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Abstract—We consider the problem of learning a non- tree languages. This motivated us to consider learning &iSLP
deterministic probabilistic system consistent with a given finite directly, without working with tree languages or tree auabm
set of positive and negative tree samples. Consistency is defined We consider first the problem of learning a non-

with respect to strong simulation conformance. We propose S . . .

learning algorithms that use traditional and a new stoghagtic det?'fm'n'St'C LPTS, that |son5|§tenNV|th respect to a set of .
state-space partitioning, the latter resulting in the minimum POSitive and negative stochastic tree samples, where szonsi
number of states. We then use them to solve the problem aftive tency is defined with respect to strong simulation conforeean
learning, that uses a knowledgeable teacher to generate samplesrFor the purpose of verification, we want the learnt models to
as counterexamples to simulation equivalence queries. We showbe minimal or at least to have a good upper bound on their

that the problem is undecidable in general, but that it becomes . - . . .
decidable under a suitable condition on the teacher which S'Z: We describe two algorithms, each using a differentevay

comes naturally from the way samples are generated from failed Partitioning the state-space of the positive samples. Qge a
simulation checks. The latter problem is shown to be undecidable rithm uses traditional state-space partitioning (SedilbA)
if we impose an additional condition on the learner to always resulting in the least number of partitions, while the othees

conjecture a minimum state hypothesis. We therefore propose a ; TS ; TP
semi-algorithm using stochastic partitions. Finally, we apply the E:;V\:]it;%f;arsgfrs)g:gfmng (SectiorLTIB) resulting in the

proposed (semi-) algorithms to infer intermediate assumptions )
in an automated assume-guarantee verification framework for ~ We then apply the above algorithms to solve the problem of
probabilistic systems. learning an unknown target in Sectionl IV. This is done in the
framework ofactive learningwith the help of a knowledgeable
teacher. Typically active learning algorithms assume ahtea

We study the problem of learning an unknown northat answers two types of queriemembershigof a sample in
deterministicLabeled Probabilistic Transition SystefhPTS) the unknown target) anequivalencgbetween the conjectured
from tree samples. The motivation for this work was to inmodel and the unknown target)![7]. However we observe
vestigate learning techniques for automating assumeagtee that membership queries are not straightforward to create i
style [1] compositional verification of strong simulationre our case as the learner would need to guess the transition
formance [[2] between LPTSes. Strong simulation for LPTS@sobabilities, along with the tree-structure. Therefave,only
is decidable in polynomial time [3] and yield$ochastic tree assume the teacher can answer equivalence queries — the
counterexamples when it fail§1[4]. Stochastic trees tage- teacher checks simulation equivalence (two-way simufatio
shapedLPTSes (see Sectidn] Il) with probabilities appearingonformance) between a conjectured LPTS and the target
on the transitions. LPTS and returns positive or negative stochastic trees when

Compositional verification 5] is a promising approach fothe check fails.
alleviating the state explosion problem in model checkiblg [  We show that active learning for LPTSes is undecidable
Learning from trace[]7],[18] and tree ][9] counterexample general. We then propose a learning algorithm that works
has been successfully applied before for automating theder an assumption on the teacher which comes naturally
approach in a non-probabilistic setting, for checking éradrom the way the tree counterexamples are generated from
inclusion [10] and simulation conformance [9], respedtive failed simulation checks. As we are interested in learning a
The most closely related work][9] reduces simulation co-PTS of the least number of states, we also consider imposing
formance totree languageinclusion and uses learning fora restriction on the learner to always conjecturen@imum
deterministic tree automata to automatically generateathe Statehypothesis. Learning with this restriction also turns out
sumptions used in compositional reasoning. In the prois#ibil to be undecidable and we propose a semi-algorithm using
setting, existing literature has dealt with learning froamples stochastic partitions.
consisting of trees with information regarding the prolighi  LPTSes are related tprobabilistic automata(PA) [12].
of acceptance[[11], but learning from stochastic trees hatgorithms to learn PAs have only been proposed in re-
not been considered before. Moreover, there is no existigtficted settings of stronger assumptions on a teacher [13]
probabilistic variant of a tree automaton to recognizetsistic or approximate learning [14]] [15]. Algorithms to learn a

multiplicity automaton, which generalizes a PA by replac-
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and results in non-terminating algorithms J[17]. On the othe I 51 1 Lo %

hand, we show in Sectidn]V that one can readily apply the 1 1 2 X1

algorithms we propose to infer intermediate assumptiorain 2 % 3

automated assume-guarantee style framework for the \eerific .

tion of strong simulation conformance between LPTSes. This b e b .

yields the first complete and fully automated learning frame (s2) (s2)
work for compositional verification of probabilistic systs. Fig. 1: Three reactive LPTSep.c (0, 1) for Cp.

Moreover, one can extend this framework to check logical

properties, such as the fragmeweakly safe PCTL[18],

which are preserved by the conformance and also have tegecified explicitly in a distribution are rationalsin 1[. For
counterexamples. s € S, &5 is the Dirac distribution ors, i.e. é5(s) = 1 and
Other Related Work. Learning for automating compositionald,(¢t) = 0 for all ¢ # s. For u € Dist(S), the supportof y,
reasoning of probabilistic systems has been proposed benotedSupg), is defined to be the sdts € S|u(s) > 0}

fore [19] in the context of checking probabilistic reachi#pi and for X C S, u(X) stands fory_ _ u(s). The models
properties, which are refuted by sets of trace counterelesnpwe consider, defined below, have both probabilistic and non-
The approach uses a variant of L¥ [7], a learning algorithmeterministic behavior. Thus, there can be a non-detestini
for DFAs, to automatically learn deterministic assumpgionchoice between two probability distributions, even for saene
following previous work in the non-probabilistic settinfid]. action. Such modeling is typically used for underspeciiirat
The approach uses a sound but incomplete rule, and thereftMereover, the theory described does not become any simpler
it is not guaranteed to terminate (completeness is negefsar by disallowing non-deterministic choice for a given act{see
termination). A complete rule for such properties restdct the discussion on counterexamples at the end of this sgction

