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Abstract—An important problem in symbolic execution is
dealing with complex mathematical constraints; for instance, con-
straints that include floating-point variables and transcendental
functions. We recently showed that the use of meta-heuristic
search is effective in solving some of these constraints. This
paper extends that work with a constraint solving method that
combines meta-heuristic search with a traditional constraint solv-
ing technique, namely interval-based solving. We implemented
this combination in the context of the CORAL constraint-solving
infrastructure and evaluated its effect on publicly available
subjects from the aerospace domain. Results indicate that the
proposed method can solve significantly more complex mathe-
matical constraints than previous techniques, thus broadening
the application of symbolic execution in practice.
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I. INTRODUCTION

Symbolic execution [1] is a technique for systematic test-
input generation that has gained significant attention in recent
years. The technique takes as input a parameterized procedure
P and generates values for P ’s parameters that ensure high
structural coverage of P . Internally, symbolic execution has
two components: (i) path condition generation and (ii) path-
condition solving. A path condition is a symbolic boolean
expression that encodes the conditions on the inputs to fol-
low one particular path through the program. Path condition
solving is used to determine (in)feasibility of program paths
and to generate the actual test inputs. Thus, the effectiveness
of symbolic execution in generating test-inputs depends on
whether solutions to satisfiable path conditions can be found.

A major challenge in symbolic execution is dealing with
path-conditions that manipulate constraints from complex the-
ories, say undecidable or intractable theories. In previous
work we proposed the constraint solver CORAL [2], [3]
for heuristically solving complex mathematical constraints.
CORAL reduces the task of solving a conjunction of nu-
meric constraints to a search problem. It uses meta-heuristic
search [4], a method that explores the problem search space
by applying successive refinements to a set of candidate
solutions (also called population) based on some measure of
quality. In the context of solving path conditions, a candidate
solution is an assignment of concrete values to symbolic input
variables, and quality is measured in terms of values of a
fitness function that estimates the proximity of a candidate
to a solution of the path condition. The search starts with an

initial population, typically selected at random and stops when
it exceeds resource limits (e.g., time or number of iterations).
While the meta-heuristic search approach has been shown
effective in practice [3], it is inherently incomplete, meaning
that it may fail to find a solution even when one exists.

To alleviate this problem, we propose to integrate the meta-
heuristic search with a well-known technique for constraint
solving, namely interval-based solving. In particular, we pro-
pose to use an interval solver to seed the population of the
meta-heuristic search with candidate solutions drawn from
the intervals reported on a given solve request. The goal
is to increase the chances of finding a solution within the
given resource constraints. Interval solvers take as input a
list of equality and inequality numeric constraints involving n
variables and report a list of n-dimensional boxes on output.
A box is an assignment of intervals to symbolic variables that
do not necessarily contain solutions to the constraint problem.
Our approach consists of two steps: (1) an interval solver is
used to generate a list of intervals that may contain solutions
of a given path condition and (2) a meta-heuristic search is
used to solve the path condition. However, unlike in our prior
work, where the initial population was generated randomly,
in our new approach, the initial population is drawn from the
intervals reported at step 1.

Our combined approach leverages the power of interval
solvers and meta-heuristic search techniques to overcome
their individual limitations. Interval solvers can efficiently
compute parts of the problem’s search space that are likely to
contain solutions. However, interval solvers cannot typically
generate exact solutions, but our combined technique can. On
the other hand, a meta-heuristic search technique can find
exact solutions in large search spaces. However, its efficiency
depends on the quality of its initial population. Our conjecture
(supported by experiments) is that actual solutions are in close
proximity to the intervals reported by the interval solver; hence
we use these intervals to improve the quality of the initial
population.

We have developed a prototype implementation of our pro-
posed approach by integrating the RealPaver interval solver [5]
into the CORAL infrastructure. CORAL supports two meta-
heuristic search techniques: (1) Particle Swarm Optimization
(PSO) [6], which is a global search method, and (2) Alter-
nating Variable Method (AVM) [7], which is a local search



method. The AVM technique was added to CORAL as part of
the work reported here. We evaluate the approach on programs
from the aerospace domain, that use complex mathematical
functions, non-linear operations, and floating-point input val-
ues. We use Symbolic Pathfinder [8] to symbolically execute
the programs and generate path conditions. Our experiments
show that the proposed combination of techniques can solve
more constraints than the techniques used separately.

This paper makes the following contributions.
• A novel approach to solve path conditions generated from
the symbolic execution of programs that use mathemati-
cal functions, non-linear operations, and floating-point in-
put values. The approach leverages the power of interval
constraint solvers and meta-heuristic search techniques to
overcome their individual limitations.
• An open-source implementation of the proposed approach.
The implementation is publicly available1 and it has been
integrated with the Symbolic Pathfinder [8] symbolic exe-
cution system.
• We evaluated our proposal using subjects from the
aerospace domain and compared the proposed approach
with our previous version of CORAL. We used the output
of the RealPaver interval solver to seed a global search
(PSO) and a local search method (AVM), which was newly
incorporated in CORAL. Results indicate that both proposed
combinations lead to a significant increase in the number of
constraint solved.

II. BACKGROUND

This section provides background information for the rest
of the paper.

