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ABSTRACT

Systems health monitoring is essential in guar-
anteeing the safe, efficient, and correct opera-
tion of complex engineered systems. Diagnosis,
which consists of detection, isolation and identi-
fication of faults; and prognosis, which consists
of prediction of the remaining useful life of com-
ponents, subsystems, or systems; constitute sys-
tems health monitoring. This paper presents an
integrated model-based diagnostic and prognos-
tic framework, where we make use of a com-
mon modeling paradigm to model both the nom-
inal and faulty behavior in all aspects of systems
health monitoring. We illustrate our approach us-
ing a simulated propellant loading system that in-
cludes tanks, valves, and pumps.

1 INTRODUCTION
Systems health monitoring is essential in guarantee-
ing the safe, efficient, and correct operation of com-
plex engineered systems. The integral tasks of sys-
tems health monitoring include both diagnostics and
prognostics. Diagnosis involves detecting when a fault
has occurred, isolating the true fault from many pos-
sible fault candidates, and identifying the true damage
to the system. Basically, diagnosis involves determin-
ing what has happened to the system; while prognosis
involves determining what will happen. Specifically,
prognosis involves predicting how much useful life re-
mains in the different components, subsystems, or sys-
tems. Based on these predictions, effective actions can
be taken to minimize any loss of life or property, opti-
mize maintenance, and extend component life.

A large body of research exists for both diagnos-
tics and prognostics. However, many diagnosis ap-
proaches stop at the fault isolation step, and seldom
perform fault identification; and most prognostic ap-
proaches assume some diagnosis has been performed
and focus on prognosis of a single failure mode. This
paper presents an integrated model-based framework
for diagnostics and prognostics of complex systems, in
which we make use of a common modeling framework

for modeling both the nominal and faulty system be-
havior used for both diagnostics and prognostics. We
assume only single faults in this paper.

In our approach, we start with modeling the nomi-
nal system, as well as how different faults manifest in
the system behavior and progress over time. An ob-
server built with the nominal model is used to generate
estimates of nominal system behavior, and when the
deviation of observed measurements from the nominal
estimates is statistically significant, a fault is detected.
Fault isolation involves comparing the observed mea-
surement deviations to predictions of how these mea-
surements would deviate for different possible faults,
and removing from consideration fault candidates that
are inconsistent with the observed deviations. Fault
identification involves tracking the observed system
measurements using multiple observers, each built
with a hypothesized fault model integrated with the
nominal model, and performing joint state-parameter
estimation (Roychoudhury, 2009). The prognosis
module predicts the remaining useful life of a com-
ponent, subsystem, or system, using, for each hypoth-
esized fault, a predictor based on the fault progression
model integrated with the nominal model (Daigle and
Goebel, 2011). We perform a number of experiments
on a simulated propellant loading system to demon-
strate and evaluate our approach.

In this paper, Section 2 provides the problem for-
mulation for our diagnostic and prognostic framework;
Section 3 describes the architecture and its different
components; Section 4 presents the case study and ex-
perimental results; and Section 5 concludes the paper.

2 PROBLEM FORMULATION
We define a system model for representing system be-
havior under nominal operation as follows:

ẋ(t) = f(t,x(t),θ(t),u(t),v(t))

y(t) = h(t,x(t),θ(t),u(t),n(t)),

where t ∈ R denotes continuous time, x(t) ∈ Rnx is
the state vector, θ(t) ∈ Rnθ is the parameter vector,
u(t) ∈ Rnu is the input vector, v(t) ∈ Rnv is the pro-
cess noise vector, f is the state equation, y(t) ∈ Rny
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Figure 1: The integrated diagnostic and prognostic architecture.

is the output vector, n(t) ∈ Rnn is the measurement
noise vector, and h is the output equation. The param-
eters θ(t) evolve in an unknown way.

Any change in the above nominal system model rep-
resents a fault. In this work, we restrict faults solely to
changes in system parameters, θ(t). Under the single
fault assumption, only one parameter can deviate from
nominal. Hence, we denote a fault, f ∈ F , as a tu-
ple, (θ, gf ), where, θ ∈ θ is the faulty parameter, and
gf denotes the fault progression function, according to
which, fault f is manifested in parameter θ, i.e.,

θ̇(t) = gf (t,xf (t),θf (t),u(t),mf (t)),

where xf (t) = [x(t), θ(t)]T , θf (t) =
[θ(t)\{θ(t)},φf (t)]T , φf (t) ∈ Rnφf is a vec-
tor of fault progression model parameters, and
mf (t) ∈ Rnmf is a process noise vector associated
with the fault progression model.

The single fault assumption also implies that the
faulty system model for fault f = (θ, gf ) involves
integrating a single fault progression model into the
nominal system model:

ẋf (t) = ff (t,xf (t),θf (t),u(t),v(t))

y(t) = h(t,x(t),θ(t),u(t),n(t)),

where,

ff (·) =

[
f(t,x(t),θ(t),u(t),v(t))

gf (t,xf (t),θf (t),u(t),m(t))

]
=

[
ẋ(t)
θ̇(t)

]
.

