NASA goals for increased aircraft efficiency
- Proof of concept architecture for flight control with load feedback
- Optimal control allocation with load constraints
- Wind energy challenges
- Wind turbine blade damage
- Adaptive contingency control

SUGAR Ray design by NASA sponsored team led by The Boeing Company
Subsonic Fixed Wing Project

WHAT
- Reduce environmental impact of aviation
- Increase aircraft efficiency
- Improve mobility of aircraft in airspace

WHY?
- Unacceptable community noise and other environmental emissions
- Need to reduce fossil fuel consumption
- Demands from NextGen airspace
- Air transportation plays key role in our economy and quality of life

HOW!
- Create prediction and analysis tools for design
- Develop concepts and technologies for significant improvements in noise, emissions and performance
- Partner with academia, industry, and government
Weight Reduction for Increased Efficiency

- Create new fabrication processes for lightweight materials, esp. large structures
- Design lightweight wing structures with aeroelastic tailoring to eliminate heavy control surfaces
- Use aerogels for super-lightweight insulation
- Increase temperature capability of composites for greater use in engines

Electron Beam Freeform Fabrication (EBF3)
Polymer-enforced aerogel
Fan containment system with high temperature capability
Drag Reduction for Increased Efficiency

- Increase laminar boundary layer by delaying transition to turbulent flow
 - Design surfaces with favorable pressure gradients (natural laminar flow)
 - Include active or passive local suction surfaces (hybrid laminar flow)
- Use active aeroelastic tailoring of wing to reduce drag during cruise
- Advanced CONOPS – formation flight
- Develop & validate CFD codes for design & analysis of advanced drag reduction concepts
Traditional Flight Control System

Traditional Approaches for Control Allocation
- **Ganging of Actuators**: use elevator for pitch, ailerons for roll, rudder for yaw
- **Mixers**: fixed combination of surfaces to achieve commands

Structural Limits
- Design engineers determine critical load paths in aircraft
- Mostly concerned with bending, torsion, and shear loads
- Load limits are determined through ground tests and flight tests
- Load limits imposed by restricting flight envelope; position & rate limiting actuators

Control Allocation: Determine surface deflections needed to achieve desired rates
New Challenges for Flight Control Systems

- Many redundant effectors
- Surfaces affecting multiple axes
- Actuator rate & position saturation
- Low control authority
- Lighter more flexible structures

Optimal Control Allocation

Given B, a desired vector u_p and $\varepsilon > 0$, find u such that

$$J = \left\| Bu - a_d \right\| + \varepsilon \left\| u - u_p \right\|$$

is minimized subject to $u_{\text{min}} \leq u \leq u_{\text{max}}$, $|\dot{u}| \leq \dot{u}_{\text{max}}$

No Structural Constraints!!
Objective:
Use multiple control surfaces in most effective way, while remaining within structural load limits

Approach:
Replace traditional control allocation with optimal control allocation with load constraints and real-time load feedback
- Measure internal (structural) loads along critical load paths
- Use aircraft aerodynamic and structural models to determine incremental loads due to incremental surface deflection
- Include structural load constraints and measured loads in optimal control allocation problem

Significance:
This approach enables fuel efficient aircraft with many multi-purpose control surfaces to achieve acceptable performance & safety
Study Assumptions

- Only considering static loads due to lift and rolling forces
- Finite element model (FEM) of aircraft wings and tail
- Loads due to lift and roll are applied to nodes in FEM model
- Bending moments calculated using finite element analysis (FEA)
- A select number of load points are monitored and included in the optimal control allocation constraints
Pilot Inputs

Stability & Control Augmentation System

Optimal Control Allocation

Aircraft

\(\delta_{\text{attitude}} \)

\(u_{\text{throttle}}, u_{\text{auxiliary}} \)

\(a_d, u_p, T, F_I \)

\(u \)

\(y \)

