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ABSTRACT
This paper introduces memoized symbolic execution (Memoise), a
new approach for more efficient application of forward symbolic
execution, which is a well-studied technique for systematic explo-
ration of program behaviors based on bounded execution paths.
Our key insight is that application of symbolic execution often re-
quires several successive runs of the technique on largely similar
underlying problems, e.g., running it once to check a program to
find a bug, fixing the bug, and running it again to check the modi-
fied program. Memoise introduces a trie-based data structure that
stores the key elements of a run of symbolic execution. Mainte-
nance of the trie during successive runs allows re-use of previously
computed results of symbolic execution without the need for re-
computing them as is traditionally done. Experiments using our
prototype implementation of Memoise show the benefits it holds
in various standard scenarios of using symbolic execution, e.g.,
with iterative deepening of exploration depth, to perform regres-
sion analysis, or to enhance coverage using heuristics.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Symbolic
execution

General Terms
Verification, Algorithms

Keywords
Symbolic Execution, Incremental Analysis, Trie Data Structure,
Constraint Solving

1. INTRODUCTION
Forward symbolic execution [15, 7, 10, 22, 19, 6] is a powerful

technique that is gaining popularity for systematic exploration of
program behaviors. The technique enumerates the program paths
(of interest) and records as formulas the conditions on the inputs to
follow the different paths, as dictated by the branches in the code.
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Off-the-shelf constraint solvers are used to reason about the for-
mulas to discard those paths whose conditions are unsatisfiable. In
practice, the technique can be costly to apply due to its inherent
high time and space complexity. There are two key factors that de-
termine its cost: (1) the number of paths that need to be explored
and (2) the cost of constraint solving.

Recent years have seen substantial advances in raw computation
power and constraint solving technology [1], as well as in basic
algorithmic approaches for symbolic execution [4, 25]. These ad-
vances have made symbolic execution applicable to a diverse class
of programs and enable a range of analyses, including bug finding
using automated test generation – a traditional application of this
technique – as well as other novel applications, such as program
equivalence checking [23], regression analysis [17], and continu-
ous testing [27]. All these applications utilize the same path-based
analysis that lies at the heart of symbolic execution. As such, their
effectiveness is determined by the two factors that determine the
cost of the symbolic execution, and at present, reducing the cost of
symbolic execution remains a fundamental challenge.

This paper introduces memoized symbolic execution (Memoise),
a new approach that addresses both factors to enable more efficient
applications of symbolic execution. Our key insight is that apply-
ing symbolic execution often requires several successive runs of
the technique on largely similar underlying problems, e.g., running
it once to check a program to find a bug, fixing the bug, and run-
ning it again to check the modified program. Memoise leverages
the similarities to reduce the total cost of applying the technique
by maintaining and updating the state of a symbolic execution run.
Specifically, Memoise uses a trie [8, 28] – an efficient tree-based
data structure – for a compact representation of the symbolic paths
generated during a symbolic execution run. Essentially, the trie
records the choices taken when exploring different paths, together
with bookkeeping information that maps each trie node to the cor-
responding condition in the code. Maintenance of the trie during
successive runs allows re-use of previously computed results of
symbolic execution without the need for re-computing them as is
traditionally done. Constraint solving is turned off for the paths that
were previously explored and the search is guided by the choices
recorded in the trie. Moreover, the search is pruned for the paths
that are deemed to be no longer of interest for the analysis. To
keep the cost of Memoise small we further define two operations
on the trie: compression (to discard “un-interesting” trie branch se-
quences) and merging (of compressed tries obtained in successive
runs of Memoise).

We developed a prototype tool for memoized symbolic execu-
tion of Java programs. The implementation uses the Symbolic
PathFinder tool [19], part of the Java PathFinder open-source frame-
work. Experiments show that the space and time cost of storing
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1int compute(int curr, int thresh, int step){
2 int delta = 0;
3 if (curr < thresh){
4 delta = thresh - curr;
5 if ((curr + step) < thresh)
6 return -delta;
7 else
8 return 0;
9 } else {

10 int counter = 0;
11 while (curr >= thresh) {
12 curr = curr - step;
13 counter++;
14 }
15 return counter;
16 }
17}

Figure 1: Example program

and retrieving the trie is small and that it is far out-weighted by the
benefits Memoise obtains in standard scenarios of using symbolic
execution, such as, with iterative deepening of exploration depth,
regression analysis, and heuristic search to enhance coverage. The
approach introduced by Memoise also holds much promise in opti-
mizing a variety of other analyses based on symbolic execution, as
discussed in Section 4.

2. BACKGROUND
Symbolic execution [15, 7] is a program analysis technique that

uses symbolic values, instead of actual data, as inputs to execute a
program fragment, e.g. a program or a method within a program.
The technique represents the values of program variables as sym-
bolic expressions and it computes the outputs as a function of the
symbolic inputs. The state of a symbolically executed program in-
cludes the (symbolic) values of program variables and a path con-
straint (PC). The path constraint is a (quantifier free) Boolean for-
mula over the symbolic inputs; it accumulates the constraints on the
inputs in order for an execution to follow the particular associated
path. A symbolic execution tree characterizes the paths followed
during the symbolic execution of a program. The nodes represent
program states and the arcs represent transitions between states.

We illustrate symbolic execution on the program in Figure 1, that
we will use as a running example throughout the paper. Method
compute has three integer inputs: curr (current), thresh (thresh-
old) and step; it calculates the relationship between the current
and the threshold, in increments given by the step value.

Figure 2 shows the corresponding symbolic execution tree. Ini-
tially, PC is true and curr, thresh and step have symbolic
values S1, S2 and S3, respectively. Program variables are assigned
expressions in terms of these symbolic inputs; e.g., after executing
statement 4, delta becomes S2−S1. At each branch point, there
is a choice in the execution and PC is updated with assumptions
about the inputs, to choose between alternative paths. For example,
after the execution of statement 3, both then and else alterna-
tives of the if statement are possible, and PC is updated accord-
ingly. Whenever PC is updated, it is checked for satisfiability us-
ing off-the-shelf decision procedures. If PC becomes false (there
are no inputs that satisfy it) it means the state is un-reachable, and
symbolic execution does not continue for that path. This happens
when the while statement at line 11 is executed the first time: the
PC corresponding to the condition for exiting the loop is unsatis-
fiable.Test inputs are generated by solving the collected PCs.

Symbolic execution of looping programs may result in an in-
finite symbolic execution tree (see Figure 2 where the expansion
of the right-most leaf in the tree may continue forever). For this
reason, one needs to put a limit on the depth of the search for sym-
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Figure 2: Symbolic execution tree

bolic paths, and iteratively increase that depth until either an error
is found or the desired testing coverage has been achieved.