to systems without non-determinism has been considersdf_ ition 1 (LPTS). A Labeled Probabilistic T ition S
recently [17]. It uses learning withrobabilistictrace inclusion €finition 1 ( ) abeled Frobabilistic fransition Sys-

as the conformance relation which is undecidable. Also, titl%m (LF_JTS IS a tup_le(S, s% a,7) Whe_reS Is a set O.f states,
learning algorithm is not guaranteed to terminate. In @sifr * €Sisa d|s_t|ngw_shed start S.t.at@ IS a s_e_t of actlpns and
we use simulation conformance which is decidable in polynd")-g SxaxDist(5) is a probab|llst|c transition relation. For
mial time and leads to a sound and complete rule (SeEflon V)€ 5 @ € @ and 1 € Dist(S5), we denote(s, a, u) € 7 by
We are also able to guarantee termination for the algorithiri * # @nd say thats has atransitionona to pi.
proposed in SectiomlV when using classical partitions terinf AN LPTS is calledreactiveif 7 is a partial function from
a consistent LPTS. S x « to Dist(S) (i.e. at most one transition on a given action

Our work draws inspiration from a previous wotk [20] thafrom a given statg

automates assumption generation by using an algorithm forrhroughout this paper, we use filled circles to denote start

learning theminimal separating automatoitom positive and  states in the pictorial representations of LTPSes. For plam
negative trace counterexamples. The counterexamples@re [Figure [ shows three LPTSes. For = {(sy, 1), (s2, D)1,
vided via model checking using assume-guarantee reasoniﬂg has the transitiors; - . All the LPTSes in the figure
Similar to our work, they use partitioning approachwhere  5re reactive as no state has more than one transition on a
the goal is to find dolding of the counterexamples into thegiven action. In the literature, an LPTS is also callesiraple
learnt model. A different approach has been proposed to figghpapilistic automatori2]. Similarly, a reactive LPTS is also
the separating automaton based on L* which makes use @fjed a (Labeled)Markov Decision Processlso, note that an
membership queries, in addition to equivalence quefiek [21 pTs with all the distributions restricted to Dirac distrttons
All these works were done in the context of non-probabdistis the classical (non-probabilistit)abeled Transition System
reasoning under trace semantics and thus, are differemt frg Tg): thus areactivelTS corresponds to the standard notion
our setting. o - of a deterministicLTS. We only consider finite state, finite
Learning a minimum-state automaton from positive anginhabet and finitely branching.€. finitely many transitions
negative samples is a well studied problem [22]! [23] [24tt from any state) LPTSes. We us§;, s0, «;, ;) for an LPTS
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is known to be hard [25]. Algorithms have also been proposgd gnq (S,sY ap, ) for an LPTSL.
for samples with stochastic informatioe. the probability of We are also interested in LPTSes with a tree structiee,

acceptance of a trace or a treel[26].1[11], learning sto@hasfe siart state is not in the support of any distribution aretye
finite (tree) automata. As also previously said, we canngiher state is in the support of exactly one distribution.dat
|mmed|_ately borrow existing results from the above aut@matg,c, | pTSestochastic treesr simplytrees For example(,,
theoretic approaches. p € (0,1), in Figure[1 is a tree.

Il. PRELIMINARIES Strong Simulation. In the non-probabilistic case, for two

. . labeled transition systems (LTSes), a pair of states baigrtg
Labeled Probabilistic Transition Systems.Let S be a non-

e_mptY_SeF-DiSjt(S) is defined to be the set of discrete p_r_qba' 1There is no unique representation for all real numbers on a stenand
bility distributions overS. We assume that all the probabilitiesloating-point numbers are essentially rationals.



p1(s1) = pi(sg) = 1/2 w: Sy x Sy — QN [0,1] such that

1/2 1/2
51 so. 1) pa(s1) = X, es, w(s1,82) forall s; € Sy,
""""""" sq Rtl 2) [LQ(SQ) = 251651 U}(51, 52) for a'” 52 € 52’
7 G t_2_152 Rtg 3) w(s1,s2) > 0 impliess; Rss for all s; € Sq, s2 € Ss.

1/2 1/2 . 11 Cgr pe can be checked by computing the maxflow in

po(t1) = po(te) = 1/2 an appropriate ngtwork and chec_k!n_g |f it equals [3]. If
_ , _ o _ , 1 Egr ueo holds,w in the above definition is one such maxflow
Fig. 2: A simple example where matching probabilities (solides) directly function. As explained above“ Cr pe Can be understood
provesu; Cg po. . " . A, .
asmatchingall the probabilities (after splitting appropriately)
pi(s1) = py(sg) = 1/2 und_er/,zl andu?. Qonmden_ngSuprﬁul) andSupm@)_as two
------------------ . partite sets, this is the weighted analog of saturating ttear

15/12 15/22 . set in bipartite matching, giving us the following analogloé
'j; i : well-known Hall's Theorem for saturatinupg:1).
AR LNLS R Ry Lemma 1 ([28]). u1 Cr po iff for every S C Supgus),
T "' sqRtoy p1(S) < pa(R(S)).
B PR S R R . )
j z;Rig It follows that whenyu, Zgz ue, there exists a witness

S C Supdu) such thatu; (S) > pe(R(S)). For example,
: if R(s2) = 0 in Figure[2, its probability; under; cannot
tg |- be matched and = {s;} is a witness subset.

oO—»
Wl

no(t1) = po(ty) = pa(tz) =1/3

Fig. 3: An example where probabilities are split (arrows)doefmatching
(solid edges) to prove; Cg po.

Definition 3 (Strong Simulation[[2]) R is a strong simulation
iff for every s Rsy and s; = u§ there is aug with so % g
and pj Cr ps.

For s; € S1 and sy € Sy, s strongly simulates;, denoted
s1 = s, iff there is a strong simulatioff” such thats,T's5. Lo

. e 0 o 0
a strong simulation relation depends on whether certairarotl'?trongly simulated.,, also denoted.; = Ly, iff s7 = s3. For

pairs of successor states also belong to the relation [2x]. hheidlattt)er, alteénatwtceihg we say thaimulation conformance
LPTSes, one has successbstributionsinstead of successor°'%S etweerl, and L.

states; a pair of states belonging to a strong simulati@tiogl pefinition 4 (Strong Simulation Equivalence)The strong

R should now depend on whether certain other pairs in tRgnulation equivalencedenoted=~, is defined as the kernel
supportsof these successor distributions also belongito of strong simulationj.e. ~==< N .

