encode the condition of Lemma 1 when⊑R fails to hold.
This variable for the witness subset can, in turn, be encoded
using individual boolean variables for eachs ∈ Supp(µp).
We also need boolean variables for the image of this witness
subset underR. The details are straightforward and left to the
reader. Finally, we encode consistency by having the constraint
¬Rs0

N
,1 for everyN ∈ N .

It is not hard to show that the encoding is correct,i.e.
the resulting encoding is satisfiable iff there is a consistent
partition of size at mostk. One can then obtain an algorithm
to find a least-sized consistent partition by starting with
k = 0 and incrementing it as long as the encoding fork
is unsatisfiable. As satisfiability over linear rational arithmetic
is decidable, this is guaranteed to terminate from Corollary 1.

Theorem 2. The above described algorithm to find a least-
sized consistent partition ofSP terminates.

B. Using Stochastic Partitions

As noted above, the quotient of a least-sized consistent
partition need not have the least number of states. We observe
that the main reason for this is not being able to partition
SP such that there is a one-to-one correspondence between
the equivalence classes andSL, instead of the current2SL

for a consistent LPTSL (proof of Lemma 7). This suggests
that we can learn a minimum state consistent LPTS if we
can find a way to group the states ofSP (groups need not
be disjoint) with such a correspondence. This will then imply
that if there is a minimum state consistent LPTSL, we can
use this grouping to obtain an equally sized consistent LPTS.
One can then automate the search for such a grouping using
constraint solving.

LetL be a consistent LPTS and let us try to see what we can
do to groupSP to have the above one-to-one correspondence
with SL. Consider Figure 3 again and letµ1 be outgoing from
the root of some treeP in P andµ2 appear inL. Let there
be three groups (initially empty), one per state inSupp(µ2),
say Gt1 , Gt2 and Gt3 . As explained in Section II, having
µ1 ⊑R µ2, for someR, can be thought of as finding a way of
splitting the probabilities in both the distributions and pairing
states, already inR, to directly match the probabilities. We
would like to use this matching to group the states ofSP .
In particular, looking at the above figure, we would like to
place the two splits ofs1 (s2) in Gt1 andGt2 (Gt2 andGt3),
respectively.

As the probability of each split of a state inSupp(µ1)
is matched with that of some split of exactly one state in
Supp(µ2), one can also think of the above grouping in the
following alternative way. As the probability of12 for s1 is
split into 1

3 and 1
6 , s1 can be seen as being put inGt1 with

probability 1/3
1/2 = 2

3 and in Gt2 with probability 1/6
1/2 = 1

3 .
Thus, instead of puttings1 deterministically into one group,
it is put stochasticallyinto multiple groups. Let these splits of
s1 put in Gt1 andGt2 be s1[t1] ands1[t2], respectively.

Now, considers1[t1]. As the corresponding probability of
1
3 is matched with that of some split oft1 (implying s1Rt1),
and ass1 is not in the support of any distribution other than
µ1 (note thatP is a tree), we need not consider ifs1 is
related, byR, to any other state inL, as far ass1[t1] is
concerned. And therefore, any distribution outgoing from this
split of s1 will only need to be related to some distribution
outgoing fromt1 (by ⊑R). Similarly, for s1[t2] and t2. Now,
if µ3 is a distribution outgoing froms1 in P , we may want
to relate it to a distributionµ outgoing fromt1 (for s1[t1])
and another distributionµ′ outgoing from t2 (for s1[t2]).
Consideringµ3 ⊑R µ and µ3 ⊑R µ′ both hold, for a state
s3 ∈ Supp(µ3), following the above describedstochastic
grouping may result in two different ways of groupings3.
Thus, we need torememberthe group of its parent, denoted
by par(·), when grouping a state inSP .

This is the main motivation behind astochasticpartition,
which is defined below.

Definition 9 (Stochastic Partition). A stochastic partitionis a
tuple (G, {[s]}s∈SP

) whereG ⊆ 2SP and [s] : G → Dist(G)
for everys ∈ SP , such that

⋃

G = SP and

1) there is ag0 ∈ G such that for everyP ∈ P and g ∈ G,
[s0P](g) = δg0 and

2) for every non-root states ∈ SP and g ∈ G, [s](g) is
defined iff[par(s)](g′)(g) > 0 for someg′ ∈ G.