3. MEMOIZED SYMBOLIC EXECUTION
Given program p and execution depth bound b, memoized sym-

bolic execution (Memoise) addresses the problem of running sym-
bolic execution on problem instance 〈p, b〉 given that symbolic ex-
ecution was already performed on problem instance 〈pold, bold〉.
Memoise leverages the results of running symbolic execution on
〈pold, bold〉 by caching them and re-using them when running sym-
bolic execution on 〈p, b〉. To cache a symbolic execution run, Mem-
oise builds an efficient trie data structure [8, 28] for representing
compactly the global state of a symbolic execution run, i.e. the
choices taken during symbolic execution. A trie (prefix tree) is
an ordered tree that enables efficient retrieval of the information
stored in it. The benefits of using the trie are two-fold: first, users
can easily retrieve the symbolic execution results of the same sys-
tem repeatedly; second, if the system undergoes development or
it is checked with a greater bound, only part of the data structure
needs to be maintained, which should be cheaper than re-running
the symbolic execution from scratch.

We say that trie t is complete for program p and bound b if it
encodes all the choices taken during the symbolic execution of p
up to bound b. The Memoise approach has three basic steps:

• Initialization. An initial run of Memoise performs standard
symbolic execution as well as builds the trie on-the-fly and
saves it on the disk for future re-use.

• Memoized analysis. The trie built during the initialization
run or a previous run of Memoise is loaded in memory and it
is used to guide analysis for iterative deepening (Section 4.1.1),
regression (Section 4.1.2), or application of heuristics (Sec-
tion 4.1.3). During the analysis, a new trie is built/updated
on-the-fly, which is saved back on the disk. As an optimiza-
tion, the memoized analysis performs a compression on the
input trie to remove the components that are irrelevant in the
context of the particular application scenario.

• Trie merging. The (compressed) trie built during memoized
analysis is (optionally) merged with the old trie to obtain a
complete trie for 〈p, b〉 .
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Figure 3: Example trie

3.1 Initialization
The trie is built on-the-fly during symbolic execution. We repre-

sent the trie using a recursive data structure – a tree of nodes where
each node has a list of children nodes. Whenever a conditional in-
struction is symbolically executed a trie node is created, recording
the location of the symbolic conditional, i.e., method and the in-
struction offset, and the choice taken by the execution. The trie
stores just enough information to guide symbolic execution in fu-
ture runs (through the stored choices) and to map back the nodes
to the program constructs (for e.g. regression analysis). Memoise
does not require the trie to explicitly store the actual path condi-
tions, which are simply re-created in future runs. However, should
such storage be desired by the user, the trie data structure facili-
tates a compact storage using a distributed representation of path
conditions (similar to the internal representation used in SPF [18,
19]). To facilitate future runs of symbolic execution, a subset of
the leaf nodes in a trie is partitioned into a set of boundary nodes,
which are leaf nodes because of the chosen depth bound, and a set
of unsatisfiable nodes, which are leaf nodes due to unsatisfiable
path conditions. Figure 3 shows the (complete) trie for our running
example (for depth 3). In this figure n9 is a boundary node and n6
is an unsatisfiable node.

The search order can be e.g. depth-first search or breadth-first-
search. The search order does not really matter as long as the same
order is used during re-execution.

3.2 Memoized Analysis
Memoized symbolic execution enables efficient re-execution based

on the results cached in the trie structure.

3.2.1 Node Marking
The first step in memoized execution is to mark nodes of inter-

est. Specifically, we characterize parts of the old trie that may be
updated using candidate nodes, which represent roots of sub-trees
potentially updated during memoized execution. Given the can-
didate nodes, we mark nodes on paths that need re-execution – all
nodes on any path from the trie root to a candidate node are marked
(while the rest of the nodes remain unmarked). The exact classifi-
cation of candidate nodes depends on the particular analysis that
is performed. For example, for iterative deepening, the boundary
nodes are the candidate nodes (e.g., n9 in Figure 3). regression
analysis the nodes that are impacted by the program change are
considered as candidate ones (the impacted nodes are found by an
impact analysis as described in Section 4.1.2). The node marking
is reset at the beginning of memoized analysis.

1void compress(Trie trie) {
2 List<Node> worklist = new LinkedList<Node>();
3 worklist.add(trie.root);
4 while (!worklist.isEmpty()) {
5 Node curr = worklist.remove(0);
6 if (!curr.isMarked()) {
7 curr.removeChildren();
8 continue;
9 }

10 if (curr.children.size() > 0)
11 worklist.addAll(0, curr.children);
12 }
13}

Figure 4: Trie compression procedure

3.2.2 Trie-Guided Symbolic Execution
Memoise monitors the symbolic execution of the program and

whenever a conditional instruction is executed symbolically, it makes
the corresponding traversal in the trie. Furthermore, Memoise turns
off constraint solving for the portion of the path whose information
has already been stored in the trie. When an unmarked node is en-
countered, the traversal backtracks and at the same time requests
the symbolic execution to backtrack as well, thus “pruning” the
search for the unmarked nodes. When a candidate node is encoun-
tered, constraint solving is turned on. The part of the trie rooted
at the candidate node is then built while new states are explored,
using traditional symbolic execution. Constraint solving is turned
off again when the traversal backtracks from a candidate node.

3.3 Trie Compression
As mentioned, a trie node is created when a conditional instruc-

tion is symbolically executed. Thus, the size of the trie is propor-
tional to the number of executions of symbolic conditionals. We
note that the trie is a very light-weight representation of the ex-
plored symbolic state-space since it only records the choices taken
during symbolic execution plus the method and instruction offset.
However, since the trie needs to be stored to and loaded from disk
to be used across different runs of symbolic execution, the trie for a
large exploration space may also be quite large and may take much
time. To address this problem, we define a compression operation
on tries as described below. Furthermore, we expect the cost of
building and maintaining the trie to be amortized during multiple
successive applications of symbolic execution.

As an optimization, the memoized analysis performs a compres-
sion operation on the input trie to remove the nodes that are irrel-
evant in the context of the particular application scenario (see Fig-
ure 4). The analysis simply removes all the children of the nodes
that are found to be not marked by the marking procedure described
in Section 3.2.1, and then uses this compressed version of the trie
to perform the memoized analysis.

The resulting trie that is saved on the disk may no longer be
“complete” therefore we define a trie merging procedure to recover
a complete trie as described in Section 3.4. We note that as a re-
sult of compression, the trie will still contain unmarked nodes that
are the immediate successors of marked nodes. These unmarked
(pruning hanging) nodes are necessary for the merging procedure
as described next.

