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ISWHM for Aircraft

• ISWHM monitors the on-board software and
sensors in order to:
– Detect, in integrated (not isolated) fashion, failures in

hardware components and software

– perform on-board reasoning to detect most likely root
cause(s)

– annunciate failures or initiate mitigation actions

• Non-functional requirements:
– small computational footprint

– few false positives and false negatives

– techniques/tools for V&V of ISWHM



ISWHM for Aircraft?!

• Traditional fault
management monitors AC
components in isolation

• Qantas A380 engine
explosion: pilots had to
deal with hundreds of
diagnostic message before
landing

• Lack of integration: Several
messages contradicted
each other and could have
led to critical situations

ISWHM for Aircraft?!

• Several predator crashes attributed to software
anomalies or configuration problems
– 2003: high pitch-up command after autopilot

disengage caused “several oscillations exceeding the
data link... and eventual loss of control”. A “software
anomaly[..] set the pitch stick at 9deg..”

– 2000: Pilot issued “Program mode” command that
erase EEPROM data (incl. weight, link frequencies)
during flight

– 2000: Watchdog timer was “left out” of UAS software
causing loss of telemetry and then loss of control

– ...
http://usaf.aib.law.af.mil



ISWHM Architecture

• ISWHM monitors
– software

– OS

– hardware sensors

• ISWHM uses
Bayesian
networks for
modeling

Bayesian Networks I
• A Bayesian network is a

graphical representation of
a multivariate probability
distribution

• Roughly speaking:
– Nodes = random variables
– Edges = conditional

dependencies

• Compact and modular
representation of joint
probability:
– Conditional probability tables

(CPTs) exponential in
number of parents

• Vibration, Oil Pressure: observable
sensor variables (discrete)
• Bearing Health: unobservable health
node
• Typical queries might include

• Given sensor readings: what is the
probability that the bearing is OK?
• Which effects can a worn bearing
have?
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Bayesian Networks II
• Probability distribution of p(BH,V,OP)

• Lambda: presented evidence (0, 1)
• Example: 

• vibration, oil pressure, good bearing
    
• no vibration, oil pressure, good bearing
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Compilation to Arith. Circuit
• Traditional reasoning

algorithms are recursive
and graph-based

• Probabilities can be
expressed using
polynomials f

• f can be represented as
an arithmetic circuit
(Kantorovich tree)

• Benefit: time/memory
bounded computation of
posterior distributions for
all non-evidence random
variables



BN for ISWHM
• A Bayesian ISWHM model

– is a static BN (i.e., no temporal/dynamic BN)
– uses a discretized BN
– processes data from

• software sensors
• operating system/middleware
• hardware sensors

– posterior distributionss on health nodes provide
information about their status

– additional reasoning method for: sensitivity analysis
and affected components

ISWHM Model

• command node C: external inputs (ground truth)
• sensor node S: process measurements that can

be noisy, bad or unreliable
• health node H: reflects health of sensor or

(software) component
• status node U: unobservable status
• behavioral node B: used to detect behavioral

patterns (e.g., oscillation)

Types of Bayesian network nodes:



ISWHM Model: Edges

• {H,C} → U

• {C} → U

• {H,U} → S

• {H} → S

• {U} → S

• BN edges reflect the structure of the system/software
and capture substantial design knowledge.

• Fault analysis reveals a number of network patterns
• Bayesian health models can be constructed in a

modularized manner

Demonstration Architecture

• For ISWHM demonstration we set up a small
workstation-based aircraft GN&C model
– F16 Simulink plant model (available from Mathworks

website); C code for Simulink model + external
functions have been generated using Mathwork’s
RTW

– An emulated RTOS kernel, which features multiple
processes, shared resources, semaphores, etc. to
carry the GN&C software, the ISWHM executive, and
the plant. No device drivers were emulated.

– Simplified GN&C software with capabilities to
externally inject failures

– External logging and data analysis



Typical GN&C Architecture

Typical architecture:

• PowerPC 750, RAM, Flash,

• IObus: MIL 1553 or CAN bus (automotive)

• OS: Real-time: VxWorks, RTLinux, OSEK compliant, …

• Software
components run
periodically, at
different
frequencies:

• G: 2Hz
• N: 10Hz-100Hz
• C: 100Hz

• Software
components:

• Run in different
processes

• Use comm
layer for inter-
process
communication

OSEK

• OSEK is a standard for a real-time OS, which is
heavily used in the automotive industry. We
used the open source OSEK/Trampoline
emulator.