A. Symbolic Execution
1) Path-Condition Generation: Symbolic execution is a

program analysis technique that executes a program with sym-
bolic values instead of concrete inputs. It computes the effect
of program execution on symbolic states, which map variables
to symbolic expressions. When the execution evaluates a
branching instruction, it needs to decide which branching
choice to select. In a regular execution the evaluation of a
boolean expression is either true or false so only one branch of
the conditional can be taken. In contrast, in symbolic execution
the evaluation of the boolean expression is a symbolic value,
so both branches can be taken resulting in different paths ex-
plored through the program. Symbolic execution characterizes
each path it explores with a path condition over the input
variables −→x . This condition is defined with a conjunction of
boolean expressions pc(−→x ) =

∧
bi. Each boolean expression

bi denotes a branching decision made during the execution of
a distinct path in the program under test. Symbolic execution
terminates when it explores all such paths corresponding to
the different combinations of decisions. Programs with loops
and recursion may result in an infinite number of paths; in
those cases, one needs to put a bound on the number of paths
that can be explored with symbolic execution.

1pan.cin.ufpe.br/coral

i f ( Math . l o g ( i n ) > 4 . 0 ) do1 ( ) ;
e l s e do2 ( ) ;

1. log(in SYM) < CONST 4.0
2. log(in SYM) == CONST 4.0
3. log(in SYM) > CONST 4.0

Fig. 1. Example with Math function and corresponding path conditions.

2) Constraint Solving: Symbolic execution uses constraint
solving in two contexts: (i) to check path feasibility and (ii)
to generate test inputs. In the first context, symbolic execution
checks if the current path is feasible by checking if the
corresponding constraint is satisfiable. If the path condition
becomes unsatisfiable, symbolic execution does not continue
for that path. In the second context, symbolic execution uses a
constraint solver to solve constraints associated with complete
paths; solutions can be used as inputs to test the program.

3) Symbolic PathFinder (SPF): Symbolic PathFinder (SPF)
is a symbolic execution tool for Java bytecodes. SPF is part
of the Java PathFinder (JPF) verification tool-set [9], a freely
available open-source project. SPF has been used at NASA,
in industry, and in various research projects from academia.
The symbolic execution of SPF interprets Math functions on
the abstract “model” level: whenever the symbolic execution
reaches a call to a complex Math function, SPF intercepts that
call and builds a new symbolic expression using a symbolic
operator, i.e. an uninterpreted function, associated with that
function. The path conditions containing such expressions
are dispatched to an appropriate constraint solver that can
handle complex Math constraints, such as CORAL. SPF uses
uninterpreted functions for the following methods from the
Java Math library: acos, asin, atan, atan2, cos, exp, log,
pow, round, sin, sqrt, and tan. For all the other Math
methods, which are much simpler, it provides implementations
that are directly interpreted by SPF.

4) Example: Figure 1 shows one example that uses the
log Math function. Variable in stores the symbolic input
in SYM . The symbolic execution of this code produces the
three path conditions that appear at the bottom of the figure. As
mentioned before SPF does not directly interpret the call to the
standard Java library function Math.log. Instead, it constructs
a symbolic expression log(in_SYM) which is then used
to build the symbolic constraints. When executing the if
statement above, SPF creates a 3-choice split point related to
the outcomes of the relational expression. Each execution will
explore one choice. As execution goes along, more boolean
expression are added to the current path, building longer path
constraints. The constraints are solved with an appropriate
constraint solver; i.e., one that can handle such complex
mathematical functions directly.

B. Interval-based solvers

Interval solvers take as input a list of equality and inequality
numeric constraints involving n input variables and report as
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output a list of n-dimensional boxes. A box is a characteriza-
tion of a subset of the cartesian product of variable domains.
For example, for the constraint:

(1.5− (x1 ∗ (1.0− x2))) = 0.0 (1)

RealPaver reports the following box:

x in [99.99925650834012, 100]
y in [0.9849998884754217, 0.9850000000000001]

The error bound associated with this box was set to 3 decimal
digits. The user-specified error bound parameter controls the
precision of the result and hence the cost of the search. It is
import to remark that one interval solver does not respond the
question on how to obtain solutions from a box, but the box
above contains the following solution to the input constraint:

x = 99.99999999999991, y = 0.985

1) Branch and Prune: The boxes reported as solutions to
the constraint system are obtained from the initial domain of
variables (user specified or default) using a branch-and-prune
search algorithm [10]. The algorithm starts with one “large”
n-dimensional box, corresponding to the domains of the n
input variables, and it iteratively performs branch and prune
steps. The branch step divides a large box into smaller ones
and the prune step removes inconsistent regions from one box,
i.e., regions where all the points violate at least one part of
the constraint. Different interval solver implementations are
distinguished by the way they implement these two steps. For
instance, the pruning step of the Realpaver solver [5] uses
advanced constraint-satisfaction techniques [11].

2) Inner and Outer boxes: Interval solvers that use the
branch-and-prune approach report inner and outer boxes [5,
§ 2, par. 2]. An inner box is guaranteed to contain solutions,
while an outer box may or may not contain solutions. The
solver output is a list of such boxes whose union denotes the
solution set. The problem is inconsistent (the input constraint
unsatisfiable) if the solver reports no box [5, § 3.2]. The
approach does not guarantee which kind of boxes is reported
first. RealPaver classified the box above as an outer box, but
the box indeed includes a solution in this case.

C. CORAL solvers

CORAL is an infrastructure for constraint solving with
support for constraint simplification and (simple) inference of
variable domains.