\(y_s, F_E \)

\begin{align*}
\text{a}_d & \quad \text{desired accelerations} \\
\text{u}_p & \quad \text{preferred delta surface positions} \\
\text{B} & \quad \text{control effectiveness matrix} \\
\text{T} & \quad \text{incremental loads matrix, where Tu gives the incremental loads at critical points} \\
\text{y}_s & \quad \text{structural loads from sensors (or model in sim)} \\
\text{F}_E & \quad \text{external forces due to lift and body moments} \\
\text{F}_I & \quad \text{internal structural loads at critical points}
\end{align*}
Optimal Control Allocation Problem:
Given B, a desired vector u_d and $\varepsilon > 0$, find u such that

$$J = \underbrace{\|Bu - a_d\|_1 + \varepsilon\|u - u_d\|_\infty}_{\text{error min}}$$

is minimized subject to:

$$u_{\min} \leq u \leq u_{\max}, \quad F_I + Tu \leq F_{I,\max}$$

where $F_{I,\max}$ are critical point load limits

Can also be formulated with load minimization, using constraints given above and cost function:

$$J = \|Bu - a_d\| + \varepsilon\|u - u_d\| + \gamma\|F_{I,\max} - F_I + T(u - u_p)\|$$

load min
Up-scale GTM Simulation

- Simulink model based on 5.5% dynamically scaled aircraft derived from wind tunnel & flight test data
- Up-scaled by incorporating Reynolds adjusted aero tables
- Actuator models sized for up-scale GTM
- NASA Glenn’s Simp2 engine (simplified version of C-MAPSS40k)
- GTM bare airframe
- 6 ailerons, 4 elevons, 2 rudders, 2 stabs, 2 flaps
- Vehicle Management System
 - sensor processing module
 - mission manager
 - guidance/control
- Vehicle Control Augmentation System
 - reference model dynamic inverse controller
 - optimal control allocator
Finite Element Modeling Approach

- Wings/tails modeled as cantilever beams with fixed ends at roots
- Constant thickness hollow aluminum shells following outer mold line give beam cross section properties
- Beam nodes located at centroids of wing cross sections

Vortex-lattice model of aircraft

Wing cross sections
Finite Element Model of GTM

- Beam mesh for each wing has 20 nodes and 19 beams
- Each beam has 6 degrees of freedom – 3 translation & 3 rotation

U. Wyoming 9/27/11
- Assume static loads and static response, \(F = Kx \)
- Stiffness matrix \(K \) is derived from FEM
- \(K^{-1} \) is computed off-line
- Static loads applied during simulation to FEA nodes
- Measured loads are calculated from deflections using \(K^{-1} \)
- Elliptically distributed lift load applied to nodes along wings and horizontal tail
- Loads arising from roll moments applied as concentrated forces in z-direction on each aileron in proportion to aileron deflection
Integration with Simulation

- Flap-wise bending moment at critical points are calculated & passed to control allocator
- K^{-1} and B are used during simulation to determine incremental loads matrix T
- Aileron forces are assumed to be proportional to surface deflections for calculation of T

Internal load monitoring points

Moment arms

Roll forces applied here
Flight conditions:
- Altitude 30,000 ft
- Mach 0.85

Test cases:
- Normal case
 Load limits set to values determined for safe flight
- Case I
 Right aileron load limit set to 55,000 ft-lb
- Case II
 Left outboard aileron deflection limits set to ±0.01 deg
Roll Doublet Case I

Normal Load Constraints

Reduced Load Constraints

U. Wyoming 9/27/2011
Bending Moment for Right Outboard Aileron

Case I: Outboard aileron critical point limit set to 55,000 ft-lb
Aileron Deflections Case 1

Right aileron 3 deflection reduced
Formulation & Solution Approaches

Mixed Optimization Formulation

Find \(u \) that minimizes \(J = \|(CB)u - a_d\| + \varepsilon\|u - u_p\| \)
subject to \(u_{\text{min}} \leq u \leq u_{\text{max}}, \ |\dot{u}| \leq \dot{u}_{\text{max}} \)

Solution Approaches Using Different Norms

- **\(L_1 \) norm:** \(\|u\|_1 = \sum_i |u_i| \)
 - Convert to linear programming problem
 - Simplex algorithms (Bodson)
 - Interior-point algorithms (Peterson, Bodson)

