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Executive Summary

Problem statement. Studies show that electrical wires on aircraft often experience cha�ng, which causes
short circuits or broken wires leading to loss of system functionality, accompanied by smoke and �re events,
presenting a serious threat to ight safety. The capability to locate and characterize cha�ng can potentially
enable preventive maintenance well before failures occur, thus maximizing safety while minimizing out-of-
service time. In order to realize this capability, however, highly accurate and computationally e�cient models
are needed to detect, in noisy operating environments, the small electrical e�ects that cha�ng can cause.

Overview. This report details the development, veri�cation, and validation of an innovative physics-
based model of electrical signal propagation through shielded-twisted-pair cable, which is commonly found
on aircraft and o�ers an ideal proving ground for detection of small holes in a shield well before catastrophic
damage occurs. The accuracy of this model is veri�ed through numerical electromagnetic simulations using a
commercially available software tool. The model is shown to be representative of more realistic (analytically
intractable) cable con�gurations as well. A probabilistic framework is developed for validating the model
accuracy with reectometry data obtained from real aircraft-grade cables chafed in the laboratory.

Main results. The analytical modeling process and its subsequent veri�cation through rigorous numerical
simulations and its validation through laboratory measurements resulted in a number of insights relevant
to the practice of cha�ng fault detection. Firstly, the various assumptions and approximations made in
deriving the theoretical model were found to be acceptable for the typical cable geometries. In particular,
the numerical simulations have shown that the eigenvalues derived from the theoretical model are close
enough to the actual eigenvalues of the impedance-controlled cable to be realistic for practical application.
This demonstrated ability to derive a highly accurate yet closed-form physics model is a key contribution of
this work, as it is crucial for the subsequent development of fast and reliable fault detection algorithms.

The laboratory validation of model accuracy on real aircraft-grade cables required additional steps to
model the measurement setup itself and to employ probabilistic methods to infer the key underlying param-
eters such as e�ective dielectric permittivity of the insulation and the �nite conductivity of the wires and
the shield. Notably, the optimal estimates inferred from data di�ered from the manufacturer’s speci�cations.
Overall, the analytical model was able to match lab measurements to within 2 % absolute maximum error
out to 1 GHz. Not surprisingly, it was observed that the slight analytical correction for twisting does not
have a signi�cant e�ect on the ability to �t the model to measurements, though it did seem to reduce the
bias on the parameter estimates. It was therefore judged that other (unmodeled) elements in the system
(e.g., cable imperfections, connectors, etc.) are mainly responsible for the residual.

The analytical derivation and supporting simulations lay the foundation for a trade-space study to aid
in the requirements speci�cation of both a maintenance tool and an on-board fault diagnosis system. One
important observation, relevant to any such study, is that for a �xed fault size and distance from the source,
the angular fault location relative to the two inner conductors has a strong e�ect on the scattered �eld, and
hence creates ambiguity in the ability to quantify fault location and size. It was con�rmed that the simple
impedance-discontinuity model of a chafe is able to replicate the tell-tale \di�erentiation" e�ect of a small
hole on a propagating pulse. It was also established empirically that average-size chafes do not produce
a sensible reection or transmission signal below 200 MHz. All other classical trade-o�s also exist. For
example, a fast rise-time interrogation pulse will be better able to discern the edges of a small fault by using
higher frequencies, with the down-side that high frequencies are rapidly attenuated in long cables.
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Chapter 1

Introduction

1.1 Problem statement

The electrical wiring and interconnect system (ewis) in any vehicle is a critical, and sometimes overlooked,
subsystem where relatively minor issues can grow and eventually lead to serious safety problems like smoke,
�re, and loss of critical system functionality. As such, these types of faults are sometimes considered either
single-point events where a single component (e.g., a wire) fault causes a system to fail, or common-cause

events where a single fault causes multiple systems to fail. Such events are generally considered high risk
no matter how improbable they may be. Wiring faults, however, do frequently occur in practice, and are
clearly capable of leading to both single-point and common-cause fault events; for examples in aviation, see
[1, 2].�

While the technology for detecting hard faults (e.g., opens, shorts, and arcing) is available, it only enables
mitigation after serious sustained electrical issues occur. Preventive measures, on the other hand, require
the detection of precursor problems. Wire cha�ng is one such precursor to both intermittent and full-system
breakdown, and is among the most commonly occurring issues identi�ed in wiring health maintenance
studies [1]. Thus, the ability to detect and locate chafe faults enables the repair of wiring systems well before
serious problems occur, and even in some cases when intermittent faults observed in operation disappear
during maintenance. To date, the failed e�orts targeted at detecting cha�ng faults in practice have focused
primarily on hardware development. As a result, there is almost no existing research detailing the underlying
physics needed to thoroughly understand how signals propagating through the interconnect system are
a�ected by these faults. Such an understanding would allow one to design fault detection algorithms that can
optimally identify and locate chafes by extracting fault signatures from native or injected signals propagating
on the cable.