1) Meta-heuristic Search: We considered in this work both
global and local methods of meta-heuristic search; these
methods vary in the scope of the search. The principle is to
evaluate how far distant from the boxes that the interval solver
reports the search could find solutions. We used PSO [6] for
global search and AVM [7] for local search.

PSO, similar to Genetic Algorithms [4], uses an evolu-
tionary approach to search: the population evolves during
the search according to some user-defined principle. Each
evolution step approximates the candidates to a solution (or
local maximum). The search starts with an initial population,
typically selected at random, and stops when it finds a solution

f(−→x ) =
∑
i

wi ∗ gi(−→x )

gi(
−→x ) = max

1<j<m
1− d(bij ,

−→x )

Fig. 2. Fitness function of CORAL.

or exhausts resources; say it reaches a timeout or maximum
number of iterations.

AVM is essentially an adaptation of Hill Climbing [4].
It starts the search with one vector of assignments to input
variables and alternates across different variables during the
search. In each step it makes small positive and negative
increments to the values associated to the selected variable
and re-evaluates fitness to decide whether to go up or down
hill. As the mutation is fine-grained, AVM often incorporates
random-restarts to escape local maxima.

2) Fitness functions: The role of a fitness (“objective”)
function is to drive the search towards (fitter) solutions.
This function gives a score denoting the quality of an input
candidate for solving the problem. CORAL solvers use a
variation of the Stepwise Adaptive Weighting (SAW) fitness
function [12] that dynamically adjusts the importance of
different sub-problems for solving the whole problem. For
constraint solving, the problem is to solve the entire path
condition pc(−→x ) =

∧
bi and the sub-problems are to solve

the clauses bi = bi1 ∨ · · · ∨ bim of the input path condition.
Figure 2 shows the fitness function we used. Function f

is the weighted sum of gi(−→x ), which denotes the score of
candidate −→x to solve the clause bi of the path condition.
Conceptually, g measures how close a clause bi is from
satisfaction. Function d measures distance and is defined
elsewhere [3]. The distance score is given in the continuous
interval [0.0, 1.0] with higher values indicating better fitness
and lower values indicating worse fitness. The search goal is
to maximize the function f , i.e., to find inputs that produce
maximal outcomes: high valuations of inputs on this function
indicate fitter candidates. The search procedure dynamically
increases the weight wi associated to each clause bi as that
clause remains unsolved for longer than some specified num-
ber of times. The use of weights helps the search to positively
differentiate candidate solutions that satisfy “difficult” clauses
from solutions that satisfy many “easy” clauses. Note that a
final solution is only relevant if it satisfies all clauses bi.

III. EXAMPLES

In this section we give examples that illustrate the benefits
of combining interval solving with meta-heuristic search for
solving complex constraints, see Figure 3.

A. Improving Interval Solving

Consider the constraint 1 from Figure 3. Even though the
expression sin(x1)− cos(x2) evaluates to a value very close
to 0.0 for any assignment of x1 and x2 within the box
that RealPaver reports for constraint 1 (see row “interval”),
a floating-point solution does not appear to exist there. To



1
Constraint: (sin(x1)− cos(x2)) = 0.0 ∧ x1 >= −1 ∧ x2 <= 1

Intervals: x1=[0.9640858380445663, 0.9646745947979339], x2=[0.6061217319969636, 0.6067104887503316]
Solution: x1=0.5734475041703869, x2=-0.9973488226245096

2

Constraint: 0.0 == pow(((x1 ∗ sin(((c1 ∗ x2) − (c1 ∗ x3)))) − (0.0 ∗ x4)), 2.0) + pow((x1 ∗ cos((((c1 ∗ x2) − (c1 ∗ x3)) +
0.0))), 2.0) & x5 6= 0 & c1 = 0.017453292519943295

Intervals: x1=[-0.0,-0.0], x2=[33.333...,100.0], x3=[33.333...,100.0], x4=[-100.0,100.0]
Solution: x1=-0.0, x2=40.76274086185327, x3=95.33728666158905, x4=92.99285811089572, x5=51

3

Constraint: sqrt(pow(((x1 + (e1 ∗ (cos(x4) − cos((x4 + (((1.0 ∗ (((c1 ∗ x5) ∗ (e2/c2))/x6)) ∗ x2)/e1)))))) − (((e2/c2)) ∗
(1.0 − cos((c1 ∗ x5))))), 2.0)) > 999.0 & (c1 ∗ x5) > 0.0 & x3 > 0.0 & x6 > 0.0 & c1 = 0.017453292519943295 &c2 =
68443.0 & e1 = ((pow(x2, 2.0)/tan((c1 ∗ x3)))/c2) & e2 = pow(x6, 2.0)/tan((c1 ∗ x3))
Intervals: x1=[99.99962366471537,100.0], x2=[99.99962366471537,100.0], x3=[89.99999999999997,90.00000000000003],
x4=[99.99962366471537,100.0], x5=[99.99943549707307,100.0], x6=[99.99943549707307,100.0]
Solution: x1=100.0, x2=98.4818097287292, x3=3.0825564323322396E-11, x4=83.0313044811115, x5=73.32021467962014,
x6=41.927226898838214

Fig. 3. Meta-heuristic solving can solve constraint 1 but not constraint 2. Interval solving (using random search on reported intervals) can solve constraint
2 but not constraint 1. Only the combination can solve constraint 3.

confirm this we increased the precision of RealPaver to 16
digits and obtained the box below, which admits only 4 pairs of
concrete assignments. Fitness values is very close to 100% but
still not a hit. Increasing the precision bound does not change
results. Note that the interval boundaries are characterized with
floating-point numbers and their precisions are at the limit.

x1 in [0.9642330272329055, 0.9642330272329056]
x2 in [0.6065632995619922, 0.6065632995619923]

We evaluated the constraint 1 in Java with each of the 4
possible assignments included in the box above and could
not find a floating-point solution. In contrast, CORAL (with
or without seeding) finds one solution. Important to note that
RealPaver reports many other boxes, we only inspected the
first box reported.