Furthermore,s ∈ g iff [s](g′)(g) > 0 for someg′ ∈ G, for
everys ∈ SP and g ∈ G.

We use(GΠ, {[s]Π}s) for a stochastic partitionΠ and when
Π is clear, we drop the subscripts.

Here,G denotes the groups mentioned above and[s] denotes
the stochasticgrouping ofs ∈ SP given a group of its parent.
Point 1 above says that the start states of all trees inP go
deterministically to a designated group. Note that the start
states have no parents and the dependence of[s0P] on an
argument is just a notational convenience. And point2 says
that for every non-root states, [s] is only defined for avalid
group of its parent. We implicitly assume that[s](g′)(g) = 0
for everyg ∈ G if [s] is not defined atg′.

Now, we define the quotient of a stochastic partition in the
following way.

Definition 10 (Quotient LPTS). Given a stochastic partition
Π = (G, {[s]}s) of SP , define thequotient LPTS, denoted
P/Π, as the LPTS〈G, g0, α, τ〉 where g0 ∈ G is such that
[s0P](g) = δg0 for everyP ∈ P and g ∈ G, α =

⋃

P∈P αP

and (g, a, µ) ∈ τ iff there exists(s, a, µp) ∈ τP , for some

P ∈ P such thats ∈ g and for everyg′ ∈ G,

µ(g′) =
∑

s′∈g′

[s′](g)(g′) · µp(s
′).

We denote this relation betweenµ and µp by µ = lift (µp, g).

Thus,(g, a, µ) ∈ τ iff there is a states ∈ g with s
a
→ µp and

µ is obtained bylifting µp, given thats ∈ g. For this to make
sense, we need to show that the lifting is a valid distribution.

In the following, Π = (G, {[s]}s) is a stochastic partition
of SP .

Lemma 8. P/Π is a well-defined LPTS.

We have the following lemma analogous to classical parti-
tions.

Lemma 9. P/Π is consistent withP for all Π.

Proof Sketch: One can show that{(s, g)|g ∈ G, s ∈
SP ∩g} is a strong simulation betweenP andP/Π for P ∈ P.

Consistency of a stochastic partition is defined in the same
way as Definition 8. Thus, we reduce the problem of finding a
minimum state consistent LPTS to that of finding aleast-sized
consistent stochastic partition where thesize of a stochastic
partition is its number of groups.

Lemma 10. If L is an LPTS ofk states consistent withP,
then there is aΠ of size at mostk with P/Π � L.

Proof Sketch: Let P ∈ P. As P � L, there is
a strong simulationRP ⊆ SP × SL with s0PRP s

0
L. Let

R =
⋃

P∈P RP . Now, construct a stochastic partition with at
most|SL| many groups following the intuitive explanation we
gave when motivating stochastic partitions. For distributions
µp ∈ Dist(SP) and µl ∈ Dist(SL), the stochastic groupings
of a states ∈ Supp(µp) is obtained by using a weight function
showing µp ⊑R µl. In particular, s is put in the group
corresponding tosl ∈ SL with probability w(s, sl)/µp(s)
wherew is the weight function which is uniquely chosen given
µp and µl. Moreover,µl and this grouping depend on the
group of par(s). Once such a stochastic partitionΠ is built,
we can show that{(g, sl)|g is the group corresponding tosl}
is a strong simulation betweenP/Π andL.

Our main result follows as an immediate corollary, using
Lemmas 3 and 9.

Corollary 2. For every consistent LPTS ofk states, there is
a consistent stochastic partition of size at mostk.

So, we can obtain a minimum state consistent LPTS by
constructing the quotient for a consistent stochastic partition
of SP of the least size. For example,Hλ, λ ∈ (0, 1), in Figure
6 is the quotient for a least sized consistent stochastic partition
for the trees in Figure 5 (wheres1 goes to group1, s2 goes
to group 2 with probability λ and to group1 with 1 − λ
and s3 and s4 go to group2). We describe an algorithm to
find a least-sized consistent stochastic partitionby casting it
as an instance of a satisfiability problem over linear rational
arithmetic.