We thus need a binary relation between distributions;,
which depends on the relatioR between states. Intuitively, Definition [3 generalizes the one in the non-probabilistic
two distributions can be related if we can pair the states §¢tting [27] and has the following immediate consequence.
their sqpport sets, the pgir; co_ntainean matching allthe Lemma 2. < is the coarsest strong simulationg. < is a
probabilities under the distributions. . strong simulation and contains every strong simulation.
Consider an example withRt¢ and the transitions —
andt % 5 with p; and sy as in FigurdR. In this case, one Simulation conformance is decidable in polynomial time [3]
easy way to match the probabilities is to pajrwith ¢; and and can be checked with a greatest fixed point algorithm that
so With to. This is sufficient ifs; Rt; and syRt, also hold, computes the coarsest simulation betweenand L,. The
in which case, we say that; Cr u». However, such a direct algorithm uses a relation variable initialized to S; x S» and
matching may not be possible in general. As shown in Figulechecks the condition in Definition] 3 for every pair iR,
[3, we need a more general notion of matching the probalsilitiéteratively, removing any violating pairs from. The algorithm
One can achieve that bgplitting the probabilities under the terminates when a fixed point is reached showing=< L
distributions in such a way that one can then directly matéi when the pair of start states is removed showing# L.
the probabilities as in Figuid 2. Now, if Rt,, s Rts, soRt,  Several optimizations exist [28] but we do not consider them
and s, Rt3 also hold, we say that; Cx uo. Note that there here, for simplicity.
can more than one possible splitting. . . . .
This is the central idea behind the following definitionLemmas([zD' = is a preorder(i.e. reflexive and transitije
where the splitting is achieved by waeight function For Finally, we find the following characterization of useful
the rest of the section, lef; and L, be two LPTSes, in the algorithms we will discuss later on.

Dist Dist C . .
p € Dist(81), 2 € Dist(S;) and R € 51 x S Lemma 4. Let L, be a tree ands; Rs iff for everys; - u,

Definition 2 ([2]). 1 Cr ue iff there is aweight function there existssy — jip With ji; C g ie. Then, R ==.



o1 1 is, there is a total mapping/ : Sc — S1 such that for

Ly o Lo “ “ every transitionc % .. of C, there existsM (c) % p1 such
that M restricted toSupfu.) is an injection and for every

eP) to t3 d € Supfue), te(c) = pi(M()). Note thatM is also

b b b a strong simulation. We call such a mapping execution

mapping fromC' to L, in the rest of the paper. An execution
Fig. 4. An example showing that Lemmid 4 does not hold, in gemnapping is shown in brackets beside the statesUpffor
?E";" f )L%S'St”)‘"(sa t;e)e}- et ;j(shtl)’(s?’m}- Note that== "}, — L in Figure[1. While our algorithm always generates
DA T2 A0 B = counterexamples with aexecution mappingit is possible

to have a tree counterexample, as per Definifibn 6, without

Proof Sketch: R C< by Def.[3.<C R can be proved by SUch & mapping. For examplé), in Figure[1 forp & (0, 2)
induction on theheightof a state ofZ; using LemmaR2. m is also a.c-:ountergxample with no suebfecutlon mapping
Note that the condition o in the lemma is stronger than 1€ condition we impose on a teacher in the active learning
the one to make it a strong simulation (Definitign 3). Also, iProPlem (Sectiofl 1V) is regarding this execution mapping.

L, is not a tree, we can only conclude thatC <, in general. 1. L EARNING A CONSISTENTLPTS
See Figuré 4 for an example wheReC <. , d4in th bl h .
Counterexamples to <. In the active learning problem we We are Interested in the problem where we are given a

are interested in (Sectign V), a learner uses counterebeﬂmpﬁnite set of positive stochastic _tr_eesi.e. in the_ language .Of
to simulation conformance as diagnostic information. Wi wi?" LPTS), sayP, and another finite set gfegativestochastic

now briefly discuss what these counterexamples are.fl,et trees _(.e. not in the language of an LPTS), sAy. These trees
and L, be two LPTSes. constitute the samples for a learner. The goal is to learn an

LPTS L such thatP C £(L) andN N L(L) =0, ie. P <X L
Definition 5 (Language of an LPTS)Given an LPTS for every P € P and N < L for no N € N. Such anL
L, we define its language, denoted(L), as the set is said to beconsistentwith the tree samples. Without loss
{L'|L"is an LPTS and.’ < L}. of generality, assume th& + () as otherwise, a single state
; LPTS with no transitions is trivially consistent. Also, edhat
Lemma 5. Ly = Ly it £{L1) & L(L2)- the LPTS obtained by merging the start states of all trees in
Proof: Necessity follows trivially from the transitivity of P, say L, trivially satisfiesP < Lp for every P € P. Now,
= and sufficiency follows from the reflexivity ok which if L is a consistent LPTS, it can be shown ttiat < L and
implies Ly € £L(L1). B hence, by Lemm&l3Lp is also consistent. Thus, one can
Thus, a counterexampl€ can be defined as follows. easily check, in polynomial time, if there exists a consiste
LPTS by checkingV =< Lp for everyN € N. For this reason,

Definition 6 (Counterexample)A counterexample td; < L : .
( ple) P L= e always assume the existence of a consistent LPTS. Glearly

i ie.C =<
is an LPTSC such thatC € £(L;) \ £L(L»), i.e.C < Ly but the size ofLp is as large as that oP.