B. Improving Meta-heuristic Search

Consider the constraint 2 from Figure 3. To make the
original constraint shorter (for presentation) we replaced mul-
tiple occurrences of the constant 0.017453292519943295 with
uses of the (new) variable c1 that denotes this constant.
CORAL alone could not find a solution to this constraint; recall
that the approach of meta-heuristic solving is fundamentally
incomplete. The fitness function of CORAL did not help much
to guide the search in this case mainly because the constraint
contains only two conjuncts (ignoring the clause with the
assignment to c1). As a result, the search got stuck at a local
maximum with a fitness value close to 100%.

The figure also shows the intervals that RealPaver reports
for this constraint. Note that it only reports intervals for the
first four variables. This is because it does not support “!=”,
negation, or disjunction; hence we make a request for Real-
Paver to solve a simplified version of the original constraint
with the conjunct x5 6= 0 removed. Note that the interval
for variable x1 admits only one value: 0.0. For this case, the
assignment x1 = 0 makes the search for solutions trivial: the
assignment to all other variables becomes unconstrained. Any
random assignment of values to variables across these intervals
will satisfy the input constraint.

C. Improving Both Interval Solving and Meta-heuristic Search

The two previous examples highlight limitations of the
individual techniques we use: interval solving and meta-
heuristic search. The first example constraint was a bad match
to RealPaver but a good match to CORAL. In contrast, the
second example constraint was a good match to RealPaver
but a bad match to CORAL. In both of these cases, one solver
was able to overcome the limitation of the other solver. In
practice, we observed more interesting scenarios where the
interaction between the two approaches – interval solving and
meta-heuristic search – was beneficial to both. Consider the
constraint 3 from Figure 3. This constraint is a fragment of a
path condition generated with the symbolic execution of the
“TSAFE:Conflict Probe” subject (see Section V). As before
we use additional symbols to denote constants. The constraint
could not be solved either with PSO alone or with a Random
search on the intervals reported by RealPaver. A random search
would likely be able to find solutions only if the search space
associated with reported intervals were small (not the case
here). Our proposed combination was able to find a solution
to this constraint. Note that the combined solver has found a
solution that is close to the intervals for the variables x1, x2,
and x4 but not so for the remaining variables.

IV. APPROACH

We now describe our approach to combine interval solving
with meta-heuristic search. Let us first remark that, when using
interval solving alone, one may fail to find a solution within
one box for the following reasons:
• A floating-point solution does not exist in the interval. The

solver operates on reals and may report intervals that do not
admit a floating-point solution (see Section III);
• A real solution does not exist in the interval. It is possible

that the box reported by the interval solver does not contain
a solution.

The (inn)accuracy of the box that the interval solver reports
is determined by the following factors:
• User-specified precision;
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Fig. 4. Organization of CORAL with interval solver.

• Removed clauses from the input constraints contain-
ing unsupported operators. Reported boxes therefore over-
approximate the solution space of the original problem;
• The effect of the locality problem [5, § 2.5, Figure 3]. This

scenario can manifest itself with specific input constraints.
The effect on the precision of the reported boxes depends
on the supporting algorithms used to deal with it, which are
often expensive.
Despite all these practical limitations, the boxes reported

could still help CORAL to guide the search for solutions: it
is possible that solutions do exist within the reported box
or solutions exist close to the box. Our approach builds on
this conjecture to improve constraint solving for symbolic
execution, where exact solutions are important.

A. Combining interval solving with meta-heuristic search

Figure 4 shows the organization of CORAL as a pipeline
with three distinct processing steps that we describe below.
• In the first step, a filter component derives a path condition
pc′ with some of the conjuncts removed from constraint
pc. We note that CORAL applies some simplifications to
the input constraint, e.g., it attempts to remove variables
whose values fully depend on the solution of other variables.
Therefore, the constraint pc in Figure 4, has already been
simplified by CORAL. The filter eliminates clauses that
contain operations not handled by the underlying constraint
solver. For example, RealPaver does not support type casting
expressions (e.g., asint(x), where x is a symbolic variable
of type double), negation, difference, and disjunction. We
note that SPF can avoid the addition of negated constraints
to path conditions, by introducing extra non-determinism in
the path exploration. In result of this filtering, a solution
box reported for pc′ could, in principle, include a concrete
solution to pc′ that is not a solution to pc.
• In the second step, the filter passes the modified path
condition pc′ to the interval solver for processing. The
interval solver forwards to CORAL the first solution box
reported within a user-specified timeout. If it cannot find
one, CORAL behaves as usual.
• Finally, the third step in the figure is responsible for
invoking our search infrastructure to solve the constraint.