This work seeks to �ll the primary technology gap identi�ed above by detailing a physics-based model for
signal propagation in shielded-twisted-pair cable, commonly used in aircraft, among a great variety of other
application domains. The cha�ng of the insulation on an unshielded cable cannot be detected remotely,
since the permittivity contrast between most dielectrics and the ambient medium (e.g., air) is too small.
Furthermore, the continuously changing distance between an unshielded cable and some nearby metallic
surface that serves as a ground plane produces spurious signal reections which are typically much greater
than those caused by cha�ng alone, as was demonstrated in [3]. The shield not only isolates the internal
signals owing down the cable from the noisy environment, but also serves as a uniform conductor for the
return current. As a result, even a small hole in the shield causes enough of a disruption to produce a sensible
e�ect that can be measured at either end of the cable. The focus on shielded cable types is therefore crucial,
as this represents the most viable avenue for successful chafe fault detection in the �eld.

An additional advantage of shielded-twisted-pair cable, for instance over coaxial cable, is that it provides
two tranmission-line modes|common and di�erential|for signal propagation. Since the di�erential mode
is used almost exclusively for the transmission of information or power over the cable, the common mode is
available and perhaps more suited for signals designed to assess the health of the cable without a�ecting the

�Absent su�cient preventive diagnostics and prognostics tools for wiring, regular inspections and built-in redundancy are
the only currently available protection mechanisms against critical system failures.
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primary purpose of the cable itself. For this reason, the experimental results presented here are focused on
the common mode, while the theory is derived for both.

The detailed physics-based model developed here is important for at least two reasons. First, it enables
one to simulate fault scenarios and noise conditions in order to study and characterize optimal cable and
interrogation signal design for fault detection. Second, it has produced an extremely accurate and com-
putationally e�cient model suitable for the design of optimal fault detection algorithms, along with the
quanti�cation of one’s ability to detect faults under a large variety of practical noise conditions, the details
of which will be the topic of a future publication.

1.2 Literature survey

An extensive survey of previous work in this area (including literature in German and Russian) was conducted
as part of this study, whose pertinent �ndings will now be summarized.

The two-wire (or twin-lead) transmission line, consisting of a pair of parallel round conductors, has
been used extensively in power distribution and telephony applications, and therefore its study garnered
much attention in the late 19th and the early 20th centuries. Various techniques (e.g., method of images [4,
pp. 162{170], conformal mapping [5, pp. 76{78], variational principles [6, pp. 273{279], etc.) may be used to
analyze the electromagnetic �eld distribution around this line. (The requisite presence of insulation around
the wires|typically a thin dielectric ribbon which helps to avoid shorting and to maintain uniform spacing
between the conductors|changes the physical picture only slightly, and is therefore typically ignored for
analytical convenience.)

The introduction of additional wires, or a shield that envelopes the wires, presents signi�cant analytical
challenges, which consumed considerable e�ort. The fundamental di�culty here stems from the fact that
there is no known coordinate system in which all the conductors can be made to coincide with constant-
coordinate surfaces. The techniques mentioned above were generalized to these problems, but the solutions
obtained were now approximate [7, 8, 9, 10, 11]. Perhaps a more principled approach to this problem
(see, e.g., [12, pp. 38{40 and 53]) entails the representation of charge density around the periphery of each
conductor as a Fourier series with unknown coe�cients, using the two-dimensional free-space Green function
to express the electric �eld in the space between the conductors as a sum of integrals over the conductor
surfaces, and �nally imposing the boundary condition of vanishing tangential electric �eld at each conductor
surface. This procedure leads to an in�nite set of linear equations for the unknown Fourier coe�cients,
which may be solved to any desired accuracy. This approach was used by J. Craggs and his followers in
calculating the capacitance of the shielded-uniform-pair cable [13, 14, 15, 16, 17, 18]. Unfortunately, this
solution approach does not yield a closed-form expression for the �eld distribution inside the insulator,
which one needs when studying the consequences of deviations from the idealized geometry and/or in�nite
conductivity of the wires and/or the shield.