Algorithm. The encoding is similar to the case of partitions
in the previous subsection. To find a stochastic partition of
size at most a givenk, let gi denote the groupi for 1 ≤
i ≤ k. Introduce a non-negative rational variablev[s](i),j to
denote[s](gi)(gj) for every s ∈ SP , 1 ≤ i, j ≤ k. For every

i and s ∈ SP , add the constraint
(

∑

1≤j≤k v[s](i),j = 1
)

∨
(

∑

1≤j≤k v[s](i),j = 0
)

to denote that[s](gi) is a distribution
or is undefined. Then, we encode points1 and2 of Definition 9
by adding the constraintv[s0

P
](i),1 = 1 for everyi andP ∈ P,

makingg1 the start state of the quotient, and adding
∑

1≤j≤k

v[s](i),j = 1 ⇐⇒
∑

1≤l≤k

v[par(s)](l),i > 0

for every non-root states andi. This ensures that the stochastic
partition obtained is well-defined.

Encoding consistency is the same as before except for
σtn,i,tp (tn, i and tp are as before) which will now be

dµn,µp,i ∧
∑

1≤j≤k

v[sp](j),i > 0.

where dµn,µp,i denotesµn ⊑R lift(µp, gi). Thus, we will
check if there is a group ofpar(sp) (summation over1 ≤
j ≤ k) for which sp ∈ gi and µn ⊑R lift(µp, gi). For a j,
lift(µp, gi)(gj) is encoded as

∑

s∈Supp(µp)
v[s](i),j ·µp(s). Rest

of the encoding is similar.
We can similarly show the correctness of the encoding and

the termination of the algorithm follows from Corollary 2.

Theorem 3. The problem of learning a minimum state con-
sistent LPTS withP andN is decidable.

IV. A CTIVE LEARNING FORLPTSES

We now consider the problem of learning the language of
an LPTS,i.e. learning an LPTS up to simulation equivalence
(following Lemma 5), in the framework of active learning. Let
U be an unknown target LPTS. The learning framework has
a learner and a teacher. The goal of the learner is to learn an
LPTSL such thatL ≃ U . To that effect, the learner maintains
a hypothesis LPTSH. The process of learning proceeds in
rounds where in each round, the learner makes a query to the
teacher and updatesH based on the response. For reasons
mentioned in the introduction, we only consider a single type
of queries in this paper where the learner conjecturesH as
(simulation) equivalent toU . In response to such a query,
the teacher is expected to check whetherH ≃ U holds and
otherwise, return a counterexample. If it is a counterexample
to H � U (U � H), it is called a negative (positive)
counterexample. Following Section II, we assume that the
counterexamples are always trees. Furthermore, there should
always exist an LPTS consistent with all of the counterex-
amples,i.e. simulating all the positive counterexamples and
none of the negative counterexamples, received by the learner
so far. Also, every conjectureH made by the learner should
be consistent with the counterexamples received so far, in the
above sense.

Unfortunately, the framework, as described above, is too
general to be useful, as the following lemma shows.

Theorem 4. The problem of learning an unknown LPTSU is
undecidable in the active learning framework.

Proof Sketch:We show that there is no algorithm to learn
the unknown targetUλ, which first performs an actiona and
goes to a state with probabilityλ to loop on actionb or goes
to another state with the remaining probability to deadlock,
by describing an adversarial teacher which manipulates the
value ofλ as necessary to keep generating counterexamples.
After choosing an initial value ofλ, the teacher returns a
counterexample as long as the hypothesis is not simulation
equivalent to the target. If a hypothesis simulation equivalent
to the target is conjectured, the teacher increases the value of
λ just enough to have the new target not simulated by the
hypothesis, while still being consistent with all the previously
generated counterexamples, and a new (positive) counterex-
ample can then be generated.

The main reason behind the theorem is thatit is not
necessaryfor the positive tree counterexamples returned by
the teacher to have anexecution mappingto U (see Section
II). Such a teacher can be seen as an adversary which can
choose the probability values in the counterexamples returned,
which are infinitely many, to make the learner never converge
to the desired probabilities.

But, in practice, to be able to apply the learning framework
in a given setting, one needs to implement the teacher’s
algorithm and we are not aware of any algorithm to generate
counterexamples other than the one discussed in Section II.As
mentioned before, this algorithm has an interesting property
that the generated counterexamples haveexecution mapping
to L1 when L1 � L2 fails. This suggests us to impose the
following friendlinesscondition on a teacher.

Condition 1 (Friendly Teacher). Every positive (negative)
counterexample returned by the teacher should have an ex-
ecution mapping toU (H).