We made two changes in CORAL to enable this integration.
We made CORAL use the intervals reported by the interval
solver instead of the intervals it infers for particular cases.
For example, original CORAL can infer intervals from
expressions of the form x ≤ 3 .1415 .. and from the domains
of math functions. We also made CORAL check if the
interval associated with a variable admits only one value
(i.e., [c, c]). In that case, the constraint passed to CORAL is
simplified by replacing the variable with its value.
In summary, the constraints that the interval solver and

CORAL operate on are similar but not necessarily the same.
A concrete solution to pc′ may not solve pc. However, the
meta-heuristic searches (both PSO and AVM) are not confined
to the box reported by the interval solver. Our hypothesis,
substantiated with experimental results, is that CORAL can
often find concrete solutions to the input path condition (pc)
close to the box but not necessarily within it; the solution box
can therefore improve CORAL’s effectiveness.

B. Implementation

For our implementation, we evaluated two interval solvers:
RealPaver [5] and ICOS [13]. To support our decision of which
one to select, we considered the robustness of the tools (i.e.
whether they crash), the supported operators that are relevant
to our benchmarks, and the quality of results, including time
efficiency and precision of results. RealPaver performed better
overall for the experiments we considered. For this reason we
decided to report the results for this solver. We encapsulated
RealPaver inside CORAL; the interaction between these solvers
is as defined in Figure 4. In each call, the combined solver
translates the input format of CORAL to the input format
of RealPaver, AMPL (A Mathematical Programming Lan-
guage) [14]. We used the default configurations of RealPaver
except that we set the precision of error bounds to 3 decimal
places, the timeout to 2s, and also the domain of variables
to [−100, 100] (this was necessary to force RealPaver report
useful first boxes). This integration is part of the recent release
of CORAL, which is publicly available.

V. EVALUATION

This section presents our experimental results. In Sec-
tion V-A we first outline the research questions that we want to
answer with the experiments. In Section V-B we describe the
subject programs that we analyzed with symbolic execution,
and in Section V-C we describe our experimental setup. The
remaining sections present and discuss our results.

A. Research questions

The list below shows the main research questions (RQ) that
we want to answer with our experiments:
RQ-1. Is it possible that intervals reported by the subor-

dinate interval solver are already tight (i.e., the difference
between the limits of each interval is very small)? If the
answer is positive, any search based on these intervals would
perform equally well.



RQ-2. How effective are the proposed combined solvers for
dealing with constraints that could not be handled by either
original CORAL or by a random search over the intervals
that RealPaver reports?

RQ-3. Is it possible that the result of a combined solver
outperforms original CORAL due to coincidence? Is it
possible that a positive result for a combination solver is
the effect of an (un)fortunate selection of random seeds.

B. Subject Programs

The list below describes the subjects we used.
• Apollo. The Apollo Lunar Autopilot is a Simulink model
that was automatically translated to Java using the Vander-
bilt tool-set [15]. This 2.6KLOC subject is deployed in a
single package with 54 classes. (Numbers computed with
the JavaNCSS tool [16].) The Simulink model was created
by one of the engineers who worked on the Apollo Lunar
Module digital autopilot design team to see how he would
have done it using Simulink if it had been available in 1961.
The model is available from MathWorks2. It contains both
Simulink blocks and Stateflow diagrams and makes use of
complex Math functions (e.g. Math.sqrt).
• Collision Detector (CDx). The CDx system is a discrete-

time simulator for collision detection of aircraft in
flight [17]. The input is an array of pairs (pi,tr i), where
pi describes the position of aircraft i and tr i its trajectory
as function of time, (e.g., 2×cos(t)). The output is a report
describing whether or not a collision was detected. At every
simulation step of a regular execution (simulating a progres-
sion of radar frames), the simulator updates the position of
every aircraft according to the current time and trajectory
functions, checks for aircraft collisions, and then increments
the clock of the simulation. We modified the code to take
the simulated variable time as a parameter. This enabled
our test drivers to pass a symbolic variable for the time.
Symbolic execution conceptually makes jumps along the
simulation timeline corresponding to the branching choices
it makes during the state-space exploration. It produces path
conditions that manipulate the time variables and include the
complex math functions that arise from the movements of
aircraft across the simulation space. Path conditions for this
subject include the math functions sin, cos, and pow.
• TSAFE. Because air traffic in the United States is expected
to grow dramatically in the coming decades, NASA and
the FAA are developing a new, more automated air traffic
control system called NextGen. NextGen has several com-
ponents, including one called TSAFE (Tactical Separation
Assisted Flight Environment), which is designed to prevent
near misses and collisions that are predicted to happen in the
near future (within thirty seconds to three minutes). TSAFE
is still under development by NASA and the FAA, but it
includes algorithms for separation assurance during level
flight, ascent and descent, and in terminal airspace surround-
ing airports. The Conflict Probe module of TSAFE tests

2http://www.mathworks.com/products/simulink/demos.html

for conflicts between a pair of aircraft within the TSAFE
time horizon. The two aircraft may either be flying level
or engaged in turns of constant radius. The Conflict Probe
module is self contained, but it uses transcendental functions
and contains loops, so it represents a significant floating
point calculation. The following math functions appear in
the path conditions of this subject: cos, pow, sin, sqrt,
and tan. The Turn Logic module of TSAFE computes
the change in heading required once an impending loss of
separation between two aircraft is detected. It assumes a
constant turning radius for the aircraft making the maneuver.
The following math functions appear in the path conditions
of this subject: atan2.