Since any of the several parameters in a system
model can be faulty, the goal of diagnosis is to:

1. Detect a change in some θ ∈ θ;
2. Isolate, under the single fault assumption, the

true f ∈ F , i.e., both the parameter θ that has
changed, and its fault progression model gf ; and

3. Identify the extent of damage by computing
p(xf (t),θf (t)|y(0 : t)), where y(0 : t) denotes all
measurements observed up to time, t.

The goal of prognosis is to predict for a given
fault, f , using, p(xf (t),θf (t)|y(0 : tP )), a prob-
ability distribution of end of life (EOL), i.e.,
p(EOLf (tP )|y(0 : tP )), and/or remaining useful life
(RUL), i.e., p(RULf (tP )|y(0 : tP )) at a given time
point tP (Daigle and Goebel, 2011). We pre-
dict the probability distribution, rather than a sin-
gle EOL and/or RUL value, since there is inherent

uncertainty in the estimation of state, and the fu-
ture inputs. A set of constraints define the accept-
able behavior of a system. The system has failed
when one or more of the constraints are no longer
met. We define a threshold function, TEOLf , where
TEOLf (xf (t),θf (t)) = 1 if these constraints are valid,
and TEOLf (xf (t),θf (t)) = 0 otherwise.

So, EOLf may be defined as EOLf (tP ) , inf{t ∈
R : t ≥ tP and TEOLf (xf (t),θf (t)) = 1}. i.e.,
EOL is the earliest time point at which the threshold
is reached. Given EOLf (tP ), RUL may then be de-
fined with RULf (tP ) , EOLf (tP )− tP .

3 DIAGNOSIS AND PROGNOSIS APPROACH
Fig. 1 illustrates the architecture of our combined di-
agnostic and prognostic scheme. At each discrete time
step, k, the system takes as inputs u(k), and outputs
measurements y(k). The nominal observer also takes
as inputs u(k), and generates estimates of nominal
measurements, ŷ(k). The fault detector then takes in
the observed and estimated measurements, y(k) and
ŷ(k), and detects when a fault has occurred based on
the residual, r(k) = y(k) − ŷ(k). Once a fault is
detected, fault isolation is initiated. The fault isola-
tion block takes as inputs r(k). These measurement
residuals are used along with predictions of how each
measurement is expected to deviate from nominal for
each possible fault in the system to generate a set of
fault candidates F (k) at time k that explain the ob-
served deviations in measurements till time k. The
fault identification module, for each fault, f ∈ F (k),
estimates p(xf (k),θf (k)|y(0 :k)). Finally, the pre-
diction module takes as input p(xf (k),θf (k)|y(0 :k))
to make predictions of EOL, i.e., p(EOLf (k)|y(0 :k)),
and/or RUL, i.e., p(RULf (k)|y(0 :k)).

The remainder of this section describes the details of
the different modules of the integrated diagnosis and
prognosis architecture.

3.1 Nominal Observer
The nominal observer takes as inputs the system in-
puts, u(k), and measurements, y(0 :k), and the initial
state of the system, and uses the state transition func-
tion, f(·), and observation function, h(·), to estimate
distributions of states, x(k), and parameters, θ(k), i.e.,
p(x(k),θ(k)|y(0 :k)).
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Any appropriate filtering scheme, e.g., Kalman fil-
ter, extended Kalman filter, unscented Kalman filter,
particle filter (Arulampalam et al., 2002), among oth-
ers, can be adopted as the nominal observer.

3.2 Fault Detection
A fault is detected when a residual, r(k) ∈ r(k),
i.e., the difference between the observed (faulty) and
estimated (nominal) values of a measurement, is de-
termined to be statistically significant (Daigle et al.,
2010). In our work, we use a Z-test coupled with a
sliding window technique to determine this statistical
significance (Daigle et al., 2010).

3.3 Fault Isolation
Once a fault is detected, at each subsequent time step,
every measurement residual is qualitatively abstracted
into a tuple of qualitative symbols, (σ1, σ2), where
σ1 ∈ {0,+,−} represents the qualitative magnitude
change, and σ2 ∈ {0,+,−} represents the qualita-
tive slope change. The symbols, 0, +, or −, denote
whether the magnitude or slope of this measurement
is at, above, or below nominal, respectively. The sym-
bols are generated using a sliding window technique
as described in detail in (Daigle et al., 2010).

Based on the first observed statistically significant
measurement deviation, we generate a set of possi-
ble fault candidates. Then, for each fault candidate,
we systematically determine a fault signature for each
measurement (Mosterman and Biswas, 1999). A fault
signature of a fault for a measurement is a prediction of
how the measurement will deviate from nominal due to
the fault. Fault signatures are also of the form (s1, s2),
where s1 ∈ {0,+,−} and s2 ∈ {0,+,−} capture
qualitatively the direction of change to be expected in
the magnitude and slope of each measurement from
nominal if the fault occurs.