• Features: multiple processes, rate-monotonic
scheduling, semaphores, interrupt processing on
multiple levels, CAN-bus communication, highly
portable, small footprint

• Does not feature: dynamic processes, space
separation

OSEK: Offene Systeme und deren Schnittstellen fuer die Elektronik in Kraftfahrzeugen



Demonstration Architecture

• GN&C reside in individual processes
• ISWHM executive is a separate process, which reads

information about sensors, signals, OS information from
shared resources

• For demonstration purposes, the plant model is
implemented as a process

Sensors and Preprocessing
• Software and Sensor

signals are time series

• Signals are obtained from
many sources

• We perform feature
extraction (e.g., min,
moving average, FFT,...)
to use discrete BN



Analyzed Fault Scenarios

• For ISWHM we did a
detailed analysis of 14s
scenario groups, which
were motivated by real-
world incidents
– Bayesian ISWHM model for

scenario group
– Required SW/sensor

information
– Experiments and results

•File system (data storage) based faults

•Inverted/crossed signals

•Bad signal ranges

•Inappropriate Signal Handling

•Resource Allocation/Blocking

•Priority Inversion

•Transient signals

•Bad/overlapping deadbands

•Component-based diagnosis

•Navigation: geometry-based fault detection

•date line crossing

•Euler angles

•Signal quality and bias

•Byzantine logic for redundant components

Analyzed Fault Scenarios
1. File system (data storage) based faults
2. Inverted/crossed signals
3. Bad signal ranges
4. Inappropriate Signal Handling
5. Resource Allocation/Blocking
6. Priority Inversion
7. Transient signals
8. Bad/overlapping deadbands
9. Component-based diagnosis
10. Navigation: geometry-based fault detection
11. date line crossing
12. Euler angles
13. Signal quality and bias
14. Byzantine logic for redundant components



Data storage / message queue
• Overfull data storage (file system) can cause

systemwide problems (see SPIRIT problem)

• Likewise logging of messages into an almost full storage
or slow (blocking) telemetry) can cause problems

“bad” SW design: logging
into file system uses a
blocking write

Bad scenarios:
messages can be lost
PIO-style oscillation of the
entire aircraft can occur

NOTE: no Error message

ISWHM model
• Shown: modular

extension of BN
• a systemwide

“vibration / oscillation”
sensor uses Fast
Fourier
transformation (FFT)
to detect vibration
and or oscillation



Experimental Results

• Nominal Case

Experimental Results

• oscillation starts at t=20s; detection at around t=100s



Bad signal handling

• Harrier: experimental Autolander caused near-
crash (NASA Ames)

• cause: handling of bad radar altimeter data

• What happened?

if (RA==OK){

     last_reading = RA; return RA;

     }

else

     return last_reading;

Bad signal handling

• ISWHM takes multiple information sources into
account
– radar altimeter
– position of stick
– pressure altimeter
– length and severity of error signals

• Bayesian reasoning combines these sensor
readings and produces most likely explanation
(in this case: do not trust radar altimeter reading)

• similar example: Mars Polar Lander



Component-based FDIR
• as seen at the Qantas A380 incident, the

diagnostic messages from indivdiual subsystems,
although individually correct, can contradict each
other or can produce nonsense

• The modular Bayesian network can perform
systemwide FDIR (for SW and subsystems) in a
statistically sound manner

• Alternatively, a ISWHM model can take
diagnostic warning messages as (potentially
unreliable) sensor signals

Emergent Behavior
• The ISWHM presented so far is capable of detecting and

diagnosing (multiple) pre-analyzed failures
• Emergent behaviors

– have not been modeled during design
– show up when system must work in novel environment or due to

unexpected component interaction

• ISWHM cannot per se diagnose emergent behavior
• ISWHM can detect/diagnose violations of (generic)

performance properties. (Assumption: emergent
behavior manifests itself though some kind of
performance degradation or violation of safety property

• Example: overlapping deadband in satellite controller:
substantial fuel burn without getting anywhere



V&V
• V&V of ISWHM is very

important
• V&V must be performed on

model level and on code level
• V&V requires tailored

tools/approaches for yet
“unproven” algorithms

• most V&V tools/approaches
can also be used for IVHM and
FDIR using different modeling
approaches (e.g., Fault trees,
table-driven, rule-based)

ISWHM Applications
• Aircraft (in particular UAS): complex software, necessity

for autonomous fault detection (e.g., when link is broken)
• (small) spacecraft: low footprint, single-string

architecture, long signal latencies and low telemetry
bandwidth makes on-board ISWHM important

• automotive industry
• monitoring of critical infrastructure (cybersecurity)

requires fast processing of large amounts of distributed
data in real-time

• malware detection in mobile devices
• software health monitoring in notebooks
• ...
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