First of all, we observe that the proof of Theorem 4 no
longer works because an update toλ may violate Condition
1 on any counterexample already inP. In fact, as we show
below, the problem becomes decidable. LetP andN denote
the sets of positive and negative counterexamples, returned by
the teacher so far, respectively. First, consider the pseudo-code
in Algorithm 1. It suggests a method of using the algorithms
described in Section III by treatingP and N as the tree
samples. There is a choice at line6 to use partitions or
stochasticpartitions.

First, we show that using traditional partitions at line6
makes the problem of learning a target decidable.

Lemma 11. The active learning loop of Algorithm 1 termi-
nates under Condition 1 on the teacher and using partitions
at line 6 with the number of states of each intermediate
hypothesisH bounded by that ofU .

Proof Sketch: Consider an arbitrary iteration of the

Algorithm 1 Active Learning Loop.

1: P = N = ∅

2: H ← single state LPTS with no transitions
3: repeat
4: conjectureH to the teacher
5: updateP andN from returned counterexamples, or exit
6: obtain a least sized consistent (stochastic) partitionΠ

7: H ← P/Π
8: until false

learning loop. First of all, due to Condition 1, the quotient
of the partition induced by the execution mappings from the
positive counterexamples toU is a sub-structureof U and
hence, is trivially a consistent LPTS. As the algorithm findsa
least-sizedconsistent partition, its size is bounded by|SU |.

Then, notice that every future hypothesis is consistent with
any new counterexample returned, and hence, is distinct from
the current one. Moreover, due again to Condition 1, and as
lift only adds probabilities, one can show that there are only
finitely many possible distributions for a given partition size.

We conclude that the algorithm terminates.
Thus, we have the following result.

Theorem 5. The problem of learning an unknown LPTS is
decidable in the active learning framework, with Condition1
on the teacher.

It is sometimes desirable to learn an LPTS with the least
number of states. While the algorithm described above learns
an LPTS, it is not guaranteed to output a minimum state LPTS
simply because each hypothesis need not have the least number
of states (see Section III-A). This suggests us to impose the
following condition on the learner.

Condition 2 (Learner). Every hypothesisH made by the
learner is a minimum state LPTS consistent withP andN .

If there is a learning algorithm under Conditions 1 and 2,
then it is guaranteed to output a minimum state LPTS which is
(simulation) equivalent toU . But, there is no such algorithm
as we show below.

Theorem 6. The problem of learning an unknown LPTSU
is undecidable in the active learning framework, with both
Condition 1 on the teacher and Condition 2 on the learner.

Proof Sketch: We show that there is no algorithm to
learn (unknown)H1 in Figure 6, by describing an adversarial
teacher which can return a counterexample for any conjectured
hypothesis. Initially, the teacher keeps returning negative coun-
terexamples, if there are transitions on actions other thana, b
and c in the hypothesis, or the positive counterexampleP in
Figure 5 until the learner conjectures an LPTS with self-loops
on these three actions. Thereafter, if a conjectured hypothesis
has transitions on onlya, b andc and simulatesP , the teacher
returnsNa to force the future hypotheses to have at least
two states and in every future round, returnsNb or Nβ,γ

c in
the figure, as necessary. One can show that there are always
suitable values ofβ andγ wheneverNβ,γ

c needs to be returned

and the learner always conjectures a two state LPTS. In fact,
Hλ is always a consistent LPTS for a suitableλ ∈ (0, 1).

However, we obtain a semi-algorithm to the problem by
using stochasticpartitions at line6 of Algorithm 1. That is,
if the algorithm terminates, it is guaranteed to learn the target
with the least number of states. Correctness is immediate from
Theorem 3.

V. L EARNING ASSUMPTIONS FOR

COMPOSITIONAL REASONING

As mentioned in the introduction, the original motivation for
this work was to automate assume-guarantee style reasoning
for simulation conformance. Assume-guarantee reasoning [1]
is a compositional technique that breaks up the verificationof
large systems into that of its components for increased scala-
bility. When checking individual components, the method uses
assumptions about their environments and discharges them
on the rest of the system. For a system of two components,
such reasoning is captured by the following simple assume-
guarantee rule (ASYM).

L1 ‖ A � P L2 � A

L1 ‖ L2 � P

Several other assume-guarantee rules have been proposed,
some of them involving symmetric [10] or circular reason-
ing [29], [10], [30]. Despite its simplicity, rule ASYM has
been proven most effective in practice and has been studied
extensively mainly in a non-probabilistic setting, for different
notions of conformance [10], [9], [19].