- **\(L_2 \) norm:** \(\|u\|_2 = \sqrt{\sum_i u_i^2} \)
 - Active Set Method with norms squared (Härkegård)
 - Interior-point algorithms

- **\(L_\infty \) norm:** \(\|u\|_{\infty} = \max_i (u_i) \)
 - Simplex algorithm (Bodson, Frost)
Normal Case with ℓ_∞ versus ℓ_1 Norm on Control

ℓ_∞ Norm on Control

ℓ_1 Norm on Control

All surfaces are used

Outboard aileron is most effective
Normal Case with l_∞ versus l_1 Control Norm

ℓ_∞ Control Norm

ℓ_1 Control Norm

Left Aileron Deflections (°)

Right Aileron Deflections (°)

Time (s)
Proposed framework performed adequately in simulation & proof of concept demonstration was successful

- Control allocation
 - Try load minimization
 - Use weights on surfaces and critical points depending on health of components
 - Explore non-feasible solutions

- Loads model
 - Investigate robustness, computation time, sensitivity
 - Include torsion, structural dynamics

- Work with sensors to measure loads
- Include aeroelasticity in simulation
- Flight test technology at Dryden Flight Research Center
Our Next Challenge: Distributed Control Effectors

Objective:
• Develop variable stiffness materials for distributed control effector skins

Approach:
• Investigate mechanisms that can impart variable stiffness to material systems to enable novel control effectors to control lightweight flexible wings
• Test various concepts on distributed control effector model to determine feasibility as a structural element

Significance:
• Variable stiffness material systems can enable control of aeroelastically tailored lightweight wings to meet SFW fuel burn goals

Results:
• Bench model (shown top right) developed to study angles and deformations of distributed control effectors to develop requirements and test candidate variable flexibility control surface skins
• This activity will involve materials, structures, aeroelasticians, controls and dynamics experts working concurrently to design, analyze, build and test a distributed control surface concept

POC: emilie.j.siochi@nasa.gov LARC
U. Wyoming 9/27/2011
Wind Industry Practices

- Industry is relatively low-tech and very protective of IP
- Research funding is limited
- Very little vertical stratification
- New technologies need quick and cost-effective integration

Wind Industry Challenges

- Building large turbines (>5 MW)
- Operating & maintenance costs
- Turbine reliability
- Grid integration
- Community noise
- Wind farm siting
SCADA system
- Supervisory Control and Data Acquisition for wind farm
- Medium- and long-term changes in environmental & operating conditions
- Minimal fault diagnosis
- Lots of data, not always useful

Short-term condition monitoring
- Equipment set up for one month for vibration, acoustic, strain, nacelle acceleration testing

Scheduled maintenance & inspection

Acceptance of CM by operators/developers
- Dependent on cost of CM system
- Might affect warranty

Some OEMs are moving towards guaranteed uptime

Image: www.vertigo.net.au
Leading Causes of Blade Failures\(^1\)

1) Manufacturing defects - wrinkles in laminate, missing or incomplete bond lines, dry fibers
2) Progressive damage initiating from leading-edge erosion, skin cracks, transport, handling, or lightning strikes
3) Excessive loads from turbine system dynamics or dynamic interaction with control system
4) Out-of-plane forces and distortion of blade sections (“bulging/breathing” effect) mostly in root transition region, due to blade loading
5) Excessive loads due to unusually severe atmospheric conditions

\(^1\)DNV Renewables, Seattle, WA, “Lessons Learned from Recent Blade Failures: Primary Causes and Risk-Reducing Technologies”, D.A. Griffin & M.C. Malkin, 49\(^{th}\) AIAA Aerospace Sciences Meeting, Jan 2011, paper no. 2011-259
Flexible Structure Control Challenge:

- Structural modes can be excited by feedback control
- Low pass filter can reduce problems, but they have limitations
- Residual mode filter (RMF) has model of structural mode, including phase and frequency, that can be removed from feedback
- Flexible structures ARE intrinsically modal systems

Flexible aerospace structures are difficult to model and they operate in poorly known environments