For long-distance transmission of signals or power, the main concern is attenuation due to energy loss in
the conductors. In studying this aspect, metals may no longer be assumed perfectly conducting. Indeed, one
must now solve for the �elds everywhere in the cable, and stitch the solutions together at the metal{insulator
interfaces using the appropriate continuity conditions for the �elds. The solutions are again in the forms of
in�nite series whose coe�cients may be obtained, at least in principle, to arbitrary orders of accuracy. For
the sake of historical accuracy, it should be noted that J. Carson pioneered this general approach in his study
of the proximity e�ect in cables, and in fact suggested in [19]|some 25 years ahead of J. Craggs|that it
can be used for the calculation of the cable capacitance (see also [20, 21, 22, 23, 24, 25, 26, 27, 28]). Craggs
and his followers seem to have been unaware of this earlier work.

As the density of communication lines increased, cross-talk among cables became a paramount issue. It
was recognized that the simple device of twisting the wires around each other endowed the two-wire line with
considerable degree of immunity to electromagnetic interference. As one would expect, analytical di�culties
persist when one moves to this twisted geometry. The geometric complications arising from the twist may
be removed to a large extent by working in a curvilinear coordinate system that twists with the wires, and
the resulting �eld equations may be approached exactly or via perturbation theory [29, 30] (see also [31,
pp. 96{101]). Alternatively, the Craggs approach outlined above may be generalized to three dimensions
by employing dyadic Green functions (see, e.g., [32, pp. 23{25], [6, pp. 121{130], or [33, pp. 544{549]);
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the resulting formulation is known as the electric-�eld integral equation in the engineering literature (see,
e.g., [34, pp. 696{707], [35, pp. 354{356], [6, pp. 139{153], or [33, pp. 617{624]). In any case, the fundamental
obstacle posed by the non-separable nature of the conductor surfaces remains, and the �nal solution can
only be obtained numerically, as in [36].

Instead of the continuous Fourier representations of the surface charge distributions adopted by Craggs,
the wires may also be represented by discrete volume charges within the bulk of the metal, corresponding
to in�nitesimal current �laments in three dimensions. This approximation|a perfectly valid alternative
parametrization of the normal electric �eld at the conductor surfaces|considerably improves the analytical
tractability of the problem. Such �lament models, wherein the wires are treated as conductors of in�nitesimal
cross-section, were preferred, especially in the early days of modest computing power, in analyzing the
radiation characteristics of twisted-pair cables [37, 38, 39, 40, 41, 42]. The geometries considered therein
naturally lacked a shield. Mention must also be made of an excellent paper on scattering of plane waves from
a uniform pair of round conductors [43], which combines �lament and wire approaches nicely, and provided
inspiration for the present work.

On a di�erent front, in the 1940s and 50s, designs featuring helically wound conductors became popular
for high-frequency antennas [44, pp. 265{339] as well as for slow-wave devices such as traveling-wave tubes [45,
pp. 19{48, 229{232], and considerable modeling e�orts were devoted to the understanding of their propagation
characteristics. Unlike in the transmission-line problem, the �eld distributions had to be known accurately
here, since they directly determine the radiation pattern of an antenna or the e�ciency of interaction with a
charged-particle stream. Of particular interest were the sheath helix and the tape helix models wherein the
current-carrying surface is con�ned to a shell of in�nitesimal thickness [46, 47, 48, 49, 50, 51], with ad hoc

analytical devices employed to account for �nite wire radius [52] (see also [45, pp. 34{43] or [53, pp. 306-308]).
Textbook overviews of these e�orts may be found in [54, pp. 40{45, 46{54, 77{82], [55, pp. 476{478], or [6,
pp. 637{640]. Since the conductor surfaces of this geometry are separable in the cylindrical coordinate system,
much progress could be made analytically in this case, especially toward obtaining the �eld distributions
established around the helical conductor(s), though a fully satisfactory treatment eluded the early workers
and did not appear until recently [56].