C 2 L. If possible, we would like to learn a model with the least
Now, L, itself is a trivial choice forC' but it does not give size, or at least have a good upper bound on its size. Such
any more useful information than what we had before checkingodels would be useful when automating assume-guarantee
the conformance. Moreover, it is preferable to havevith a reasoning (see Sectidnl V). The algorithms we propose draw
special and simpler structure to efficiently work with couninspiration from the ones used to infer consistent non-
terexamples. Fortunately, we have a simpler charact@irzatprobabilistic automata from counterexample traces [234].
using trees. [2€], [20] which are based on partitioning the state spadaef
Theorem 1 ([]). If L, £ Lo, there is a tree which serves ascounterexamples. Leip = Upep Sp and Sy = Uy ey S
First, we consider an algorithm based on the traditionaksta
a counterexample. o ; .
space partitioning of5». While there is an upper bound on
Proof Sketch: One can instrument the algorithm tothe size of the learnt model, we show that such partitioning i
compute a coarsest strong simulation described earlier itgufficient to obtain a minimum state consistent probstidi
obtain a tree counterexample whenever a pair of statessistem (LPTS). However, as we will see in Secfich IV, we find
removed from the current relation, making use of Lenirha it.useful in learning an unknown target LPTS. We will then
W introduce a new way of partitioning the state space, which we
For example(,, in Figure[1, forp € (0, %], is a counterex- call stochasticpartitioning, enabling us to obtain a minimum
ample tol,; < L. In another work, we showed that structurestate consistent LPTS.
simpler than trees are not sufficient as counterexamples, ev ) -
when one of the models is reactive [4]. A. Using State Partitions
We note an important feature of the algorithm used to proveThe first algorithm uses traditional partitions 6%. For
the above theorem[4]. A counterexamglegenerated by the a partitionII of Sp, let £y denote the set of equivalence
algorithm is essentially a finitéree executionof L;. That classes undefl and for a states € Sp, we let [s| denote
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Fig. 5: Positive ) and negative X, N, N ’7) tree samples. Hl H}\

Fig. 6: Quotients for least size partitiolt/() and stochastic partition/{y)

the equivalence class ef(we drop the subscrigti when it is °f " i" Figurels-

clear from the context). Unless specified otherwise, werassu
that [s}]m = [sg]n for every P,Q € P, i.e. the start states
of all the positive counterexamples are mapped to the sa
equivalence class.

consistent LPTS in general. For examplg; in Figure[® is
the quotient for a least sized consistent partitionPofor the
trees in Figur€ls (obtained by mergisgands,). On the other
Definition 7 (Quotient LPTS) Given a partition II of hand,H,, where\ is any value in(0, 1), is another consistent
Sp, define thequotient LPTS denotedP/II, as the LPTS LPTS with one less state.
(B, e a,7) wheree? = [s%] for every P € P, a = Algorithm. A naive algorithm for finding deast-sized con-
Upep ap and (e,a,p) € 7 iff there exists(s,a,p,) € 7p sistent partitionis to enumerate all the partitions dfp,
for someP € P with [s]; = e such thaty = lift (,) where with increasing size, and for each of them, check if the
lift (1) (') = > g cer tp(s”) for all e € Ex. corresponding quotient simulates any tree\in Alternatively,

It can be easily shown that a quotient is always a weI—e can cast .it as an insFance_ O].c a satisfiqpility problem
defined LPTS. In the followingll is a partition ofS ver Imgar rat|onal_ arithmetic. Th_|s is more efficient thhe

: P P exhaustive search in theiwa algorithm, and also prepares the

Lemma 6. P/II is consistent withP for all II. ground for an algorithm we discuss in the next subsection.

. . First, we describe the encoding to check if there is a
Proof Sketch: One can show thaf(s, [sln)ls € Sp}is ¢, nqistent partition of size at most a givenLet e; denote the
a strong simulation betweeR andP/II for everyP ¢ P. &

equivalence classfor 1 < ¢ < k. For each and states € Sp,
Definition 8 (Consistent Partition)II is defined to becon- we introduce a new boolean variable, say—;, to denote
sistentiff /I is consistent withV/, i.e. for every N € N, [s] = e;. We add the constraimtor (vjg=1,...,v[s)=x) for
N £ P/1L. every s ¢ Sp for the partition to be well-defined. Moreover,

Th d th bl f findi istent LP e fix e; to be the start state of the resulting quotient and
us, we reduce the problem of Tinding a consisten ve a constraint that,o)_, for every P € P ase; should
to that of finding a consistent partition. As we show belo P

; . o . €10%Wow contain all the start states (Definitibh 7).
we can always find a consistent partition witth@aunded size Now, to encode consistency, we want to say that no tree
where thesizeof 11 is | Ey]. ' '

N € N is simulated by the resulting quotient. We can

Lemma 7. If L is an LPTS of: states consistent witR, then avoid introducing a universal quantification over all pb&si

there is all of size at mose* such thatP /1T < L.A strong simulations by finding a way to say thaf;,e;) is

not in the coarsest strong simulation, for evely € N.

Fortunately, we can make use of Lemhja 4 to achieve exactly

this. We introduce a boolean variablg, ; to denote that

s € Sy is related toe; by the coarsest strong simulation. Let

tn = (Sn,a, 1) @ndt, = (sp, a, up) be a transition of\” and

P, respectively, on the same actierand1 < i < k. Consider

. the expressiond,,, .., A v[s,)=i, denotedoy, ;¢,. If dy, .,

IS a . . . .
denotesu,, Cg lift (11,), then this expression has the meaning

that [s,] = e; and the corresponding transitien = lift (s,)

(which exists by Definitiol7) in the quotient simulatgs If

Corollary 1. For every consistent LPTS &f states, there is X (s) denotes the set of all transitions outgoing frera Sy,

a consistent partition of size at maf. Y (a) denotes the set of all transitions # on actiona and

act(t) denotes the action for the transitionwe add

Proof Sketch: Let P € P. As P < L, there is a strong
simulation Rp C Sp x Sy, with s%Rps}. As P is a tree,
assume without loss of generality thBt(s%) = {s?}. Let
R = Upep Rp. Now, R induces a partitiodl of Sp such that
for S1,82 € Sp, [31}1'[ = [SQ]H iff R(Sl) = R(Sz). Note that
[sh]lm = [sg]m for P,Q € P. The size ofiT is clearly bounded
by 2. Now, it suffices to show thaf([s,]m, s1)|spRsi}
strong simulation betwee® /I and L.