C. Experimental Setup

Constraints considered. The set of constraints we analyzed
originate from symbolic executions obtained with Symbolic
Pathfinder. For large programs such as Apollo and CDx we
symbolically execute the program once for each solver and
collect 100 constraints that the solver can solve and 100 con-
straints it cannot. We selected the longer constraints generated
(denoting deeper paths). Then, we compare the solvers with
respect to their capability of solving the constraints from the
set containing all constraints combined. This approach enables
each solver to try to solve constraints generated with the
symbolic execution of another solver. For smaller subjects,
we run symbolic execution with a wrapper solver that submits
the input constraint to each solver that we want to compare
and counts the difference between the number of cases one
solver can solve and the other cannot. We use Venn-diagrams
to highlight the distinct sets of constraints that each solver can
solve (in response to RQ-2).

Solvers considered. We used RealPaver [5] as our interval
constraint solver, as discussed on sections II-B and IV-B.
We describe below the solvers that we used as baselines for
comparison:

• pso is the solver that uses CORAL with Particle Swarm
Optimization search (PSO) [6]. We previously found [3]
that CORAL with PSO search performed the best compared
to other search strategies such as random search and genetic
algorithms. This is the baseline solver for CORAL.
• rp+ran is the combination that uses interval solving com-

bined with random search. At each iteration, random search
chooses one random input assignment from the intervals and
computes the fitness values associated with it. This is the
baseline solver for RealPaver. The principle is that random
search should find solutions in case RealPaver reported
boxes with solutions and the intervals are very tight (see
Section IV). This solver therefore serves to evaluate the
“tight intervals” effect (in response to RQ-1).

We describe below the combined solvers that we propose:

• rp+pso is the combination that uses interval solving com-
bined with PSO search. It uses the intervals from the first
reported box from RealPaver to seed the initial population

http://www.mathworks.com/products/simulink/demos.html?file=/products/demos/shipping/simulink/aero_dap3dof.html
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Fig. 5. Differences of constraints solved by different solvers for larger
subjects: 5(a) Apollo (417 in total) and for 5(b) CDx (452 in total).

of the PSO search. The search is not constrained within the
box used.
• rp+avm is the combination that uses interval solving

combined with AVM search [7]. In contrast to PSO, which
is a population-based search, AVM keeps only one candidate
assignment and explores the search space close to that
assignment, making incremental changes to the candidate.
We translated to Java the C# publicly-available AVM imple-
mentation used in FloPSy [18]. We used the intervals to
reset the search at random restarts of the algorithms, which
frequently occur and serve to workaround local maximums.

PSO, as a global search, looks for solutions across the entire
state space. If the use of one box does not result in good fitness
the search can try longer jumps using the many candidate
solutions in the search population. AVM, as a local search,
looks for solutions close to the boxes. It performs incremental
and systematic changes to the one solution candidate it uses
across the search. At random restarts the search makes jumps
where the ending point of the jump is within the reference
box. During each climbing phase (between random restarts),
AVM makes a bounded-depth search rooted at some point
within the box. Therefore, the search effectively takes place in
close proximity to the box. Conceptually, the local and global
modes of exploration speculate optimistically (local) and not
so optimistically (global) about the quality of the boxes used.
We want to evaluate how they compare. Both approaches have
been incorporated in the CORAL infrastructure.

D. Differences between solvers

This section presents the results on the differences between
our solvers. We show and discuss the differences between the
sets of constraints each solver is able to solve. We use Venn
diagrams to show this difference; each set in the diagram corre-
sponds to the constraints each solver can solve. Figures 5 and 6
present the diagrams for each subject. Each diagram shows,
in the top right corner, the total number of constraints solved
and, close to the name of the solver and inside parentheses, the
total number of constraints that particular solver can solve for
that subject case. We refer to a distinct solution as a solution
that only one solver can find. Finally, we discuss results for
each subject.

1) Apollo: Figure 5(a) shows a Venn diagram comparing
the effectiveness of each solver in solving the path conditions
from the Apollo subject. We make the following observations:
• Solvers pso and rp+ran solved a similar number of con-

straints: 102 and 111, respectively. Note, however, that the
intersection across their corresponding sets is small: rp+ran
cannot solve most of the constraints that pso can, and
conversely.
• The rp+pso solver outperforms pso (baseline for CORAL)

solver: rp+pso missed only 3 constraints from the pso set
and found solutions for many constraints that pso missed.
On the other hand, rp+pso missed a total of 56 constraints
that rp+ran (baseline for RealPaver) found and 66 constraint
that rp+avm found.
• The sets of constraints that rp+ran and rp+avm distinctly

solve are disjoint. We inspected these cases and observed
that rp+avm consistently increments fitness in very small
amounts, but it isn’t able to make bigger moves without
losing fitness values: since fitness increases consistently (at
a very small rate) random restarts rarely occur.
• As expected, solvers are complementary. Solver pso did

not show significant distinction: it found only 1 constraint
that no other solver could find. For this subject, rp+pso
found many more solutions than any other solver (292, of
which 108 are distinct). However, both rp+ran and rp+avm
found a significant number of distinct solutions (56 and 66,
respectively).
2) Collision Detector (CDx): Figure 5(b) summarizes re-