3.4 Trie Merging
As a result of compression, the trie t for 〈p, b〉 may no longer

be complete. While some applications, such as symbolic execu-
tion with iterative deepening, may not need to maintain a complete
trie, others, like regression analysis, do require a complete trie. We
therefore define an optional merging operation merge(told, tnew)
that returns a complete trie for 〈pnew, bnew〉. The nodes from the
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1void merge(Trie t_old, Trie t_new) {
2 // assume trie nodes are marked; updates t_new
3 List<Node> worklist_old = new LinkedList<Node>();
4 List<Node> worklist_new = new LinkedList<Node>();
5 worklist_old.add(t_old.root);
6 worklist_new.add(t_new.root);
7 while(!worklist_new.isEmpty()&&!worklist_old.isEmpty()){
8 Node curr_old = worklist_old.remove(0);
9 Node curr_new = worklist_new.remove(0);

10 if (curr_new.isCandidate()) continue;
11 if (!curr_new.isMarked()) {
12 curr_new.setChildren(curr_old.children);
13 continue;
14 }
15 worklist_old.addAll(0, curr_old.children);
16 worklist_new.addAll(0, curr_new.children);
17 }
18}

Figure 5: Trie merging procedure

root node down to either candidate nodes or the pruning hanging
(unmarked) nodes, are shared by both told and tnew. While the
parts rooted at candidate nodes in tnew are updated and there is no
need to bring back the obsolete parts from told, the parts rooted at
pruning hanging nodes must get recovered from told. The merging
procedure shown in Figure 5 performs a synchronous traversal on
the two tries and merges the parts from told to the pruning hanging
nodes in tnew at lines 11-14. It does not check the parts rooted at
candidate nodes (line 10).

3.5 Correctness
The correctness of our proposed approach is based on two as-

sumptions: first, constraint solving is deterministic, i.e., given a
constraint, the underlying constraint solver or decision procedure
would always give a unique answer on satisfiability; second, the
order among the branches of a symbolic conditional is uniquely
determined. The first assumption assures that different runs of sym-
bolic executions on a particular program path would always yield
to same result. Therefore, we have the following two observations
based on this assumption.
Observation 1. If a path constraint exists in the previous run of
symbolic execution and was solved previously, it does not need to
be solved again, and the solving result for it from the previous run
can be reused.
Observation 2. If path constraints for all paths that continue from
some point in the exploration space remain the same as those in
the space previously explored, the subspace rooted at that point can
be pruned, and the solving results for these path constraints from
previous run of symbolic execution can be reused.

The second assumption maintains the correspondence of the ex-
ecutions of program paths across different runs of symbolic execu-
tion, and makes feasible the reuse of symbolic execution results. As
long as the same search order is used during re-execution, the sym-
bolic execution tree corresponding to the same program executions
remain the same, and this assures the correctness of trie-guided
symbolic execution. Merging is correct since the executions cor-
responding to the removed parts remain the same in re-execution
and will yield to the same sub-trie, and thus the removed parts can
be brought back from the old trie.

4. ENABLED APPLICATIONS
We envision many applications that can be optimized using mem-

oized symbolic execution. We describe in detail how Memoise en-
ables three “standard” applications of symbolic execution: sym-
bolic execution with iterative deepening, regression analysis and
symbolic execution guided by heuristics to enhance program cov-
erage. We further discuss four other applications.

1void mark(Trie trie) {
2List<Node> worklist = new LinkedList<Node>();
3 worklist.add(trie.root);
4 while (!worklist.isEmpty()) {
5 Node curr = worklist.remove(0);
6 if (curr.isBoundary()) {
7 trie.markAncestor(curr);
8 continue;
9 }

10 if (curr.children.size() > 0)
11 worklist.addAll(0, curr.children);
12 }
13}

Figure 6: Marking procedure for iterative deepening

4.1 Three Representative Applications

4.1.1 Iterative Deepening
Memoized symbolic execution enables an efficient iterative deep-

ening approach by re-using the results from smaller depths when
exploring paths at larger depths. The approach works as follows.
In the first iteration, we explore paths exhaustively up to a certain
depth and store the choices from the symbolic execution tree in
the trie structure defined in the previous section. When the search
depth bound is hit, the current trie node at that point is a boundary
node. Then, to perform memoized symbolic execution at a deeper
depth, we first execute the marking procedure described in Figure 6.
Boundary nodes are candidate nodes in this particular analysis, and
the marking procedure traverses the input trie and marks all ances-
tor nodes of the boundary nodes. The paths that lead to candidate
nodes are then selected (their nodes are marked) and, guided by
the trie, are executed up to the next depth bound. Note that the
paths whose nodes were not marked would not be re-executed (e.g.
the paths who ended at smaller depths can not have successors at
the new bigger depth). During re-execution we turn off constraint
solving for the portion of the path that has been already explored
in the previous iteration, and the exploration is only guided by the
choices recorded in the trie. The process repeats until all paths are
explored, or the new bound is reached.

For example, if we get the trie of Figure 3 in the first iteration
and want to explore paths at a larger depth in the next iteration,
we only select the path n1 → n5 → n7 → n9 to re-execute
since only n9 is a candidate node. We turn off constraint solving
for the portion from n1 to n9, and turn on constraint solving after
n9 is encountered in trie traversal. If compression is performed,
the unmarked nodes are further removed from the trie (except the
immediate successors of marked nodes). For example nodes n3 and
n4 in Figure 3 would get removed. We note that the trie merging
would not be necessary for iterative deepening, since we know that
the removed paths from the compressed trie for depth b ended at
smaller bounds, and therefore can not have successors at a depth
larger than b.

4.1.2 Regression Analysis
Programs evolve during development or maintenance. Reapply-

ing full symbolic execution to programs as they evolve may be im-
practical or infeasible. In regression analysis, program differences
are utilized to make symbolic execution more efficient on the sub-
sequent program version. The results generated by regression anal-
ysis should be complete, i.e., they should be the same as the results
generated by regular symbolic execution.

Memoise enables regression analysis by only allowing the paths
impacted by the program change to be re-executed. A change im-
pact analysis is used to identify the impacted trie nodes, which rep-
resent roots of sub-trees potentially changed by the execution of the
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1void mark(Trie trie, Program p_old, Program p_new) {
2 CFG g_old = new CFG(p_old);
3 CFG g_new = new CFG(p_new);
4 trie.mark(CFG.impact(g_old, g_new));
5}

Figure 7: Marking procedure for regression analysis
change during memoized execution. Thus, the impacted trie nodes
are candidate nodes in this particular analysis, and the marking pro-
cedure marks all the nodes along any path from the trie root node
to a candidate node (see Figure 7). As before, for the portion of the
path up to the impacted node, constraint solving is turned off, and
only the part rooted at the impacted node needs to be rebuilt while
it is explored with constraint solving turned on.

The control flow graph (CFG) of the program together with the
trie are used to calculate the impacted trie nodes, and hence to guide
symbolic execution to only execute paths with impacted trie nodes.
Given a changed node in the CFG, we use backward reachability
analysis to find the first symbolic conditional branch on each path
from the changed node to the entry node in the CFG, and the trie
nodes corresponding to the branch(s) are impacted. For example,
assume a change is made to line 6 of the program shown in Fig-
ure 1, where delta instead of -delta is returned. Tracing the
change towards the entry of the program in the CFG, we can find
that the true branch of the symbolic conditional instruction at line
5 is the nearest symbolic branch leading to the change. We map
this to the trie, and find the corresponding node n3 in Figure 3,
which represents the first choice, i.e., index 0. n3 is the impacted
node, and only the execution of n3 would lead to execution of the
change. Therefore, we select the trie path n1 → n2 → n3 to
guide the exploration; the execution corresponding to the other trie
paths can be pruned; constraint solving is turned off for the execu-
tion corresponding to the selected path; it is turned on when n3 is
encountered.