In addition to the �eld-theoretic models of uniform and twisted cable structures described above, it
is possible to approach the problem from a circuit-theoretic viewpoint when one is interested only in the
transmission-line modes of the cable. The twisted-pair cable, in particular, received this type of treatment
extensively, ranging from a �rst-principles derivation of the equivalent-circuit equations [57] to the experi-
mental characterization of equivalent-circuit parameters [58], the application of cascaded T -matrix approach
on piece-wise uniform models whose parameters were calculated analytically [59, 60, 61] or numerically [62],
�nally to the treatment of �nite wire radius by a numerical solution of the electric-�eld integral equation via
the �nite-element method [63]. This basic modeling approach was generalized recently to shielded-twisted-
pair cable and validated experimentally [64].

1.3 Report overview

The development in this report blends and re�nes various elements of the analytical approaches mentioned
above in an e�ort to obtain a highly accurate yet closed-form model of wave propagation on shielded-pair
cables. The report consists of three main chapters. In x2, a physics-based model is developed for signal
propagation along a cable consisting of two wires enclosed by a metallic shield. Speci�cally, the eigenvalues
and the corresponding �eld distributions for the common and the di�erential transmission-line modes are
derived. Amplitudes of forward- and backward-propagating modes are then obtained by considering sources
and loads attached to the cable. The case of uniform wires is studied in some detail, and the results are
subsequently extended to the case of twisted wires.

In x3, a careful series of �rst-principles simulations is undertaken to verify the theory of x2. By solving
the exact electromagnetic �eld equations numerically for the same cable geometry, the assumptions made in
obtaining the approximate analytical model are checked for validity and accuracy. Alternative geometries,
which cannot be treated analytically, are also simulated to increase con�dence in the applicability of the the-
oretical model to practical cable constructions. Finally, parameters for a preliminary fault model considered
in x4 are obtained by simulating the e�ects of a hole in the shield.
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In x4, a comprehensive framework is developed for extracting cable and fault parameters from experi-
mental data. At the core of this framework is the S-parameter formalism for describing a multi-port system.
Speci�cally, the theory of x2 is used to derive the S-parameters of nominal and faulty cable segments. Con-
siderations of source and load e�ects and other features of the experimental setup lead �nally to a combined
measurement system model. The estimation of unknown cable and measurement device parameters from
laboratory data is then couched as a Bayesian inference problem. The power of the overall modeling and
inference approach is demonstrated on data from both nominal and faulty cables.

The main conclusions of the report are collected in x5.
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Chapter 2

Theory

2.1 Basic model formulation

2.1.1 Cable speci�cation

Consider the cross-section of an ideal shielded-pair cable, oriented along the z axis of a cylindrical coordinate
system (�; �; z), as shown in Fig. 2.1. The shield and the two (identical) wires are labeled \conductor 0,"
\conductor 1" and \conductor 2," respectively, the former having (outer) radius rs, and the latter rw. The
space between the conductors is �lled entirely with an homogeneous, isotropic insulator of radius ri, having
permittivity �, permeability �, and conductivity �. The centers of the two wires are placed symmetrically
on a circle of radius q. Contact between the conductors is avoided via the constraint 2rw < q+ rw < ri. The
cable is insulated from the ambient medium by a jacket on the outside of the shield (not shown).

012
rw

ri

rs

q

C1

P1

�̂

�̂

ẑ

x

y

n̂2
W2

A

�; �; �

Figure 2.1: Shielded-pair waveguide cross-section.
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If this cross-section is translated uniformly in the positive z direction, one obtains a shielded-uniform-

pair (sup) cable. If, during such translation, one simultaneously rotates the cross-section at a constant rate
� (rad/m) in the positive � direction, a (right-handed) shielded-twisted-pair (stp) cable results, having a
period p = 2�=� along the z axis. (This may be termed a \polar" twist; see [65] for a \toroidal" twist.)
Figures and plots in this chapter are generated for a \typical" stp cable whose geometric and constitutive
parameters are listed in Table 2.1.�

Table 2.1: Shielded-pair cable parameters.