sults for CDx. We make the following observations:
• The rp+avm solver found a very significant portion of

the total number of constraints solved for this subject
(86.3%=390/452). Also, the rp+avm solver found all solu-
tions that rp+pso found. One of the reasons for this superi-
ority is that while our PSO implementation sets a minimum
and maximum limit for the domain of each variable, AVM
has no such limitation. PSO needs to limit the scope of
its global search so to converge more rapidly. The regions
associated to these limits include, by construction, the box
used to seed the initial population of PSO. For that reason
the AVM combination could find distinct solutions in 57
cases due to its capability of escaping these limits.
• Compared to the case of Apollo, for this subject the pso

solver found many more distinct solutions (50 in CDx as
opposed to 1 in Apollo). That happens because the rp+pso
combination ignores the intervals inferred by CORAL from
the input constraints. Instead, it uses the intervals reported
by RealPaver. In this particular case, the intervals reported
by CORAL worked better in some cases than those reported
by RealPaver. CORAL detects that one variable is used in
the context of a trigonometric function and associates to that
variable the circular interval [0, 2π] (with the ending points
identified) as its domain. The search draws assignments to
variables from these intervals.
3) TSAFE: Conflict Probe: Figure 6(a) shows the differ-

ences in the number of path constraints solved by different
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Fig. 6. Differences of constraints solved by different solvers for TSAFE: (a)
Conflict Probe (23 in total) and (b) Turn Logic (171 in total).

solvers. Dynamic symbolic execution of the Conflict Probe
subject is expected to produce a small number of feasible
paths. This module consists of one small function. Overall,
we noticed that the rp+pso combination solved all constraint
that other solvers could solve and 4 additional constraints. For
this case, rp+pso subsumed the other solvers.

4) TSAFE: Turn Logic: Figure 6(b) shows the differences
in the number of path constraints solved by different solvers
for Turn Logic. In contrast to the other subjects, the use
of interval solvers was not as helpful: RealPaver reported
empty boxes on 73% (241/329) of the cases. The reason for
this behavior is that RealPaver doesn’t support the function
atan2 (y , x ), so we translate it to atan(y/x ). Unfortunately,
this translation does not cover all the edge cases present in
the original function. For example, when the first argument is
positive, and the second is zero, the result is the closest value
to pi/2. However, note that even then our results were not
significantly worse.

In summary, we observed the following:

For three of the cases (Apollo, Conflict Probe, and
Turn Logic) the rp+pso combination solved more con-
straints and more distinct ones. For the CDx subject
the rp+avm combination solved more constraints than
any other and significantly more distinct ones. Over-
all, there was no clear winner: in at least one case,
each solver considered was subsumed by some other.
However the results suggest that the collaboration
between a meta-heuristic search and an interval solver
was highly effective.

E. Distance to the box

Figure 7 shows the distance of each successful search of
rp+pso and rp+avm to the box reported by RealPaver. A
circle corresponds to a solution found with rp+pso and a
plus symbol corresponds to a solution found with rp+avm.
We used the distance of the point 〈x, y, . . . 〉 to the frontier
of the box 〈[xlo, xhi], [ylo, yhi], . . . 〉; this distance is given
by d =

√
(x− xlo|hi)2 + (y − ylo|hi)2 + . . .. We use lo|hi

subscripts to indicate that we choose, in a particular dimension,
between the low and high frontiers of the interval to decide
which one is the closest to the point.
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The data reported indicates that even though many solutions
are found within the reference boxes, both PSO and AVM
found many solutions outside the box. The cases where
distances are higher correspond to constraints with more input
variables (dimensions). Note that the PSO search on average
finds more solutions far from the box than the AVM search,
which applies random restarts when fitness function does not
improve after some defined number of iterations. In that case,
the search resets the candidate solution to within the reference
box. We did not include in the plot 14 outliers for the AVM
search (distance > 107); these outliers originated from the
Turnlogic subject. For the PSO combination, the mean distance
from a solution to the reference box is 135.27 (highlighted
with an horizontal line) while the mean distance for the AVM
combination is 58.2.

F. Effect of random seeds

In response to research question RQ-3, we evaluated the
impact of using different random seeds on effectiveness of
constraint solving. Figure 8 shows, in boxplot notation, the
distributions of number of constraints solved per solver for 10
different random seeds. We considered pso, rp+pso, avm, and
rp+avm solvers in this experiment. The dotted vertical lines
highlight the difference between the maximum point in the
distribution of the solvers that do not use interval solving and
the minimum point in the distribution of the corresponding
solver that uses interval-solving support. First note that the
use of different seeds can make some difference; in particular,
in rp+pso where the variance in number of constraints solved
across the use of different seeds appeared higher. Note that
the AVM solver is used here as reference for comparison
with rp+avm. The plot shows that results remain consistent
when considering several different random seeds. For all cases
the combined solver was able to solve many more constraints
compared to the best cases of both PSO and AVM search.

G. Time efficiency

Figure 9 shows, in boxplot notation, the distributions of time
for the cases the solver can find a solution (9(a)) and the cases
it cannot (9(b)). The additional cost due to the introduction of



(a) Successful cases. (b) Unsuccessful cases.

Fig. 9. Distributions of time for each solver, considering all subjects. Figures 9(a) and 9(b) show, respectively, cost distributions for the cases where solutions
are found and where solutions are not found.
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considering different seeds.