If compression is performed, the unmarked nodes are further re-
moved from the trie (except the immediate successors of marked
nodes). For example nodes n6, n7, n8 and n9 in Figure 3 would
be removed. For regression analysis a complete trie needs to be
maintained, since one can not anticipate which parts of the trie will
be impacted with the next program change. The trie merging pro-
cedure (see Figure 5) is performed to combine the old trie with the
current compressed trie.

In previous work [17] we have used the differences between pro-
gram versions to make symbolic execution more efficient for evolv-
ing programs. A comparison between that work and the regression
analysis enabled by Memoise is provided in the next section.

4.1.3 Heuristics-Guided Symbolic Execution
The iterative-deepening approach described above can be fur-

ther extended to perform a heuristic search of program paths, as
guided by the testing coverage achieved so far. At each iteration,
the approach discovers those paths that may lead to increased code
coverage, and selects only those paths for re-execution up to larger
depths in subsequent iterations. The analysis computes the cover-
age achieved by the explored paths on the control flow graph of
the program and maintains a mapping between the program con-
trol flow graph and the symbolic execution trie. We next give some
basic definitions and then describe our heuristics.

DEFINITION 1. Control flow graph (CFG): A CFG of a method
in the program is a directed-graph represented formally by a tuple
〈N,E〉. N is the set of nodes, where each node is labeled with
a unique program location identifier. The edges, E ⊆ N × N ,
represent possible flow of execution between the nodes in the CFG.
Each CFG has a single begin, nbegin , and end, nend , node. All the

nodes in the CFG are reachable from the nbegin and the nend node
is reachable from all nodes in the CFG.

DEFINITION 2. Reachability: A node n1 in CFG for method
m1 is reachable from a node n2 in CFG for method m2 if at least
one of the following conditions is satisfied:
(1) m1 and m2 are the same method, and n1 is reachable from n2

in the CFG.
(2) In CFG for m2 , there is a node n3 reachable from n2 , and the
invocation of m1 is located at n3 .
(3) In CFG for m2 , there is a node n3 reachable from n2 , the in-
vocation of m3 is located at n3 , and m1 is reachable in the call
graph from m3 .

We define the following two heuristics:

• Reachability: A reachability analysis is performed to de-
termine which paths may potentially reach the uncovered
nodes. Only those paths are then selected for re-execution at
the next iteration. A simplified version of this heuristic could
be just favoring paths that end in certain methods, assuming
that the target is reachable from those methods.

• Counter: Sometimes, the execution of the uncovered part
of the program depends on certain number of executions of
specific statements, and intuitively the more those specific
statements are executed, the more likely the uncovered part
would get covered. This situation occurs in reactive pro-
grams that interact continuously with the environment or,
more generally, in programs with looping constructs. We can
count how many times the specific statements are executed
for each path, and select paths with the maximum counter to
re-execute. For example, we use the mapping of CFG and
trie to find the nearest executed symbolic conditional branch
that leads to the uncovered part, and count how many times
the branch is executed on each path using the trie.

Other heuristics that utilize the information from a partial sym-
bolic execution run to guide subsequent runs can be defined.

4.2 Other Applications

4.2.1 Continuous Testing
Memoise can further enable interesting new applications such as

“continuous testing” [21]. Similar to “continuous compilation” in
modern IDEs, continuous testing uses excess CPU cycles on a soft-
ware developer’s workstation to continuously test the code, while
the developer works on writing it. In the original continuous test-
ing approach [21], the test cases were provided explicitly by the
user. One can use memoized symbolic execution to continuously
and incrementally generate the tests automatically, while the code
is being written.

Similar to regression analysis, a differential analysis could mon-
itor for program changes and determine the impacted nodes in the
trie structure. That information can be used to drive the symbolic
execution of the impacted parts of program and re-generate parts of
the trie and the corresponding tests, while unchanged parts of the
trie and the corresponding tests are still there for reuse. In this way,
the trie structure and tests generated from symbolic execution can
be efficiently maintained when the program evolves.

4.2.2 Load Balancing for Parallel Execution
Parallel techniques have shown promise in addressing the scala-

bility issues of symbolic execution [25]. The trie structure obtained
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from a “shallow” memoized symbolic execution can be used to ob-
tain information for building balanced partitions of the symbolic
execution tree. The obtained static partitions can then be distributed
for further “deeper” parallel symbolic execution on different ma-
chines. This would be more efficient than a previous parallel exe-
cution approach [25] that uses a set of disjoint pre-conditions for
static partitioning; these additional pre-conditions contribute ex-
tra constraints that may slow down the analysis significantly. The
trie can be further used to perform dynamic load balancing, by re-
distributing the computation during the parallel exploration, based
on the previously cached results.

4.2.3 Partial Symbolic Execution
When “classical” symbolic execution runs out of resources (time

or memory), the significant computation performed by symbolic
execution is typically lost. In contrast Memoise returns compact
information about the partially explored symbolic state space. The
trie structure obtained from the partial run can be mined for infor-
mation that may be useful to the user such as path feasibility and
unreachable code. As expected, Memoise also enables a form of in-
cremental partial symbolic execution, i.e. next time one can restart
symbolic execution from where it ended, guided by the trie paths
that end in boundary nodes.

4.2.4 Component Certification
Component-based software engineering enables rapid develop-

ment of systems through the assembly of pre-existing components.
Before using an acquired component one must certify that the com-
ponent is safe and performs as advertised. This is particularly im-
portant for third-part components that come from untrusted sources.
Memoise enables program certification, by reducing it to checking
the provided trie. Thus, the trie acts as the “program certificate”,
and program certification is then the efficient memoized symbolic
re-execution. Since in re-execution, constraints solving is turned
off, program certification could be done on different platforms; this
is a significant benefit, since it is often the case that many constraint
solvers are platform specific.

The approach is similar to “search-carrying code” [26], which
uses explicit-state model checking for certification. Symbolic ex-
ecution may be better suited for certification, since it can analyze
programs that are “open” (i.e. have un-specified inputs), which is
typical for components, while explicit-state model checking ana-
lyzes closed systems.

5. EVALUATION
In this section, we present the experiments we have conducted to

evaluate our proposed approach, with respect to the time and mem-
ory cost incurred by building, storing and retrieving the trie and the
savings that can be achieved with Memoise. We have implemented
memoized symbolic execution and the three representative appli-
cations described in the previous section, and we performed the
experiments on several non-trivial example programs, the largest
example having 4697 lines of code. We begin with a description of
our implementation.