Shield Wires Insulator

Parameter Value Parameter Value Parameter Value

rs 1.5 mm rw 0.3 mm ri 1.35 mm

p 30.0 mm � 2.3 �0

q 0.675 mm � 1.0�0

�s 5.998 107 S/m �w 5.998 107 S/m � 0.0 S/m

2.1.2 Maxwell equations

With all the conductors initially assumed to be perfect, the electric and the magnetic �elds within the
insulator satisfy the (source-free) Maxwell equations

r � E = i!�H; (2.1)

r � H = (� � i!�)E: (2.2)

A suitable basis and a coordinate system must be chosen in which to solve these equations. Among the two
closest candidates, the polar and the bipolar coordinate systems [66, pp. 1175{1215], the former is preferred
as it a�ords a more accurate representation of the �elds near the shield. (Since the ultimate goal of the
present work is to develop a physics-based algorithm for detecting faults in the shield of the cable, �elds in
the vicinity of the two conductors need not be modeled with great precision.) It then becomes necessary, as
argued in x1.2, to approximate the wire cross-sections with a shape that is more amenable to analysis. It is
judged that a pair of �laments, helically wound on a (�ctitious) cylindrical shell of radius rc 2 (q�rw; q+rw)
and with period p, comes closest to mimicking, both qualitatively and quantitatively, the �elds produced
by the round wires. (Another possible choice, a pair of similarly wound tapes with \optimally chosen"
thickness and width, has sharp features that produce large localized �elds, which are uncharacteristic of the
round wires.) As will be demonstrated in x2.2.3, a judicious choice for the �lament radius helps retain the
salient features of the proximity e�ect, which may be suspected, at �rst glance, to be thrown out by this
approximation. Denoting by ij(z) the current owing on the jth �lament, the (surface) current density on
the shell at � = rc containing the �laments may thus be written

K(�; z) =
�̂�rc + ẑ

rc
p

1 + (�rc)2
[i1(z) �(�� �z) + i2(z) �(�� �z � �)] ; (2.3)

where �(�) denotes the Dirac delta function. This \surrogate" cable model is depicted in Fig. 2.2.
Taking the curl of (2.1), substituting from (2.2), and dot-multiplying by ẑ, one obtains the Helmholtz

equation
r2Ek + k2Ek = 0; (2.4)

�The exact vacuum permittivity and permeability are �0 = 8:85418781762 10�12 F/m and �0 = 1:25663706143 10�6 H/m,
respectively. For frequencies in the microwave regime and below, the permittivity and the permeability of (nonmagnetic) metals
are typically taken to have these values.
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rc

x

y
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1

2

Figure 2.2: A pair of helically wound, current-carrying �laments inside a cylindrical shield (not shown).

where k �
p

i!�(� � i!�) is the wavenumber in the insulator, and k denotes the axial component. Floquet’s
theorem dictates that the �elds in an helically symmetric structure must have the form (see, e.g., [67, p. 584])

Ek(r) =
1X

m=�1
ekm(�) eim(���z) ei�z: (2.5)

Inserting (2.5) into (2.4), the radial dependence of the axial electric �eld is found to obey the Bessel equation

1

�

d

d�

�

�
dekm

d�

�

�
�

2
m +

m2

�2

�

ekm = 0; (2.6)

where m �
p

(��m�)2 � k2. This de�nition of the radial eigenvalue reects the expectation that the
phase velocity for the principal modes of interest should be slightly less than that in the unbounded insulator.
Elimination of the electric �eld from (2.1) and (2.2) leads to a similar representation for the axial magnetic
�eld.

Next, cross-multiplying (2.1) and (2.2) with ẑ on the left, one obtains

@E?
@z

= r?Ek � i!� ẑ � H?; (2.7)

@H?
@z

= r?Hk � (� � i!�) ẑ � E?; (2.8)

where ? denotes the transverse component. Substituting Floquet expansions of the form (2.5) for all the
�eld components, (2.7) and (2.8) are transformed into

i(��m�)e?m = �̂
dekm

d�
+ �̂

im

�
ekm � i!� ẑ � h?m;

i(��m�)h?m = �̂
dhkm

d�
+ �̂

im

�
hkm � (� � i!�) ẑ � e?m:

Solving for e?m and h?m, one �nally obtains

e?m =
1

2
m

�

i!�

�

�̂
dhkm

d�
� �̂

im

�
hkm

�

� i(��m�)

�

�̂
dekm

d�
+ �̂

im

�
ekm

��

; (2.9)

h?m =
1

2
m

�

(� � i!�)

�

�̂
dekm

d�
� �̂

im

�
ekm

�

� i(� �m�)

�

�̂
dhkm

d�
+ �̂

im

�
hkm

��

; (2.10)

giving the transverse �eld components in terms of the axial ones.
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2.1.3 Field solutions

For the \interior" region (0 � � < rc), the requirement of �niteness at � = 0 leads for (2.6) to the solutions

einkm(�) = Ain
m Im(m�); (2.11)

hinkm(�) = Bin
m Im(m�): (2.12)