The following is now immediate, using Lemmias 3 and 6.

Observation. This shows that ifl is a minimum state consis-
tent LPTS, there exists a consistent partitionSgf of size at R;,; <— /\ \/ Tt isty
most exponential inSy|. While there may be a better bound, tn€X (s) t,€Y (act(t,))

this way of partitioningSy can not guarantee a minimum Stat%ccording to LemmEl4.

21f L and everyP € P is an LTS, an upper bound df on the size can _ I1t(tp)(¢i) can be encoded a5 gypy.,) luyis Where
be shown by choosing?p in the proof to be a function. I, .i,s denotes theontributionof s to the lifted probability of



e; underp, and satisfies As the probability of each split of a state Bupgu:)
is matched with that of some split of exactly one state in
(Visj=i == lupis = Hp(8)) A (V)= = Ly iis = 0). Supgiu2), one can also think of the above grouping in the

d,.,, ., is encoded as follows. If we use Definitibh 2 alone, wipllowing {alternainve way. As the probability of for s, is
need to introduce a nested existential quantifier for theytei SPIit Into f“;d 6 51 can.be Seen as belng. PUtl‘f‘;';tl with
function (to say thatd,, , iff there isa weight function Probability 5 = % and inG,, with probability {55 = 1.
satisfying the conditions). To avoid this nested quantiiic Thus, instead of putting, deterministically into one group,
we also make use of Lemnid 1. First, we introduce a vaft-IS put stochasticallyinto multiple groups. Let these splits of
able for the weight function and encode the constraints f Putin G;, andG., be s;[t,] and s [to], respectively.
Definition[2 if Cr holds between the distributions. We also Now, considers [i,]. As the corresponding probability of
introduce a variable for the witness sub$eC Supyiy,) and 5 is matched with that of some split of (implying s Rty),
encode the condition of Lemnid 1 wheng fails to hold. and ass; is not in the support of any distribution other than
This variable for the witness subset can, in turn, be encodéd (note thatP is a tree), we need not consider df is
using individual boolean variables for eashe Supgy,). 'elated, byR, to any other state irl, as far ass[t;] is
We also need boolean variables for the image of this witne&gncerned. And therefore, any distribution outgoing frdrs t
subset undeR. The details are straightforward and left to théPlit of s1 will only need to be related to some distribution
reader. Finally, we encode consistency by having the caingtr outgoing from¢, (by Cr). Similarly, for s;[t2] andt,. Now,
—-R, , for everyN € . if ug is a distribution outgoing fronms; in P, we may want
It is not hard to show that the encoding is correic, 1O relate it to a distributior. outgoing from¢, (for s [t1])
the resulting encoding is satisfiable iff there is a consisteand another distribution.’” outgoing from ¢, (for s:[t2]).
partition of size at mosk. One can then obtain an algorithmConsideringus Cr p and i3 Tr 4/ both hold, for a state
to find a least-sized consistent partition by starting withs € SUPHus), following the above describedtochastic
k = 0 and incrementing it as long as the encoding for 9rouping may result in two different ways of grouping.
is unsatisfiable. As satisfiability over linear rationatiametic 1hus, we need teememberthe group of its parent, denoted

is decidable, this is guaranteed to terminate from Corpffar by par(-), when grouping a state ifip.
) ) ] This is the main motivation behind stochasticpartition,
Theorem 2. The above described algorithm to find a leastyhich is defined below.

sized consistent partition &fp terminates. o ) . ) o
Definition 9 (Stochastic Partition)A stochastic partitions a

B. Using Stochastic Partitions tuple (G, {[s]}ses,) WhereG C 257 and [s] : G — Dist(G)

As noted above, the quotient of a least-sized consistdRf Verys € Sp, such thalJ G = Sp and
partition need not have the least number of states. We absent) there is ag® € G such that for every? € P andg € G,
that the main reason for this is not being able to partition [s%](g) = 640 and
Sp such that there is a one-to-one correspondence betweehl for every non-root state € Sp and g € G, [s](g) is
the equivalence classes at, instead of the curren2s: defined iff[par(s)](g’)(g) > 0 for someg’ € G.
for a consistent LPTS. (proof of Lemmal). This suggestsFurthermore,s € g iff [s](¢')(g) > 0 for someg’ € G, for
that we can learn a minimum state consistent LPTS if wererys € Sp andg € G.
can find a way to group the states &b (groups need not We usg G, {[s|n}s) for a stochastic partitioll and when
be disjoint) with such a correspondence. This will then ynpllI is clear, we drop the subscripts.
that if there is a minimum state consistent LPTSwe can
use this grouping to obtain an equally sized consistent LP'I;%

One can then automate the search for such a grouping us&cﬁnt 1 above says that the start states of all tree$”ilgo

constraint solving. L .
Let L be a consistent LPTS and let us try to see what we Cg{qterm|n|st|callyto a designated group. Note t(l;]at the start
States have no parents and the dependencgjdf on an
do to groupSp to have the above one-to-one correspondence o . . i
) . . ) ) argument is just a notational convenience. And pQ@irdays
with Sy. Consider Figurg]l3 again and let be outgoing from . : .
; . that for every non-root state, [s] is only defined for avalid
the root of some tred” in P and o appear inL. Let there . N ,
I group of its parent. We implicitly assume that(¢')(g) = 0
be three groups (initially empty), one per stateSuopgz), ; . ) p
. . : . for everyg € G if [s] is not defined ay’.
say Gt,, Gy, and G¢,. As explained in Sectiof]ll, having , : . e
1 2 3 i~ Now, we define the quotient of a stochastic partition in the
u1 Cr e, for someR, can be thought of as finding a way Offollowin wa
splitting the probabilities in both the distributions and pairing g way.
states, already iR, to directly match the probabilities. WeDefinition 10 (Quotient LPTS) Given a stochastic partition
would like to use this matching to group the statesSef. II = (G, {[s]}s) of Sp, define thequotient LPTS denoted
In particular, looking at the above figure, we would like t&P /11, as the LPTSG, ¢°, a, 7) where ¢g° € G is such that
place the two splits of; (s2) in Gy, and Gy, (Gy, andGy,), [s%](g) = d,0 for everyP € P andg € G, o = Upep ap

respectively. and (g,a,p) € 7 iff there exists(s,a, u,) € 7p, for some

Here,G denotes the groups mentioned above @hdenotes
e stochastiogrouping ofs € Sp given a group of its parent.



