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Funding	Sources

• NASA	Science:	AIST,	CMAC	programs

• NASA	Aeronautics: ATD,	SMART-NAS

• NASA	Engineering	and	Safety	Center

• NASA	Human	Space	Exploration

• Aero	seedling	funds,	Center	Innovation	
Fund

• Non-NASA:	DARPA,	DoD

Data	Mining	Research	and	Development	(R&D)	for	application	to	NASA	
problems	(Aeronautics,	Earth	Science,	Space	Exploration,	Space	Science)
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Collaborators
• Universities: Basic research in data sciences, 

domains
• Industry: Data sources, baseline methods, domain 

expertise
• NASA: Apply basic research, develop for NASA’s 

needs, domain expertise, funding programs
• Other government: funding, domain expertise, 

data sources



Data Sciences

System Environment

Data

• Data	are	produced	by	system	operating	in	an	environment
• Data	Sciences:	Reverse-engineer	system	and	environment
• Understand	how	system	really works,	correct	system	model	

errors,	understand	true	impact	of	environment



Example	NASA	Machine	Learning	Problems

• Aeronautics
– Anomaly	Detection
– Precursor	Identification
– text	mining

• Earth	Science
– Filling	in	missing	measurements
– anomaly	detection
– teleconnections
– climate	understanding

• Space	Science:	Kepler planet	candidates
• Space	Exploration

– system	health	management
– astronaut	health



Data	Mining	for	Earth	Science	Examples

Estimating	MODIS	channel	6	(useful	for	
distinguishing	clouds	over	snow	and	ice	

covered	regions).	

• Virtual	Sensors
• Regression	to	fill	in	missing	or	noisy	

sensor	values,	anomaly	detection
• Estimated	MODIS	channel	6	for	older	

instrument	(AVHRR)

modelMODIS 1,2,20,31,32 MODIS 6

modelAVHRR 1,2,3,4,5 “AVHRR 6”

Model Training

Model Testing



Data	Mining	for	Earth	Science	Examples

Distributed	Algorithms	For	Earth	Science
• For	large	scale	data	where	centralization	is	impractical
• Developed	distributed	1-class	SVM	for	anomaly	detection.

• 99%	of	the	accuracy	of	centralized	algorithm
• 1%	communication	overhead	running	time (relative	to	

embarrassingly	parallel	runs)

Top	few	outliers	(yellow	pins)	identified	by	
distributed	1-class	SVM-based	outlier	detection	

algorithm	in	the	California	MODIS	data.



The	Anatomy	of	an	Aviation	Safety	Incident

Time
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From Irving Statler, Aviation Safety Monitoring and Modeling Project



Current	Methods	of	Finding	Issues

Exceedance-Based	Methods
• Known	anomalies/safety	issues
• Conditions	over	2-3	variables	(e.g.,	speed	>	250	knots,	
altitude	=	1000	ft,	landing)

• Cannot	identify	unknown	anomalies
• Low	false	positive	rate,	high	false	negative	(missed	
detection)	rate.



Data-Driven	Methods
• DISCOVER	anomalies	by

– learning	statistical	properties	of	the	
data

– finding	which	data	points	do	not	fit	
(e.g.,	far	away,	low	probability)

• Complementary	to	existing	
methods
– Lower	false	negative	(missed	
detection)	rate

– Higher	false	positive	rate	(identified	
points/flights	unusual,	but	not	
always	operationally	significant)

• Data-driven	methods	->	
insights	->	modification	of	
exceedance	detection Known 

Problems

Unknown 
Problems

False Alarms

Operationally 
Normal Statistically 

Normal

Operationally 
Anomalous

Statistically 
Anomalous

Not to scale



High	Speed	Go-Around
• Overshoots	Extended	Runway	

Centerline	(ERC)	
by	over	1	SM

• Over	250	Kts @2500	Ft.
• Angle	of	intercept	>	40°
• Overshoots	2nd approach



Four	V’s	of	Big	Data

Amazing	
Algorithm

ØVolume1
Ø Radar	Tracks:	47	facilities	(1	

year)
Ø ~423	GB	(Compressed)	
Ø ~3.2	TB	(CSV)

Ø Weather	and	Forecast	
(Entire	NAS)
Ø CIWS	~2.8	TB

ØVelocity
Ø Radar	Tracks:	47	Facilities	

Ø ~35	GB/month	
(compressed).	

Ø ~268	GB/month	
(uncompressed)

Ø Weather	and	Forecast	
(Entire	NAS)
Ø CIWS	~233	GB/month

ØVeracity
Ø Data	drop	outs
Ø Duplicate	tracks
Ø Track	ending	in	mid	air
Ø Reused	flight	identifiers

ØVariety
Ø Numerical	

(continuous/binary)
Ø Weather	(forecast/actual)
Ø Radar/Airport	meta	data
Ø ATC	Voice
Ø ASRS	text	reports	

(Pilot/Controller)

Intuitive
Reports

1But not always the right kind!



DASHlink
disseminate.	collaborate.	innovate.
https://dashlink.ndc.nasa.gov/

DASHlink	is	a	collaborative	
website	designed	to	
promote:
• Sustainability
• Reproducibility
• Dissemination
• Community	building

Users	can	create	profiles
• Share	papers,	upload	
and	download	open	source	
algorithms
• Find	NASA	data	sets.

How do	we	get	the	Word	Out?



Ongoing and Future Work

• So far: desktop, HPC. offline, desktop
• Ongoing: in-time for online monitoring
• Future

– usability for analytics deployments
– embedded systems, autonomous systems
– Use all platforms, in best way possible, on the 

fly
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