In our case,L1, L2, A andP are LPTSes withP standing
for the specificationwhich the compositionL1 ‖ L2 should
conform to, where‖ is defined below.

Definition 11 (Composition [2]). The parallel composition of
L1 and L2, denotedL1 ‖ L2, is defined as the LPTS〈S1 ×
S2, (s

0
1, s

0
2), α1 ∪ α2, τ〉 where(s1, s2)

a
→ µ iff

1) s1
a
→ µ1, s2

a
→ µ2 and µ = µ1 ⊗ µ2, or

2) s1
a
→ µ1, a 6∈ α2 and µ = µ1 ⊗ δs2 , or

3) a 6∈ α1, s2
a
→ µ2 and µ = δs1 ⊗ µ2.

Here ν1 ⊗ ν2 ∈ Dist(S1 × S2), such thatν1 ⊗ ν2 : (s1, s2) 7→
ν1(s1) · ν2(s2), for ν1 ∈ Dist(S1), ν2 ∈ Dist(S2).

The main challenge in using assume-guarantee reasoning is
to automatically come up with asmallassumptionA satisfying
the premises. We first note that the proposed rule is sound and
complete [4]. Completeness, obtained trivially by replacing A
with L2, is essential to guarantee termination of our proposed
algorithm. Previous attempts at automating assume-guarantee
reasoning using learning in a probabilistic setting have been
restricted to checking probabilistic reachability properties us-
ing either an incomplete rule [19] or algorithms which may
not terminate [17].

Motivated by the success of existing applications of active
learning to assume-guarantee reasoning [10], [9], [21], we
propose to use the active learning framework presented in
Section IV to learn an intermediate assumptionA in the

rule ASYM . We describe an algorithm for the problem using
learning and show termination below.
Teacher. The teacher is implemented by two conformance
checks corresponding to the two premises of the rule, checked
in any order.

• Premise 1guides the learner towards a conjecture that
makesL1 ‖ A � P true.

• Premise 2guides the learner towards a conjecture that
dischargesA, i.e. it makesL2 � A true.

If the conjecturedA satisfies both the premises, soundness
of ASYM implies L1 ‖ L2 � P holds, and the teacher
returnstrue. If one of the premises fails, the teacher generates
counterexamples with anexecution mapping(Section II).
Thus, the teacher satisfies Condition 1. When premise2 fails,
a positive counterexample is returned to the learner. When
premise1 fails, the obtained counterexample is firstprojected
ontoA and then returned as anegativecounterexample. As a
counterexampleC to premise1 has an execution mapping to
L1 ‖ A, the projection ontoA is simply thecontributionof A
towardsC during the composition. To enable this, additional
information regarding individual distributions is maintained
during composition [4].
Spuriousness Check.Note that the returned counterexamples
need not satisfy the assumption of Section III that there
always exists an LPTS consistent with the samples. For this
purpose, the learner needs to perform aspuriousness check
to see if the counterexamples are real or spurious. A real
counterexample would imply that the specification will not
hold of the original system while a spurious one would
need the learner to revise its hypothesis for the assumption.
We restrict spuriousness check tonegative counterexamples
following previous approaches [10]. A simple, but costly, way
is to checkN � L2 for a negative counterexampleN . N is
real if the check succeeds and spurious, otherwise. A slightly
more involved, but practical, way is described elsewhere [4].
Algorithm. Now, the learner can simply use Algorithm 1,
using partitions, to learn an intermediate assumption. As the
positive (negative) counterexamples have execution mapping
to L2 (A), it is as if the unknown target isL2. Note that if
P holds of the system,L2 is clearly an assumption satisfying
the premises. However, the algorithm is expected to terminate
with a smaller assumption in practice, which also satisfies the
premises. IfP does not hold, the algorithm terminates with
a real counterexample. Termination is guaranteed by Lemma
11. If we also impose Condition 2, the learner usesstochastic
partitions in Algorithm 1 giving a semi-algorithm.
Complexity Analysis. Let us now analyze the complexity
of assume-guarantee reasoning using the learning algorithm
described above (with partitions). The complexity of checking
L1 ‖ L2 � P directly is O(poly(|L1| · |L2|, |P |)), where|L|
denotesmax(|SL|, |τL|).