For the \exterior" region (rc < � � ri), on the other hand, the requirement of vanishing axial and azimuthal
electric �elds, and therefore ekm and dhkm=d�, on the shield at � = ri leads to

eexkm(�) = Aex
m

�

Im(m�) � Im(mri)

Km(mri)
Km(m�)

�

; (2.13)

hexkm(�) = Bex
m

�

Im(m�) � I 0
m(mri)

K 0
m(mri)

Km(m�)

�

: (2.14)

In these solutions, Im(�) and Km(�) denote the modi�ed Bessel functions of the �rst and the second kinds,
respectively, while 0 signi�es di�erentiation with respect to argument.

The unknown coe�cients in (2.11) through (2.14) are now determined by imposing the continuity condi-
tions

�̂ � (Eex � Ein) = 0; (2.15)

�̂ � (Hex � Hin) = K (2.16)

across the current shell at � = rc. Toward this end, (2.3) is put into a more useful form by de�ning the
helix pitch angle  � cot�1(�r), substituting ij(z) = Ij ei�z to endow the mode currents with the same axial
dependence as the mode �elds they support, and making use of the identity �(�) = 1=(2�)

P1
m=�1 eim� to

acquire the Floquet form, resulting in

K(�; z) =
�̂ cos + ẑ sin 

2�rc

1X

m=�1
[I1 + (�1)m I2] eim(���z) ei�z : (2.17)

The application of (2.15) leads immediately to

Ain
m = Aex

m

�

1 � Im(mri)

Km(mri)

Km(mrc)

Im(mrc)

�

; (2.18)

Bin
m = Bex

m

�

1 � I 0
m(mri)

K 0
m(mri)

K 0
m(mrc)

I 0
m(mrc)

�

: (2.19)

The application of (2.16), with the use of (2.17), (2.18), and (2.19), then yields

Aex
m =

Km(mri)

Im(mri)
Im(mrc)

m(��m�) cos + 2
mrc sin 

2�rc(� � i!�)
[I1 + (�1)m I2] ; (2.20)

Bex
m =

K 0
m(mri)

I 0
m(mri)

I 0
m(mrc)

m cos 

2�
[I1 + (�1)m I2] ; (2.21)

where use was made of the Wronskian I 0
m(x)Km(x) � Im(x)K 0

m(x) = 1=x.

2.1.4 Eigenvalue equation

Finally, the heretofore unknown axial eigenvalue � must be determined by imposing the remaining boundary
condition of vanishing tangential electric �eld on the two �laments; viz.,

(�̂ cos + ẑ sin ) � E = 0 (2.22)
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at � = rc, � = �z and � = �z + �. Substituting from (2.9) through (2.12) and then from (2.18) through
(2.21), one obtains from (2.22) the linear system

1X

m=�1

2

4
1 (�1)m

(�1)m 1

3

5

2

4
I1

I2

3

5Sm(!; �) = 0; (2.23)

where

Sm(!; �) =

"�
�

k

�2

� 1 +

�
m�

m

�2
#

[Im(mrc)]
2

�
Km(mri)

Im(mri)
� Km(mrc)

Im(mrc)

�

+ (�rc)
2 [I 0

m(mrc)]
2

�
K 0

m(mri)

I 0
m(mri)

� K 0
m(mrc)

I 0
m(mrc)

�

: (2.24)

The two nontrivial solutions of (2.23) are readily identi�ed; viz.,

I2 = I1 ) even (or longitudinal) mode;

I2 = �I1 ) odd (or balanced) mode:

The eigenvalue equation, from which the permissible values of � are to be solved for, is therefore given by

�(!; �) =

1X

m=�1
[1 � (�1)m]Sm(!; �) = 0; (2.25)

where the top (bottom) sign corresponds to the even (odd) mode. Quantities pertaining to the even and the
odd modes will be indicated throughout by the subscripts e and o, respectively.