5.1 Implementation
We use Symbolic PathFinder (SPF) [18, 19], an open source

symbolic execution tool for Java bytecode. SPF is part of the Java
PathFinder verification tool-set [2] which includes JPF-core, an
explicit-state software model checker, and several extension projects,
one of them being SPF. JPF-core implements an extensible custom
Java Virtual Machine (VM), state storage and backtracking capa-
bilities, different search strategies, as well as listeners for monitor-

1void testLoop1(int x) {
2 int c=0 , p=0 ;
3 while(true) {
4 if(x<=0) break;
5 if(c==50) {
6 System.out.println("abort1");
7 assert false; // error 1
8 }
9 c=c+1;

10 p=p+c;
11 x=x-1;
12 }
13 if(c==30) {
14 System.out.println("abort2");
15 assert false; // error 2
16 }
17}

Figure 8: Example program with one loop

ing and influencing the search. By default, JPF-core executes the
program concretely based on the standard semantics of the Java.
SPF replaces the concrete execution semantics with a non-standard
symbolic interpretation of bytecodes.

Symbolic execution of conditional instructions is performed by
generating a non-deterministic choice using a PC choice gener-
ator. Each choice is associated with a path constraint encoding
the condition or its negation respectively. The path constraints are
checked for satisfiability using off-the-shelf decision procedures or
constraint solvers. If the path constraint is satisfiable, the search
continues; otherwise, the search backtracks.

We have implemented the procedures for: building the trie, it-
erative deepening, regression analysis, and the two guided heuris-
tics for increasing the coverage during symbolic execution. All the
procedures are implemented as JPF listeners. When building the
trie, JPF’s search events such as “state advanced” and “state back-
tracked” are monitored, so that whenever a conditional instruction
bytecode is symbolically executed a trie node is created as a child of
the current trie node, and the current trie node is updated while the
search is advanced or backtracked correspondingly. Information
including the conditional instruction bytecode offset, the choice
taken by execution, and the fully qualified method name, is col-
lected at runtime and stored in the trie. The approach can be easily
extended to store other kind of information that might be relevant
for an analysis, such as the constraint associated with the condition
in the code. When the search depth bound is hit, the current trie
node at that point is marked as boundary. The saving/loading of
tries is implemented using the Java Serialization API, which stores
Object state to a file in disk.

To facilitate regression analysis and heuristic search, we imple-
mented a custom control flow analysis, and the mapping between
control flow graphs and the trie is maintained, so that the analyses
can be conducted. The analysis traces back from the change to the
root in each control flow graph path, to find the nearest branch of a
symbolic conditional. The branch has an offset and a choice, which
are used to map to the trie to find the impacted trie nodes. The parts
of trie rooted at those impacted trie nodes should be rebuilt.

JPF/SPF are publicly available. We have put the code for our
implementation and the experiments in JPF-memoise, a sub-project
of JPF, and we plan to release it publicly soon (the code for the case
studies is already available at:
https://hostdb.ece.utexas.edu/∼gyang/memoise).

5.2 Example Programs

5.2.1 Loops
Looping programs pose particular challenges to symbolic exe-

cution and handling them efficiently is an active area of research.
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1void testLoop2(int x, int y) {
2 int c=0 , p=0 ;
3 while(true) {
4 if(x<=0){
5 break;
6 }
7 if(c==100) {
8 System.out.println("abort1");
9 assert false; // error 1

10 }
11 c=c+1;
12 x=x-1;
13 }
14

15 while(true) {
16 if(y<=0){
17 break;
18 }
19 if(p==50 && c==2) {
20 System.out.println("abort2");
21 assert false; // error 2
22 }
23 p=p+1;
24 y=y-1;
25 }
26}

Figure 9: Example program with two loops

1public class BankAccount {
2 private int balance;
3 private int numberOfWithdrawals;
4 public void deposit(int amount) {
5 if (amount > 0)
6 balance = balance + amount;
7 }
8 public void withdraw(int amount) {
9 if (amount > balance) {

10 printError();
11 return;
12 }
13 if (numberOfWithdrawals >= 5) {
14 assert false;
15 printError();
16 return;
17 }
18 balance = balance - amount;
19 numberOfWithdrawals++;
20}

Figure 10: A bank account example

We investigate here how the proposed techniques based on Mem-
oise can help with dealing loops. The example in Figure 8 has been
used in previous work on loop analysis [11] where test inputs are
generated to exercise the two statements at line 6 and line 13.

The example in Figure 9 is similar, except that the part after the
first loop is another loop, instead of a simple conditional statement.
Note that in both cases, symbolic execution results in an unbounded
execution tree.

5.2.2 BankAccount
The bank account example shown in Figure 10 has been used in

previous work [13] to illustrate method sequence generation using
symbolic execution and evolutionary testing. The example imple-
ments a bank account service. In the BankAccount class, the
deposit method is used to deposit money in the account. The
withdraw method is used to withdraw money from the account.
In withdraw, if the amount to be withdrawn is greater than the
account balance,an error message is printed and the method exits.
If the number of withdrawals (numberOfWithdrawals) com-
pleted so far is greater than or equal to a fixed quantity (5) an error
message is again printed and the method exits; otherwise, the with-
drawal amount is dispensed, and both balance and
numberOfWithdrawals are updated.

5.2.3 WBS
Wheel Brake System (WBS) is a synchronous reactive compo-

nent from the automotive domain. This method determines how
much braking pressure to apply based on the environment. The
Java model is based on a Simulink model derived from the WBS
case example found in ARP 4761 [20, 14]. The Simulink model
was translated to C using tools developed at Rockwell Collins and
manually translated to Java. It consists of one class and 231 lines
of code.

5.2.4 TCAS
Traffic Anti-Collision Avoidance System (TCAS) is a system to

avoid air collisions. Its code in C together with 41 mutants are
available at SIR repository [3]. We manually converted the code to
Java. The Java version has 143 lines of code.

5.2.5 MerArbiter
MerArbiter models a component of the flight software for NASA

JPL’s Mars Exploration Rovers (MER). The analyzed software con-
sists of a Resource Arbiter and several user components. Each user
serves one specific application, such as imaging, controlling the
robot arm, communicating with earth, and driving. The arbiter
module moderates access to several shared resources. It prevents
potential conflicts between resource requests coming from differ-
ent users and it enforces priorities. For example, it does not make
sense to start a communication session with Earth while the rover
is driving.

MerArbiter has been modeled in Simulink/Stateflow and it was
automatically translated into Java using the Polyglot framework [5].
The configuration for our analysis involved two users and five re-
sources. The example has 268 classes, 553 methods, 4697 lines of
code (including the Java Polyglot execution framework).

5.2.6 Apollo
The Apollo Lunar Autopilot is a Simulink model that was au-

tomatically translated to Java. The translated Java code has 2.6
KLOC in 54 classes. The Simulink model was created by an engi-
neer working on the Apollo Lunar Module digital autopilot design
team. The goal was to study how the model could have been de-
signed in Simulink, if it had been available in 1961. The model is
available from MathWorks6. It contains both Simulink blocks and
Stateflow diagrams and makes use of complex Math functions (e.g.
Math.sqrt). The code has been analyzed before using Symbolic
PathFinder with the Coral solver [24].