- Adaptive control helps, but requires minimum phase plants (ASPR)
- Residual Mode Filters (RMF) can cancel transmission zeros, restoring ASPR

Recall: A system \((A, B, C)\) is ASPR when \(CB > 0\) and its closed-loop transfer function \(P(s) = C(sI - A)^{-1}B\) is minimum phase.
Assume original system \((A_p, B_p, C_p)\) can be partitioned into:

\[
\begin{aligned}
\begin{bmatrix}
\dot{x} \\
\dot{x}_Q
\end{bmatrix} &=
\begin{bmatrix}
A & 0 \\
0 & A_Q
\end{bmatrix}
\begin{bmatrix}
x \\
x_Q
\end{bmatrix} +
\begin{bmatrix}
B \\
B_Q
\end{bmatrix} u_p +
\begin{bmatrix}
\Gamma \\
\varepsilon \Gamma_Q
\end{bmatrix} u_D \\
y_p &=
\begin{bmatrix}
C & C_Q
\end{bmatrix}
\begin{bmatrix}
x \\
x_Q
\end{bmatrix} ; \quad \varepsilon \geq 0
\end{aligned}
\]

Use RMF to remove these modes from controller feedback.
Adaptive Controller using RMF

Nonlinear Wind Turbine Plant

\begin{align*}
\dot{x} &= Ax + Bu \\
y &= Cx + Du
\end{align*}

Retained Modes

\begin{align*}
\dot{x}_q &= A_q x_q + B_q u \\
y_q &= C_q x_q
\end{align*}

Residual Modes

Adaptive Controller

Residual Mode Filter

\[y_c = y_p - \hat{y}_Q \]
Adaptive Pitch Control for FAST Simulator*

- **Objective:** Regulate generator speed and reject disturbances
- **Input:** Rotor speed
- **Output:** Collective blade pitch, constant generator torque
- **Disturbance:** Step function
- **How:** Model gusts as step functions
- **RMF:** Designed for drive-train rotational flexibility mode

FAST blade configuration files:
- 21 distributed stations along span
- Flapwise & edgewise stiffness
- Flapwise & edgewise bending modes

Assumption:
Blade damage can be represented by reduction in flapwise & edgewise stiffness

Damaged blade configuration files:
- Edgewise and flapwise stiffness are varied at a blade station
- Blade bending mode shapes are recomputed
- Structural damping and other parameters were left unchanged
Blade Node Sensitivity to Stiffness Changes

Full factorial study performed to determine node sensitivity:
- Parameters: blade damage, wind speed, blade pitch
- Levels: 8 for damage, 7 for wind, 10 for blade pitch

Loads on blades are primarily due to aerodynamic forces.
Preliminary study of effects of blade stiffness reduction

- Damage located on one blade at station 7, 30% from blade root
- Study run in open-loop with no generator speed tracking
- Generator torque held fixed at rated torque
- Simulation run with steady wind speeds from 12-24 mps
- Collective pitch varied from 0.1-0.45 radians
- Blade tip displacement was measured
- Pitch & wind speed dominate change in stiffness
- Damage detection tool needs to factor out impact of pitch and wind speed to use deflection
Hypothesis: Reducing power output through generator set-point reduction will reduce loads on turbine blades.

Out-of-plane tip deflection std. dev. for 3 generator set-points & 7 damage levels.
De-rating Generator for Reduced Loads

Simulation Wind Input

Top: Generator set-point
Bottom: Generator speed
Simulation demonstrating contingency controller lowering generator set-point for turbine with blade damage when winds are turbulent & above rated speed

Resulting decrease in blade root bending could extend service life

Blade root bending moment

No contingency control

Adaptive contingency control
Thanks to My Collaborators

Khanh Trinh, PhD
SGT
NASA Ames Research Center
Moffett Field, CA

Brian Taylor, John Burken
NASA Dryden Flight Research Center
Edwards AFB, CA

Mark Balas, PhD
University of Wyoming
Laramie, WY

Alan Wright, PhD
NREL
Golden, CO

Marc Bodson, PhD
University of Utah
Salt Lake City, UT