2.2 Uniform cable

2.2.1 Eigenvalues

In the limit p ! 1, the waveguide geometry reduces to that of sup cable. Setting � = 0, (2.25) becomes

�(!; �) =

"�
�

k

�2

� 1

# 1X

m=�1
[1 � (�1)m] [Im(rc)]

2

�
Km(ri)

Im(ri)
� Km(rc)

Im(rc)

�

| {z }


(!;�)

= 0; (2.26)

where  �
p
�2 � k2. Evidently, � = �k satisfy the eigenvalue equation for both the even and the odd modes

of sup cable. As will be shown in x2.2.2, the mode �elds corresponding to these eigenvalues are transverse-
electromagnetic (tem). These are, of course, none other than the two degenerate transmission-line modes of
this uniform three-conductor structure. The remaining roots of (2.26), due to the zeros of the factor 
(!; �),
correspond to mode �elds that are transverse-magnetic, transverse-electric, or possibly hybrid in nature. The
cut-o� frequencies of these waveguide modes may be obtained as the zeros of the function 
(!; 0), which
is plotted against linear frequency f = !=(2�) in Fig. 2.3 using the parameter values in Table 2.1 and the
optimal �lament radii to be found in x2.2.3. Speci�cally, it is observed that the lowest-order even (odd)
mode is cut o� below roughly 67 GHz (103 GHz). Clearly, none of the waveguide modes can propagate over
the spectral region of typical operation for a cable, and therefore they need not be studied here.

2.2.2 Mode �elds

With  = �=2, one has from x2.1.3 that

ekm(�) = Im(�<) Im(�>)

�
Km(ri)

Im(ri)
� Km(�>)

Im(�>)

�
2I

2�(� � i!�)
[1 � (�1)m] ; (2.27)

hkm(�) = 0; (2.28)
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Figure 2.3: Cut-o� frequencies of the even (a) and the odd (b) waveguide modes of sup cable.

where �< (�>) denotes the lesser (greater) of rc and �, and I is the current owing on �lament 1. In the
limit  ! 0, small-argument approximations for Bessel functions [68, p. 375] reveal that ekm also tends to
zero, leading to Ek = Hk = 0 everywhere; i.e., the even and the odd modes corresponding to � = �k are
both tem.

Now, with (2.28) holding identically, the transverse �elds (2.9) and (2.10) become

e?m(�) = � i�

2

�

�̂
dekm

d�
+ �̂

im

�
ekm

�

;

h?m(�) =
� � i!�

2

�

�̂
dekm

d�
� �̂

im

�
ekm

�

:

Substituting from (2.27) and subsequently into the Floquet series for transverse �elds, one obtains

E?(r) = �r?�(r?) e�ikz ; (2.29)

H?(r) = �i
� � i!�

k
ẑ � E?(r); (2.30)

where, passing to the limit � ! �k using small-argument approximations for Bessel functions and making
use of the expansion ln(1 + x2 � 2x cos�) = �2

P1
m=1(xm=m) cos(m�), valid for jxj � 1,

�(r?) = � ikjIj
4�(� � i!�)

�

ln

�
r4
i + (rc�)2 � 2r2

i rc� cos�

r2
i (�2 + r2

c � 2rc� cos�)

�

� ln

�
r4
i + (rc�)2 + 2r2

i rc� cos�

r2
i (�2 + r2

c + 2rc� cos�)

��

| {z }

F (r?)

: (2.31)

It should be noted that the upper (lower) signs in (2.29) and (2.30) refer to forward (backward) propagation,
whereas those in (2.31) refer to the even (odd) mode. Aside from the prefactor, the function � is, of course,
nothing but the (electrostatic) potential due to two charges of same or opposite polarity �xed symmetrically
on a circle of radius rc inside a metallic cylinder of radius ri (see, e.g., [12, p. 90]). Noting that I changes
sign with the direction of propagation, it is observed that the �eld components obtained above conform to
the sign convention of the standard normal-mode formalism (see, e.g., [12, p. 390]).

The potential distributions for the two tem modes are shown in Fig. 2.4, plotted using the optimal
�lament radii to be found in x2.2.3. The �lament current I is chosen (arbitrarily) to produce unit average
potential on conductor 1 in both cases (see Fig. 2.8). Consequently, the average potential on conductor 2 is
+1 V (�1 V) for the even (odd) mode, while the exact potential on the shield is zero in both cases. Note
that the potentials are plotted only over the insulator, since (2.31) is not valid within the wires.

The azimuthal distributions of charge on the conductor walls reveal the extent to which the proximity
e�ect may be expected to play a role in the subsequent determination of equivalent circuit parameters for
the cable, as detailed in x2.3. On the jth conductor at, say, z = 0, one has the surface charge density

�j = �� n̂j � r?�(Wj); (2.32)
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