RealPaver can be observed comparing the distribution for pso
and the distribution for rp+pso. It indicates that RealPaver in
general returns quickly for the precision and time bounds we
informed. Note from the sizes of the boxplots from Figure 9(a)
that, in most cases, each solver reports solutions very fast.
The outliers (circles above the boxplots) of the solvers that
use pso appear higher in the plot. Conceptually, this indicates
that it is worthwhile to use pso for finding the solution. In the
most extreme case the solving can take about 40s to finish.
It is important to recall that the path conditions generated
with the symbolic execution of Apollo and CDx can be very
large. Finally, the larger sizes of the boxes from Figure 9(b)
relative to the boxes from Figure 9(a) indicates that overall
solving time is dominated by the cases the solver cannot find
an answer.

H. Discussion and Lessons Learned

We explored alternative design options during our study.
For example, we evaluated the option of adding new clauses
to the input constraint so to enforce solutions to be within
boxes. Such experiment was ineffective, meaning not only that
we were unable to find solutions to constraints outside the

box (as expected) but also that we did not improve solver’s
capability of finding constraints inside the box. We understood
that the fitness functions we used performed well in guiding
the search towards the most effective regions of the search
space, may it be inside or outside the box. We also evaluated
the option of inverting the order of the combination, i.e., to
make the PSO search compute boxes and to use those boxes
to specify the domains of variables of RealPaver. However, we
realized that PSO is not a very appropriate kind of search for
this considering it evolves the individuals of the population
as birds in a flocking movement. By the end of the search
individuals would be close together; hence if a solution is not
found towards the end of the search (when individuals starts
to settle) and the overall fitness value is high, it is more likely
that the search found a local maxima.

Considering the expected complementary nature of heuristic
solving (see Figures 5 and 6) and the potential high cost
associated with the cases where solve queries do not yield
solutions (see Figure 9(b)), it is worth considering running all
solvers in parallel. This should increase the chances of finding
a solution. Furthermore, when the symbolic execution is run in
”concrete-symbolic” mode [19], [20], it is perhaps beneficial
to run the solvers asynchronously together with the process
that explores path conditions. This would reduce the time to
solve the generated constraints and would enable increasing
the bounds used to control resource usage.

In summary, we found that the interval constraint solving
combined with the meta-heuristic search is highly effective
in solving complex constraints and therefore it increases the
applicability of symbolic execution.

VI. RELATED WORK

Various techniques have been proposed recently to deal
with undecidable fragments of constraints generated from
symbolic execution [2], [19]–[21]. These techniques fall back
on concrete values and use randomization to help simplify
complex constraints that can not be solved directly. While
successful in practice, none of these techniques can effectively
solve constraints such as sin(x) = cos(y) (in this case all the
previous approaches reduce to random solving). Our approach



is orthogonal to these previous approaches and uses interval
solving to seed the meta-heuristic search in CORAL to solve
such complex constraints. It remains to evaluate the benefit
of other constraint solvers in seeding CORAL; for example,
solvers that handle integer arithmetic used in the works above.

The FloPSy [22] constraint solver has been recently de-
veloped with similar purpose and approach as CORAL. CORAL
and FloPSy use a similar notion of distance in their fitness
functions. Different from CORAL, FloPSy does not adjust
the weights of constraint clauses in its fitness function as the
search advances. As for the search, FloPSy uses genetic algo-
rithms for global search and a variation of the AVM method [7]
for local search. Another difference is that CORAL performs
some optimizations which are orthogonal to the search (e.g.,
inference of domains and particular simplifications). FloPSy
is used under the concolic (concrete-symbolic) execution of
PEX [23], developed at Microsoft Research. CORAL has been
customized specially for SPF; this could not be done readily
with FloPSy. The work discussed in this paper is orthogonal
to the method of search. Our experiments with using AVM for
the meta-heuristic search indicate that FloPSy could benefit
from the boxes reported by an interval solver the same way
as CORAL did.

Decision procedures [24]–[26] determine satisfiability of
constraints involving the decidable theories that the procedures
support. If decidable, the procedures can additionally provide
solutions to the constraints. In prior work [27], we evaluated
some of these decision procedures in the context of sym-
bolic execution. We observed that the constraints generated
with symbolic execution often involve undecidable theories
that are not supported by the procedures. Solvers such as
ABsolver [28], CalCS [29], and iSAT [30] provide some
limited support for handling non-linear constraints. However,
to the best of our knowledge, none of them can handle
constraints over floating-point variables, and support all types
of mathematical functions (e.g., sin, log, pow) that CORAL
supports. Meta-heuristic search based constraint solvers, such
as CORAL and FloPSy, treat constraints as black-boxes and
therefore can support arbitrary functions.

VII. CONCLUSIONS

One important challenge in applying symbolic execution is
dealing with complex mathematical constraints. This paper
shows that meta-heuristic solving driven by the intervals
provided by an interval solver can significantly improve the
effectiveness of symbolic execution. We have incorporated the
combined solving technique in the CORAL constraint solving
infrastructure available at the following link: pan.cin.ufpe.br/
coral.

In the future we plan to use CORAL for finding discontin-
uous frontiers in robustness symbolic analysis [31] and for
finding overflow and round-off error bounds in functions that
manipulate floating-point values.
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