5.3 Experimental Results

5.3.1 Iterative Deepening
We conducted several groups of experiments. In each group, we

increased the depth from A to B. At depth A we built the trie while
at depth B, we re-used and updated the trie. We also conducted
regular symbolic execution as implemented in SPF at both depth
A and depth B. Table 1 shows the results for our experiments on
WBS, MerArbiter, and Apollo. This table shows the time and mem-
ory (Mem) results for regular symbolic execution and for Memoise.
It also shows the number of states, the number of constraint solver
calls and the size of Trie that is saved during Memoise at depth
B. Reg represents regular symbolic execution while ID represents
Memoise for iterative deepening. ID-c and ID-p respectively rep-
resent Memoise with compression and without compression.

For symbolic execution at depth A, we find that the time cost of
Memoise is greater than regular symbolic execution for WBS, while
for the other two examples, the time cost of running the two tech-
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Table 1: Iterative Deepening Results
Depth Sym Exe at Depth A Sym Exe at Depth B

Time (ss) Mem (MB) States #Solver calls Time (ss) Mem (MB) Trie (MB)
A B Reg ID Reg ID Reg ID Reg ID Reg ID-p ID-c Reg ID-p ID-c ID-p ID-c

24 25 16 21 305 419 349272 252952 335358 77312 20 24 22 242 474 474 18.8 13.4
29 30 34 60 246 260 644184 171784 629758 32256 37 36 27 214 500 486 35.4 9.3

(a) WBS Example

Depth Sym Exe at Depth A Sym Exe at Depth B
Time (ss) Mem (MB) States #Solver calls Time (ss) Mem (MB) Trie (MB)

A B Reg ID Reg ID Reg ID Reg ID Reg ID-p ID-c Reg ID-p ID-c ID-p ID-c
24 25 35 38 304 367 17103 16756 12252 2942 47 46 45 413 263 395 0.9 0.8
29 30 86 87 419 333 33273 15250 25684 1540 92 45 45 413 345 263 2.0 0.9
34 35 96 97 419 345 35359 1476 27636 18 102 9 9 292 404 243 2.1 0.1

(b) MerArbiter Example

Depth Sym Exe at Depth A Sym Exe at Depth B
Time (ss) Mem (MB) States #Solver calls Time (ss) Mem (MB) Trie (MB)

A B Reg ID Reg ID Reg ID Reg ID Reg ID-p ID-c Reg ID-p ID-c ID-p ID-c
9 10 127 125 425 352 674 647 255 121 195 76 77 421 343 296 0.03 0.03

11 12 538 549 413 414 2243 2113 2160 966 1033 490 483 390 316 420 0.12 0.11
(c) Apollo Example

niques is almost the same. We examined the cost distributions of
Memoise for WBS, and found that it took 5 seconds and 11 seconds
to save to disk the trie built at depth 24 and 29 respectively. Thus,
the time cost for building a trie itself is not much. While Mem-
oise costs more memory for four groups of iterations, it cost even
less memory for other three groups of iterations. The memory cost
results for symbolic execution at depth B show the similar trend.
To understand this observation, we made several runs of symbolic
execution with the same configuration, and found that the memory
cost reported by SPF vary a lot. We conjectured that this depends
on how the underlying garbage collection works, and comparison
of the memory cost shown in the table is not very meaningful. On
the other hand, in terms of space cost, a comparison based on num-
ber of states is more meaningful.

Since building the trie only monitors the search and builds the
data structure, without changing the behavior of the search engine
or the underlying constraint solver, it should not influence the num-
ber of states and number of solver calls. We didn’t report the states
and the number of solver calls for A in the table, but we examined
the results on each group and the results were the same as expected.

For symbolic execution at depth B, we found that for most groups
of iterations Memoise explored fewer states, made fewer solver
calls, and correspondingly took less time. Especially for the last
group in MerArbiter example where the depth is increased from 34
to 35, the reduction is more than an order of magnitude. For WBS,
although the reduction of states and solver calls is still significant,
the reduction of time is however not much, and Memoise without
compression even took more time than regular symbolic execution.
Again, we found loading and saving the trie took 12 seconds and 18
seconds at depth 25 and 30 respectively. Therefore, the reduction of
time that was spent on state-space exploration and constraint solv-
ing is still significant. Moreover, for both WBS and MerArbiter, the
reduction for the number of states, solver calls, and time appears
to get more significant when the depth goes deeper for WBS and
MerArbiter. The reason could be that when the state space of a
program is searched deeper, normally more paths get complete or
infeasible, and thus can be pruned in the next iteration.

Interestingly, for Apollo example, although Memoise explored
almost the same number of states as regular symbolic execution, it
achieved more than 2X speedup. The key contributing factor for
this speedup is the reduction of solver calls.

The table also shows that for WBS and MerArbiter, compres-
sion makes the trie size smaller, while for Apollo, it is not the case.
From this observation, we conjectured that the symbolic execution

tree for Apollo is quite balanced and few parts can get removed by
compression. This is supported by the fact that little reduction is
achieved in terms of the number of states explored. It is interest-
ing to find that Memoise with compression outperforms Memoise
without compression in terms of time cost only in WBS. We note
here that compression enables better memory usage, and thus when
the trie size is big and saving/loading of trie is time consuming, the
performance in terms of time cost could also benefit from compres-
sion.

5.3.2 Regression Analysis
We performed experiments on TCAS and MerArbiter to evaluate

the effectiveness of regression analysis based on Memoise. The
trie is built when symbolic execution is performed on the original
program version, and then reused for the run of symbolic execution
on a new program version.

For TCAS, we randomly selected three mutant versions v6, v25,
and v30 from the SIR repository [3]. Compared to the original
version v0, version v6 has an operator change from “<” to “<=”,
v25 has an operator change, and v30 has a return value change.
Since there were no version histories for MerArbiter, we randomly
picked two methods, and manually introduced the changes. Version
v1 has a change to the return value in the method guard of class
Transition300, and version v2 has an operator change from
“==” to “! =” in the method guard of class Transition186.

Table 2 gives the results for memoized regression analysis. It
shows the number of states explored, the number of solver calls, the
time and memory cost for both regular symbolic execution (Reg)
and Memoise (RA) on the new program version. Furthermore, it
shows the trie size stored after the Memoise is performed on the
new version, with compression (RA-c) and without compression
(RA-p) respectively, and the cost for merging in cases where com-
pression is conducted.

The memoized regression analysis is based on the trie built dur-
ing the initialization run of Memoise on original program version
v0. As expected, Memoise and regular symbolic execution on ver-
sion v0 yield the same number of states and same number of con-
straint solver calls. For TCAS, Memoise took 146 seconds and 203
MB of memory, compared to 149 seconds and 223 MB from regu-
lar symbolic execution. For MerArbiter, Memoise took 47 seconds
and 401 MB of memory, compared to 49 seconds and 344 MB from
regular symbolic execution.