P € P such thats € g and for everyy’ € G, Algorithm. The encoding is similar to the case of partitions
N , " , in the previous subsection. To find a stochastic partition of

u(g') = Z/[s](g)(g) (). size at most a giverk, let g; denote the group for 1 <

) - <9 . i < k. Introduce a non-negative rational variablg,.; ; to

We denote this relation betwegnand 1, by 1 = lift (11, 9).  denotels](g;)(g;) for everys € Sp, 1 < i,j < k. For every

Thus,(g,a, p) € 7 iffthere is a states € g with s = p,and @ ands € Sp, add the constraing >, ;4 V(s)(i).j = 1) %

w is obtained bylifting 1, given thats € g. For this to make (Z1gjgk Vsl = O) to denote thafs](g;) is a distribution

sense, we need to show that the lifting is a valid distributio \*- : ; L
In the following, IT = (G, {[s]}.) is gstochastic partition or is undefined. Then, we encode poihtand2 of Definition[d

of S by adding the constraint,o ;) , = 1 for everyi and P € P,
P making g; the start state of the quotient, and adding
Lemma 8. P/II is a well-defined LPTS.

Visl(i).; = 1 <= Vpar(s)(1).5 > 0
We have the following lemma analogous to classical parti- Z [s](0).7 Z [par(s)I L),

ti 1<5<k 1<I<k
ions.
) ) ) for every non-root state and:. This ensures that the stochastic
Lemma 9. P/II is consistent withP for all II. partition obtained is well-defined.
Proof Sketch: One can show thaf(s,g)|lg € G,s € Encoding consistency is the same as before except for
SpNg} is a strong simulation betwedhandP /Il for P € P.  0t,.it, (tn, 7 @andt, are as before) which will now be
|
Consistency of a stochastic partition is defined in the same A i N Z Vls,)(5),i > 0-

way as Definitiori B. Thus, we reduce the problem of finding a 1sj<k

minimum state consistent LPTS to that of findintgast-sized \where dy, i denotesp, Cr lift(u,,g:). Thus, we wil
consistent stochastic partition where tsige of a stochastic check if there is a group opar(s,) (summation overl <

partition is its number of groups. j < k) for which s, € ¢g; and p,, Cg lift(pp, ;). For aj,
Lemma 10. If L is an LPTS oft states consistent wit®, ft(1p; 9:)(9;) is encoded a5 gy, Visl(i).g - o (s)- ReSE
then there is dl of size at most: with P/II < L. of the encoding is similar.

) We can similarly show the correctness of the encoding and
Proof Sketch: Let P € P. As P < L, there is the termination of the algorithm follows from Corollay 2.

a strong simulationRp C Sp x Sp with s%.Rps?. Let _ o
R = Upep Rp. Now, construct a stochastic partition with aff heorem 3. The problem of learning a minimum state con-
most|S;,| many groups following the intuitive explanation wesistent LPTS withP and NV is decidable.
gave when motivating stochastic partitions. For distitng
up € Dist(Sp) and y; € Dist(Sz), the stochastic groupings
of a states € Supgy,,) is obtained by using a weight function We now consider the problem of learning the language of
showing u, Cgr . In particular, s is put in the group an LPTS,i.e.learning an LPTS up to simulation equivalence
corresponding tos; € S; with probability w(s, s;)/u,(s) (following Lemme5), in the framework of active learning.tLe
wherew is the weight function which is uniquely chosen givei/ be an unknown target LPTS. The learning framework has
pp and ;. Moreover, i; and this grouping depend on thea learner and a teacher. The goal of the learner is to learn an
group of par(s). Once such a stochastic partitidéhis built, LPTS L such thatl. ~ U. To that effect, the learner maintains
we can show thaf(g, s;)|g is the group corresponding tg} @ hypothesis LPTSZ. The process of learning proceeds in

IV. ACTIVE LEARNING FORLPTSES

is a strong simulation betweeR/IT and L. m rounds where in each round, the learner makes a query to the
Our main result follows as an immediate corollary, usintpacher and updateH based on the response. For reasons
LemmadB andl9. mentioned in the introduction, we only consider a singlestyp

of queries in this paper where the learner conjectuileas
(simulation) equivalent tdJ. In response to such a query,
the teacher is expected to check whetlier~ U holds and
So, we can obtain a minimum state consistent LPTS logherwise, return a counterexample. If it is a counterexamp
constructing the quotient for a consistent stochasticitpart to H < U (U =< H), it is called anegative (positive
of Sp of the least size. For exampl&,, A € (0,1), in Figure counterexample. Following Sectidnl I, we assume that the
is the quotient for a least sized consistent stochastidipar counterexamples are always trees. Furthermore, therddshou
for the trees in Figuré]5 (wherg goes to groupl, s, goes always exist an LPTS consistent with all of the counterex-
to group 2 with probability A\ and to groupl with 1 — A amples,i.e. simulating all the positive counterexamples and
and s3 and s4 go to group2). We describe an algorithm to none of the negative counterexamples, received by thedearn
find a least-sized consistent stochastic partitioy casting it so far. Also, every conjectur& made by the learner should
as an instance of a satisfiability problem over linear rationbe consistent with the counterexamples received so fahen t
arithmetic. above sense.