Let d = |τ2| and b be the maximum size of the support of
a distribution inL2. Given a state of a candidate assumption
of size k and a distribution ofL2, there can be at mostkb-
many corresponding distributions (due to non-determinism)
from that state. Fork states andd distributions, this gives

a total of kdkb. Therefore, there are2kdk
b

different possible
candidates of sizek to consider. The total number of iterations
of the learning algorithm is then bounded by

∑m
k=1 2

kdkb

=

O(m2mdmb

), wherem is the number of states in the final
assumption output by the algorithm.

At each iteration, in the worst-case, the algorithm enumer-
ates all the candidate assumptions of the current sizek and
performs simulation checks with all the negative counterexam-
ples. These checks have a complexity ofO(poly(|A|, |N |, l)),
whereA is the final assumption,N is the final set of negative
counterexamples andl is the largest|N |, for any N ∈ N .
Thus, the total worst-case complexity of the learning algorithm
for computing the final assumption isO(poly(|A|, |N |, l) ·
m2mdmb

). Furthermore, the complexity of checking the two
premises of ASYM is O(poly(|L1| · |A|, |P |)+poly(|L2|, |P |))
at every iteration. We observe that in practice, if the assump-
tion is small (i.e. |A| ≪ |L2|) this approach can be better than
checkingL1 ‖ L2 directly. In other cases, however, we would
need better algorithms to address the problem. We leave this
for future work.

VI. CONCLUSION

We have presented algorithms and decidability results
for the problem of learning non-deterministic LPTSes from
stochastic tree samples, using traditional and stochasticstate-
space partitioning. We have also described the applicationof
the algorithms to automating the discovery of assumptions for
the compositional verification of LPTSes.

In the future, we would like to investigate further conditions
on the teacher that will make the active learning problem with
stochastic partitions decidable. We also plan to investigate
the use of weak simulation for the conformance relation,
as this will result in smaller assumptions for compositional
verification. However, algorithms for checking weak simula-
tion are not currently known. Finally we plan to investigate
new applications for our algorithms in learning abstractions or
active model checking and in domains other than verification.

ACKNOWLEDGMENTS

We thank Christel Baier, Rohit Chadha, Sagar Chaki, Lu
Feng, Holger Hermanns, Marta Kwiatkowska, Joel Ouak-
nine, David Parker, Nishant Sinha, Frits Vaandrager, Mahesh
Viswanathan, James Worrell and Lijun Zhang for answering
our questions related to this research. We also thank the
reviewers for their suggestions.

REFERENCES

[1] A. Pnueli, “In Transition from Global to Modular TemporalReasoning
about Programs,” inLMCS, ser. NATO ASI, vol. 13. Springer-Verlag,
1985, pp. 123–144.

[2] R. Segala and N. Lynch, “Probabilistic Simulations for Probabilistic
Processes,”Nordic J. of Computing, vol. 2(2), pp. 250–273, June 1995.

[3] C. Baier, B. Engelen, and M. Majster-Cederbaum, “Deciding Bisimilar-
ity and Similarity for Probabilistic Processes,”J. Comput. Syst. Sci., vol.
60(1), pp. 187–231, Feb 2000.

[4] A. Komuravelli, C. S. P̆as̆areanu, and E. M. Clarke, “Assume-Guarantee
Abstraction Refinement for Probabilistic Systems,” inCAV, 2012, (to
appear).

[5] E. Clarke, D. Long, and K. McMillan, “Compositional ModelCheck-
ing,” in LICS. Piscataway, NJ, USA: IEEE Press, 1989, pp. 353–362.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled,Model Checking. Cam-
bridge, MA, USA: MIT Press, 2000.

[7] D. Angluin, “Learning Regular Sets from Queries and Counterexam-
ples,” Information and Computation, vol. 75(2), pp. 87–106, Nov. 1987.

[8] A. L. Oliveira and J. P. Marques-Silva, “Efficient SearchTechniques for
the Inference of Minimum Size Finite Automata,” inSPIRE. IEEE
Computer Society Press, 1998, pp. 81–89.

[9] S. Chaki, E. M. Clarke, N. Sinha, and P. Thati, “Automated Assume-
Guarantee Reasoning for Simulation Conformance,” inCAV, ser. LNCS,
vol. 3576. Springer-Verlag, 2005, pp. 534–547.