Across the three TCAS versions, the performance gain from us-
ing Memoise varies a lot. We find that for version v6, Memoise
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Table 2: Regression Analysis Results
Version States #Solver calls Time (ss) Mem (MB) Trie (MB) Merging (ss)

Reg RA Reg RA Reg RA-p RA-c Reg RA-p RA-c RA-p RA-c
v6 2688 2186 2566 1696 166 119 118 147 211 147 0.16 0.13 0.43

v25 2688 2658 2566 2016 145 67 68 137 214 229 0.16 0.11 0.38
v30 752 722 686 632 40 40 40 136 216 138 0.04 0.04 0.34

(a) TCAS Example

Version States #Solver calls Time (ss) Mem (MB) Trie (MB) Merging (ss)
Reg RA Reg RA Reg RA-p RA-c Reg RA-p RA-c RA-p RA-c

v1 17718 6395 12596 2072 55 20 20 292 416 329 0.93 0.33 0.92
v2 17103 43 12252 2 51 3 3 380 218 217 0.91 0.01 0.77

(b) MerArbiter Example

Table 3: Heuristics-Guided Symbolic Execution Results
Scenario Candidates States #Solver calls Time (ss) Mem (MB)
20→37 32/64 8253 4032 28 149
25→37 128/256 8445 3840 29 216
30→37 0/512 - - - -
35→37 0/2048 - - - -

(a) Reachability Heuristic for BankAccount

Scenario Candidates States #Solver calls Time (ss) Mem (MB)
20→37 1/64 277 127 25 153
25→37 1/256 93 31 26 153
30→37 2/512 93 29 27 121
35→37 2/2048 53 5 24 121

(b) Counter Heuristic for BankAccount

Scenario Candidates States #Solver calls Time (ss) Mem (MB)
Reg HR Reg HR Reg HR Reg HR

40→60 76/76 3416 3416 3414 1932 1 2 215 150
60→80 1/114 6116 538 6114 420 2 1 342 121

80→100 1/154 9616 578 9614 420 3 1 291 151
100→120 1/194 13610 312 13608 114 4 1 342 216

(c) Reachability Heuristic for Example with Two Loops

Scenario Candidates States #Solver calls Time (ss) Mem (MB)
Reg HR Reg HR Reg HR Reg HR

25→30 101/3580 33273 2071 25684 932 106 11 319 294
(d) Reachability Heuristic for MerArbiter

explored about one fifth less states, made about 1000 less solver
calls, and took about one third less time than regular symbolic ex-
ecution. However, Memoise explored almost the same number of
states as regular symbolic execution for versions v25 and v30. In-
terestingly Memoise achieved 2X speedup for version v25 while it
had no speedup for version v30. The reason for this is that fewer
number of solver calls were made for version v25.

For MerArbiter, the reduction is significant for both versions. On
version v1, memoized regression analysis explored about one third
of the number of states, took less than one third of the time com-
pared with regular symbolic execution, and made about one sixth
number of calls to constraint solver. On version v2, the reduction
achieved by memoized regression analysis is even more significant.
The differences in both the number of states explored, and the num-
ber of solver calls are in several orders of magnitude.

We find that compression reduces the size of the trie significantly
for the MerArbiter versions, while for the TCAS versions it does
not. This indicates that most parts of the trie were impacted by
changes made in the TCAS versions. The merging time is not much
according to the results in the table.

5.3.3 Heuristics-Guided Symbolic Execution
For the BankAccount example shown in Figure 10, a symbolic

driver which symbolically selects the method deposit or withdraw
and symbolically picks the amount to be withdrawn and to be de-
posited, is used to generate sequences of methods to cover the pro-
gram. We note that the statements at lines 14, 15 and 16 are hard to
cover. 37 is the smallest depth bound at which symbolic execution
can cover the three statements.

Without using heuristics, the regular symbolic execution with
depth bound 37 explored 16381 states, took 30 seconds, and made
8190 solver calls. The two heuristics were applied based on the trie
collected at a smaller depth. We picked 20, 25, 30, and 35 to run
the initialization run of Memoise to build the trie.

In Table 3-(a), we can see that, for tries built at both depth 20 and
25, the reachability heuristic selected half of the trie paths ended
with boundary nodes as candidates to execute. Compared with reg-
ular symbolic execution, it explored about half of the state space,
took about one or two seconds less of time, and made about half of
the number of solver calls. However, for the two tries built at depth
30 and 35, no path was taken as a candidate, and the heuristic is
just not applicable.

In Table 3-(b), with counter heuristic applied, the number of can-
didate paths is one or two for the tries built at the four different
depths. Moreover, the number of states explored and the number of
solver calls are much less than for regular symbolic execution, but
the time reduction is similar to what was achieved by the reacha-
bility heuristic. It is conjectured that most time is spent on solving
some specific hard-to-solve constraints, and the conjecture seems
supported by the last row in the table. Note that for all cases where
either the reachability heuristic or the counter heuristic is applica-
ble, the hard-to-cover part was covered.

We have also analyzed the two loop examples using the reacha-
bility heuristics. Error 1 in Figure 8 is very difficult to uncover;
we considered both error 1 and error 2 as our coverage tar-
gets. The reachability heuristic can not help with this example,
since no matter what the depth bound is, the symbolic execution
tree has only one boundary node, resulting in no pruning. On the
other hand, the loop example shown in Figure 9 contains a more
realistic scenario, with two loops, where each loop has an error to
cover, and the first error is harder to cover. We ran symbolic ex-
ecution with the depth iteratively deepened, from 40 to 120, each
time the depth is increased by 20. The results are shown in Ta-
ble 3-(c). At depth 40, the heuristic is not applicable since there
was no trie available; while at depth 60, the heuristic applied on
the trie built at depth 40 only reduced calls to the constraint solver
since both targets error 1 and error 2 were reachable from
all boundary nodes of the trie. However, since symbolic execution
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at depth 60 covered error 2, leaving error 1 as the only tar-
get, we used reachability heuristic to guide the symbolic execution
to cover error 1. The error 1 was not covered until the depth
was 120. We find that the heuristic (HR) explored much less num-
ber of states and made less solver calls as well. The time difference
is not significant since the constraint solving and space exploration
took just few seconds.

For the MerArbiter example, we used the reachability heuristic
with the class modeling the arbiter as target. We used the trie col-
lected while running symbolic execution at depth 25 for the run at
depth 30. In Table 3-(d), we find that the savings achieved by the
reachability heuristic (HR) are significant. We checked the byte-
code coverage for both regular symbolic execution and the reacha-
bility heuristic guided symbolic execution: 0.91 for heuristic guided
vs. 0.93 for regular symbolic execution at depth 30. Although the
regular symbolic execution covered a little more which is reason-
able considering that a lot more effort was spent in regular symbolic
execution, the reachability heuristic does help improve the cover-
age of the target class at less cost.