Corollary 2. For every consistent LPTS éf states, there is
a consistent stochastic partition of size at mbst



Unfortunately, the framework, as described above, is t@dgorithm 1 Active Learning Loop.

general to be useful, as the following lemma shows. 1LP=N=0

. . 2: H < single state LPTS with no transitions
Theorem 4. The problem of learning an unknown LPTSis 3. repeat g

undecidable in the active learning framework. 4:  conjectureH to the teacher

. . . 5. updateP and N from returned counterexamples, or exit
Proof Sketch:We show that there is no algorithm to learng.  gptain a least sized consistent (stochastic) partifion

the unknown target/,, which first performs an actiom and 7:.  H « P/II

goes to a state with probability to loop on actiorb or goes  8: until fal se

to another state with the remaining probability to deadlock

by describing an adversarial teacher which manipulates the

value of A as necessary to keep generating counterexampliesrning loop. First of all, due to Conditidd 1, the quotient
After choosing an initial value of\, the teacher returns aof the partition induced by the execution mappings from the
counterexample as long as the hypothesis is not simulatipositive counterexamples to' is a sub-structureof U and
equivalent to the target. If a hypothesis simulation edeiva hence, is trivially a consistent LPTS. As the algorithm firads
to the target is conjectured, the teacher increases the wdlu least-sizedconsistent partition, its size is bounded [$].

A just enough to have the new target not simulated by theThen, notice that every future hypothesis is consistertt wit
hypothesis, while still being consistent with all the pmsly any new counterexample returned, and hence, is distinet fro
generated counterexamples, and a new (positive) countertbe current one. Moreover, due again to Condifibn 1, and as
ample can then be generated. m lift only adds probabilities, one can show that there are only

The main reason behind the theorem is tlitais not finitely many possible distributions for a given partitioizes
necessaryfor the positive tree counterexamples returned by We conclude that the algorithm terminates. ]
the teacher to have agxecution mappingo U (see Section  Thus, we have the following result.

). Such a teache.r_ can be Seen as an adversary which 2orem 5. The problem of learning an unknown LPTS is

choose the probability values in the counterexamplesmetyr decidable in the active learning framework. with Conditin

which are infinitely many, to make the learner never conver eeCI able !l v g WOrK, Wi !
. L n the teacher.

to the desired probabilities.

But, in practice, to be able to apply the learning framework It is sometimes desirable to learn an LPTS with the least
in a given setting, one needs to implement the teachenamber of states. While the algorithm described above learns
algorithm and we are not aware of any algorithm to generaae LPTS, it is not guaranteed to output a minimum state LPTS
counterexamples other than the one discussed in S&dtidn Il.simply because each hypothesis need not have the least numbe
mentioned before, this algorithm has an interesting ptypenf states (see Sectidn IIMIA). This suggests us to impose the
that the generated counterexamples heaxecution mapping following condition on the learner.
to Ly, when L; < L, fails. This suggests us to impose th
following friendlinesscondition on a teacher.

%ondition 2 (Learner) Every hypothesisH made by the
learner is a minimum state LPTS consistent viittand .

Condition 1 (Friendly Teacher) Every positive (negative) If there is a learning algorithm under ConditidHs 1 &fid 2

counterexample returned by the teacher should have an Xen it is guaranteed to output a minimum state LPTS which is
ecution mapping td/ (H).

(simulation) equivalent t@/. But, there is no such algorithm
First of all, we observe that the proof of Theorém 4 nas we show below.

longer works because an updateXanay violate Condition
1 on any counterexample already fn In fact, as we show
below, the problem becomes decidable. ieand A/ denote
the sets of positive and negative counterexamples, retlpe
the teacher so far, respectively. First, consider the pseode Proof Sketch: We show that there is no algorithm to
in Algorithm[d. It suggests a method of using the algorithmsarn (unknown)H; in Figure[®, by describing an adversarial
described in Sectiof ]Il by treating® and A/ as the tree teacher which can return a counterexample for any conjedgtur
samples. There is a choice at lifieto use partitions or hypothesis. Initially, the teacher keeps returning negatoun-

Theorem 6. The problem of learning an unknown LPTS
is undecidable in the active learning framework, with both
Condition[1 on the teacher and Conditibh 2 on the learner.

stochasticpartitions. terexamples, if there are transitions on actions other than
First, we show that using traditional partitions at liGe andc in the hypothesis, or the positive counterexamplen
makes the problem of learning a target decidable. Figure[® until the learner conjectures an LPTS with selp®o

. . . . on these three actions. Thereafter, if a conjectured hgsath
Lemma 11. The active learning loop of Algorithini 1 terml_has transitions on only, b andc and simulated’, the teacher

n nder nditi i iti
atgs u de_ Conditiohl1 on the teacher and using part't!or}%turns N, to force the future hypotheses to have at least
at line 6 with the number of states of each intermediat

. By
hypothesisiZ bounded by that of/. t%vo ;tates and in every future round, retutNig or N7V in

the figure, as necessary. One can show that there are always
Proof Sketch: Consider an arbitrary iteration of thesuitable values of andy wheneverN/?-” needs to be returned



and the learner always conjectures a two state LPTS. In factle ASym. We describe an algorithm for the problem using
H) is always a consistent LPTS for a suitable= (0,1). ®m learning and show termination below.

However, we obtain a semi-algorithm to the problem byeacher. The teacher is implemented by two conformance
using stochasticpartitions at line6 of Algorithm [d. That is, checks corresponding to the two premises of the rule, cliecke
if the algorithm terminates, it is guaranteed to learn thhigeta in any order.
with the least number of states. Correctness is immediate fr « Premise lguides the learner towards a conjecture that
Theoren{B. makesL; || A < P true.

o Premise 2guides the learner towards a conjecture that
dischargesA, i.e. it makesL, < A true.
COMPOSITIONAL REASONING - . .
) i ] ) o o If the conjecturedA satisfies both the premises, soundness
As mentioned in the introduction, the original motivatiam f of ASyM implies L, || Ls < P holds, and the teacher

this work was to automate assume-guarantee style reasonifigmstrue. If one of the premises fails, the teacher generates
for simulation conformance. Assume-guarantee reasofihg [:ounterexamples with amxecution mapping(Section [T)).