[10] C. S. P̆as̆areanu, D. Giannakopoulou, M. G. Bobaru, J. M. Cobleigh,
and H. Barringer, “Learning to Divide and Conquer: Applyingthe
L* Algorithm to Automate Assume-Guarantee Reasoning,”FMSD, vol.
32(3), pp. 175–205, June 2008.

[11] R. C. Carrasco, J. Oncina, and J. Calera-Rubio, “Stochastic Inference of
Regular Tree Languages,”Machine Learning, vol. 44(1-2), pp. 185–197,
July 2001.

[12] M. O. Rabin, “Probabilistic Automata,”Information and Control, vol.
6(3), pp. 230–245, 1963.

[13] W.-G. Tzeng, “Learning Probabilistic Automata and Markov Chains via
Queries,”Machine Learning, vol. 8(2), pp. 151–166, March 1992.

[14] C. de la Higuera and J. Oncina, “Learning Stochastic Finite Automata,”
in ICGI, ser. LNCS, vol. 3264. Springer-Verlag, 2004, pp. 175–186.

[15] H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, K. G. Larsen, and
B. Nielsen, “Learning Probabilistic Automata for Model Checking,” in
QEST. Washington, DC, USA: IEEE Computer Society, 2011, pp.
111–120.

[16] A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Var-
ricchio, “Learning Functions Represented as MultiplicityAutomata,”J.
ACM, vol. 47(3), pp. 506–530, May 2000.

[17] L. Feng, T. Han, M. Kwiatkowska, and D. Parker, “Learning-based
Compositional Verification for Synchronous Probabilistic Systems,” in
ATVA, ser. LNCS, vol. 6996. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 511–521.

[18] R. Chadha and M. Viswanathan, “A Counterexample-Guided
Abstraction-Refinement Framework for Markov Decision Processes,”
TOCL, vol. 12(1), pp. 1–49, November 2010.

[19] L. Feng, M. Kwiatkowska, and D. Parker, “Automated Learning of
Probabilistic Assumptions for Compositional Reasoning,” inFASE, ser.
LNCS, vol. 6603. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 2–17.

[20] A. Gupta, K. L. McMillan, and Z. Fu, “Automated AssumptionGener-
ation for Compositional Verification,”FMSD, vol. 32(3), pp. 285–301,
June 2008.

[21] Y.-F. Chen, A. Farzan, E. M. Clarke, Y.-K. Tsay, and B.-Y. Wang,
“Learning Minimal Separating DFA’s for Compositional Verification,”
in TACAS, ser. LNCS, vol. 5505. Berlin, Heidelberg: Springer-Verlag,
2009, pp. 31–45.

[22] D. Angluin and C. H. Smith, “Inductive Inference: Theoryand Meth-
ods,” ACM Comp. Surv., vol. 15(3), pp. 237–269, September 1983.

[23] J. Oncina and P. Garcia, “Identifying Regular Languages In Polynomial
Time,” in ASSPR, vol. 5. World Scientific, 1992, pp. 99–108.

[24] P. Garcia and J. Oncina, “Inference of Recognizable Tree Sets,” Univer-
sidad Politecnica de, Research Report DSIC - II/47/93, 1993.

[25] E. M. Gold, “Complexity of Automaton Identification from Given Data,”
Information and Control, vol. 37(3), pp. 302–320, 1978.

[26] R. C. Carrasco and J. Oncina, “Learning Deterministic Regular Gram-
mars From Stochastic Samples in Polynomial Time,”RAIRO, vol. 33,
pp. 1–20, 1999.

[27] R. Milner, “An Algebraic Definition of Simulation between Programs,”
Stanford, CA, USA, Tech. Rep., 1971.

[28] L. Zhang, “Decision Algorithms for Probabilistic Simulations,” Ph.D.
dissertation, Universität des Saarlandes, 2008.

[29] L. d. Alfaro, T. A. Henzinger, and R. Jhala, “Compositional Methods for
Probabilistic Systems,” inCONCUR, ser. LNCS, vol. 2154. London,
UK: Springer-Verlag, 2001, pp. 351–365.

[30] M. Kwiatkowska, G. Norman, D. Parker, and H. Qu, “Assume-Guarantee
Verification for Probabilistic Systems,” inTACAS, ser. LNCS, vol. 6015.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 23–37.

	Introduction
	Preliminaries
	Learning a Consistent LPTS
	Using State Partitions
	Using Stochastic Partitions

	Active Learning for LPTSes
	Learning Assumptions forCompositional Reasoning
	Conclusion
	References