We also collected the number of states explored, time cost, and
the number of solver calls for all initialization runs of Memoise in
this study. As expected, the initialization run of Memoise explored
the same number of states, made the same number of solver calls,
and spent almost the same time as regular symbolic execution.

5.4 Threats to Validity
The primary threats to external validity for our experiments in-

clude (1) the use of SPF where our approach and the enabled analy-
ses were implemented, (2) the use of specific underlying constraint
solver, (3) the selection of examples used in the experiments, (4) the
specific depths picked for symbolic execution, and (5) the mutants
selected or created. Implementing our approach and enabled anal-
yses in another framework or using another constraint solver/de-
cision procedure could produce different results. Some of the ex-
amples selected for our experiments are small, but they are used
by recent research work to show some limitation of current sym-
bolic execution and they can serve as good example for illustrating
the effectiveness of our approach. The different depth specified
may produce different results. We controlled this by using several
groups with different depths.

The primary threat to internal validity of our experiments is the
possible faults in the implementation of our approach and analyses
and also in SPF. We controlled for this threat by testing the imple-
mentation on examples that we can manually verify.

With respect to threats to construct validity, the metrics we se-
lected to evaluate the cost reduction achieved by memoized sym-
bolic execution and its enabled analyses are commonly used to
measure the cost of symbolic execution.

5.5 Discussion
The savings of using Memoise for regression analysis depend on

the location of the change, and may vary quite a lot between differ-
ent kinds of changes. This observation is supported by our results
for regression analysis. In previous work, we have developed di-
rected incremental symbolic execution (DiSE) [17] for regression
analysis. DiSE uses static analysis to determine the differences
between two program versions and uses this information to guide
the execution of symbolic paths towards exercising that difference.
Regression analysis using trie may not always be as good as DiSE,
the reason being that DiSE analyzes affected conditionals, and ex-
plores the branches in the symbolic execution tree only for them.
For unaffected conditionals, it just explores “one” feasible repre-
sentative branch. In this sense, DiSE covers all affected branches,

but not affected paths. However, our memoized regression analysis
implementation considers all affected paths, and thus often times
the savings are not as much as what DiSE achieves.

However, there are several advantages of using memoized re-
gression analysis. First, DiSE only generates affected path condi-
tions, while memoized regression analysis generates a trie which
represents all paths. If a user wants a complete test suite using
DiSE, he/she needs to check what path conditions get obsolete,
which is not clear how to do. Second, DiSE is based on static
analysis, using control and data flow analysis in CFG; while mem-
oized regression analysis is dynamic, based on the trie, thus it is
more precise. For example, when the change is in an un-covered
code, memoized regression analysis does not need to explore the
state space at all, while DiSE still needs to explore the part affected
by the change. Third, for an affected path DiSE performs regu-
lar symbolic execution; memoized regression analysis explores the
unchanged path prefix more efficiently by turning off the constraint
solving.

We implemented two simple heuristics enabled by Memoise for
experiments; there could be however more effective heuristics based
on Memoise. We leave it for future work. Note that we only turn off
the constraint solving when re-executing a path. More significant
savings could be achieved, e.g. by saving JPF state and restarting
from there. This is left again for future work.

For most experiments, we find that the savings in terms of num-
ber of solver calls is significant. However, this is not always re-
flected in savings of time. The reason is that constraint solving for
some of the analyzed programs is cheap. We believe that for pro-
grams with complex constraints, such as Apollo, one would gain
more benefits from using Memoise.

6. RELATED WORK
There are many recent works that use symbolic execution to per-

form some of the applications that we discussed in this paper, such
as regression analysis [17], parallel symbolic execution [25], etc.
We have already discussed the relationship between some of these
works and ours throughout the paper.

The main contribution of our work is the concept of memoized
symbolic execution, which turns out to enable a multitude of appli-
cations. In this respect, Memoise is most related to recent works on
incremental and regression model checking, e.g. [16, 29]. Those
approaches save the state space graph from one exploration and ex-
amine this graph to determine whether a certain execution is needed
during the next exploration (after a program change). The work is
done in the context of explicit state model checking and therefore is
not concerned with the specific details of symbolic execution, such
as storing choices for symbolic execution, turning-off constraint
solving etc. Furthermore, the approaches [16, 29] target a partic-
ular application, namely regression analysis, while Memoise can
enable multiple applications. Our first heuristic that uses reachabil-
ity information to guide the symbolic execution of a program (Sec-
tion 4) is similar to the one presented in Yang’s previous work [29],
however, as already mentioned, that work was done in the context
of explicit state model checking, not symbolic execution.

The use of trie has an effect similar to caching of constraints
in symbolic execution as performed by the KLEE tool [6]. KLEE
achieves orders of magnitude speed-up because there are often many
redundant constraints during symbolic path exploration. Indeed in
our approach, constraint solving is turned off during re-execution
(see Section 3) so we expect speedups similar to KLEE. How-
ever, KLEE caches solver calls and enables speedup for one run,
whereas Memoise enables reuse and speedup across multiple runs
(e.g. Apollo, Table 1).
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Recent work on must summaries [12] enables a form of com-
positional symbolic execution [9] but does not consider regression
or incremental analysis across different program versions. In con-
trast, memoized symbolic execution enables regression analysis, as
well as incremental iterative deepening and application of heuris-
tics. Moreover, our trie structure can provide a representation for
must summaries.

7. CONCLUSIONS
We presented memoized symbolic execution (Memoise), a new

approach for the efficient application of forward symbolic execu-
tion, that leverages the results cached from previous analysis runs
to improve the analysis in the current run. Memoise uses a trie-
based data structure to store the choices taken during a symbolic
execution run and further maintains the trie during successive runs.
Memoise reduces the analysis cost by using the trie to quickly guide
the search for previously explored paths (with the constraint solv-
ing turned off) and by pruning the paths that are not relevant for the
current run. The results cached by Memoise can be further used to
heuristically guide the search for new paths in successive runs.

Experiments using our prototype implementation of Memoise
demonstrate its potential in enabling more efficient symbolic ex-
ecution in the context of three typical applications: iterative deep-
ening, regression analysis, and heuristics-guided symbolic execu-
tion. Although our trie representation is lightweight, we would
like to investigate large tree-based data structures such as the AVL-
trees used in relational databases to store the trie for the memoized
symbolic execution of very large programs. We further plan to in-
vestigate compositional techniques for increased scalability and to
evaluate the other applications that we outlined here for Memoise.

Symbolic PathFinder (SPF) handles non-determinism by using
JPF’s choice generators. Therefore, the same mechanism for stor-
ing and re-playing the choices that is described in this paper can be
used to handle non-determinism in memoized symbolic execution;
we would need to make a modification to our JPF listener to keep
track of the additional choices.
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