is a compositio_nal techniqL_Je that breaks up th_e verificadion 11,5 the teacher satisfies Conditidn 1. When premitls,
large systems into that of its components for increasedscal ,ositive counterexample is returned to the learner. When
bility. When checking individual components, the methOdSUS%remisel fails, the obtained counterexample is fimbjected

assumptions about their environments and discharges thgef, 4 and then returned asregativecounterexample. As a
on the rest of the system. For a system of two component3, nterexample to premisel has an execution mapping to
such reasoning is captured by the following simple assume- | A, the projection ontod is simply thecontributionof A
guarantee rule (A®M). towardsC' during the composition. To enable this, additional
information regarding individual distributions is maiimed
Li|A=XP Ly=A during composition[]4].
Li||Ly =P Spuriousness CheckNote that the returned counterexamples
d not satisfy the assumption of Sectlod Ill that there

ne
Several other assume-guarantee rules have been propoggﬁays exists an LPTS consistent with the samples. For this

_somezgof tggm rlggolvlgng s_ym_metr_lc: [ILO] or Cl'rcilg/l rGr}lasonburpose, the learner needs to perfornspuriousness check
ing [29], [10], [30]. Despite its simplicity, rule a5 1o see if the counterexamples are real or spurious. A real

been proven ”?OSt .effect|ve n pra‘?‘.'c? and .has beer_1 Studl:%qmterexample would imply that the specification will not
extensively mainly in a non-probabilistic setting, forfdient hold of the original system while a spurious one would

notions of conformance [10LI9]L[19]. . _ need the learner to revise its hypothesis for the assumption
In our cas_e_,Ll,_ Lo, A and P are LPT_S_eS withP> standing We restrict spuriousness checkyrll?egative counterexampl?as
for the speC|f|cat|on\.Nh|ch. the composition’; || L, should following previous approaches [10]. A simple, but costhayw
conform to, where| is defined below. is to checkN =< L, for a negative counterexamplg. N is
Definition 11 (Composition[[2]) The parallel composition of real if the check succeeds and spurious, otherwise. A §fight
L, and L,, denotedL; || Lo, is defined as the LPT&; x more involved, but practical, way is described elsewhete [4

V. LEARNING ASSUMPTIONS FOR

So, (59,89), a1 Uag, ) where(sy, so) = pu iff Algorithm. Now, the learner can simply use Algorithim 1,
1) 515 p1, 825 pp and g = pq @ g, OF using partitions, to learn an intermediate assumption. As the
2) s1% 1, ad asandp =y ® 6, Of positive (negative) counterexamples have execution mappi

L] S92

to Ly (A), it is as if the unknown target id.,. Note that if

P holds of the systemi, is clearly an assumption satisfying

the premises. However, the algorithm is expected to termina

with a smaller assumption in practice, which also satisfies t
The main challenge in using assume-guarantee reasoningrismises. IfP does not hold, the algorithm terminates with

to automatically come up withsmallassumptiord satisfying a real counterexample. Termination is guaranteed by Lemma

the premises. We first note that the proposed rule is sound If we also impose Conditidd 2, the learner ustschastic

complete[[4]. Completeness, obtained trivially by replgct  partitions in Algorithm[l giving a semi-algorithm.

with Lo, is essential to guarantee termination of our propos&@bmplexity Analysis. Let us now analyze the complexity

algorithm. Previous attempts at automating assume-gtegrarof assume-guarantee reasoning using the learning algorith

reasoning using learning in a probabilistic setting havenbedescribed above (with partitions). The complexity of chiegk

restricted to checking probabilistic reachability prdjs us- L, || Ly < P directly is O(poly(|L1]| - | L], |P])), where|L]

ing either an incomplete rulé_[19] or algorithms which magdenotesvax (|Sz|, |71|)-

not terminate[[1[7]. Let d = |2| andb be the maximum size of the support of
Motivated by the success of existing applications of active distribution inL,. Given a state of a candidate assumption

learning to assume-guarantee reasonind [10], [9]] [21], ve¢ size k and a distribution ofL,, there can be at mogt’-

propose to use the active learning framework presentednrany corresponding distributions (due to non-determihism

Section[1V to learn an intermediate assumptidnin the from that state. Folk states and{ distributions, this gives

3) a¢ai, s2 pz and p =8, @ po.
Here vy @ vy € DlSt(Sl X SQ), such thatv; ® v, : (51782) —
1/1(81) . VQ(SQ), for v, € DiSt(Sl),l/Q € DlSt(SQ)



a total of kdk®. Therefore, there arg*?*" different possible [5]
candidates of sizg to consider. The total number of iterations
of the learning algorithm is then bounded By;" , 2F* —
O(m2mdmb), wherem is the number of states in the final [7]
assumption output by the algorithm. (8]
At each iteration, in the worst-case, the algorithm enumer-
ates all the candidate assumptions of the current sizad
performs simulation checks with all the negative countenex
ples. These checks have a complexityipoly(|A|, |V, 1)),
where A is the final assumptiony is the final set of negative [10]
counterexamples antlis the largestN|, for any N € N.
Thus, the total worst-case complexity of the learning atgor
for computing the final assumption ©(poly(|4]|,|N|,1) - [11]
m2’"dmb). Furthermore, the complexity of checking the two
premises of ASM is O(poly(|L1|-|A|, |P|)+poly(|Lz|, |P])) [12]
at every iteration. We observe that in practice, if the agsum
tion is small (.e. |A| < |Lz]) this approach can be better thad'®!
checkingL, || L, directly. In other cases, however, we wouldi4]
need better algorithms to address the problem. We leave this
for future work. [15]

(6]

El

VI. CONCLUSION

We have presented algorithms and decidability resu[’(lse’]
for the problem of learning non-deterministic LPTSes from
stochastic tree samples, using traditional and stochastte- [17]
space partitioning. We have also described the applicatfon
the algorithms to automating the discovery of assumptions f
the compositional verification of LPTSes. (18]

In the future, we would like to investigate further conditso
on the teacher that will make the active learning problent wif19]
stochastic partitions decidable. We also plan to investiga
the use of weak simulation for the conformance relatiogg
as this will result in smaller assumptions for compositiona
verification. However, algorithms for checking weak simul
tion are not currently known. Finally we plan to investigat
new applications for our algorithms in learning abstratsior
active model checking and in domains other than verificatioEZ]

21]
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