In addition to fault signatures, we also make use of
relative measurement orderings (Daigle et al., 2007).
Measurement orderings encode information about the
temporal order in which fault effects will manifest in
different measurements. They can be determined by
analyzing the transfer functions from faults to mea-
surements (Daigle et al., 2007). If fault f manifests
in measurement mi before measurement mj , then a
relative measurement ordering can be defined between
mi and mj for fault f , and is denoted by mi ≺f mj .

Given the set of fault candidates, as measurements
deviate from nominal, the observed measurement devi-
ations (captured symbolically) are checked for consis-
tency with predicted fault signatures and measurement
orderings. Any fault candidate whose predictions are
inconsistent is removed from consideration. As more
and more measurement deviations are observed, the
candidate set will reduce, ideally resulting in a single-
ton.

However, in some cases, the qualitative fault sig-
natures alone are not sufficient in distinguishing all
faults, or fault effects may take too long to manifest,
and quantitative analysis is needed to correctly diag-
nose the true fault. The advantage of using qualita-
tive fault isolation is that it reduces the fault candidates
very quickly, thereby improving the scalability of the
overall diagnosis task. Hence, the more diagnosable
the system is, the smaller is the number possible fault

candidates remaining after fault isolation is performed,
and fewer will be the faults that will have to be isolated
through relatively expensive quantitative methods.

3.4 Fault Identification
We initiate quantitative fault identification after quali-
tative fault signature-based isolation is executed for p
time steps or till the number of fault candidates reduces
to less than σ, whichever is achieved first. The design
parameters p and σ are chosen based on the design re-
quirements of the integrated diagnostic and prognostic
system.

Once fault identification is invoked, under the sin-
gle fault assumption, for each remaining fault can-
didate, f , we instantiate an observer using its faulty
system model, ff (·) and h(·), generated, as described
in Section 2, by extending the nominal system model
with the fault progression model. Then each fault
observer tracks the observed system measurements
independently, and generates estimates of ŷ(k) and
p(xf (k),θf (k)|y(kd −∆kmax :k)), ∆kmax is usu-
ally assumed to be larger than the time difference be-
tween the time of fault occurrence, kf , and the time of
fault detection, kd. Each fault observer is initialized to
estimated values of x and θ obtained from the nomi-
nal observer at time kd−∆kmax, and φf is initialized
to a zero vector. If multiple fault candidates remain
when fault identification is invoked, for each fault ob-
server, a Z-test is used to determine if the deviation
of a measurement estimated by the observer from the
corresponding actual observation is statistically signif-
icant. Since we are considering only single faults, the
expectation is that eventually, the estimates of only the
correct fault observer will converge to the observed
measurements, while those of all others will deviate
from the observed measurements. Thus fault identifi-
cation also helps in fault isolation. Practically, even the
true fault model will take some time before tracking
the measurements correctly, since initially, the fault
parameter values are most likely to be incorrect. We
assume that the true fault observer will converge to the
observed measurements within sd time steps of its in-
vocation. Thus, the Z-tests are monitored only after sd
time steps are over (Roychoudhury, 2009).

3.5 Prediction
The prediction module is invoked at time kP
to predict the EOL and/or RUL of the compo-
nent for each hypothesized fault, f . Specifically,
using the current joint state-parameter estimate,
p(xf (kP ),θf (kP )|y(0 :kP )), which represents the
most up-to-date knowledge of the system at time
kP , the goal is to compute p(EOLf (kP )|y(0 :kP ))
and p(RULf (kP )|y(0 :kP ). We assume the state-
parameter distribution is represented as a discrete set
of weighted samples, i.e.,

p(xf (kP ),θf (kP )|y(0 :kP )) ≈
N∑
i=1

wi(kP )δ(xif (kP ),θif (kP ))(dxf (kP )dθf (kP )),

where i denotes the index of a single sample, wi is the
weight of this sample, and δ represents the Dirac delta
function located at (xif (kP ),θif (kP )).
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Algorithm 1 EOL Prediction
Inputs: {(xi

f (kP ),θ
i
f (kP )), w

i(kP )}Ni=1

Outputs: {EOLi
f (kP ), w

i(kP )}Ni=1

for i = 1 to N do
k ← tP
xi
f (k)← xi

f (kP )

θi
f (k)← θi

f (kP )

while TEOLf (x
i
f (k),θ

i
f (k)) = 0 do

Predict û(k)
θi
f (k + 1) ∼ p(θf (k + 1)|θi

f (k))

xi
f (k + 1) ∼ p(xf (k + 1)|xi

f (k),θ
i
f (k), û(k))

k ← k + 1
xi
f (k)← xi

f (k + 1)

θi
f (k)← θi

f (k + 1)

EOLi
f (kP )← k

Similarly, we can approximate the EOL as

p(EOLf (kP )|y(0 :kP ) ≈
N∑
i=1

wi(kP )δEOLif (kP )(dEOLf (kP )).

The general approach to solving the prediction prob-
lem is through simulation. Each sample is simulated
forward to EOL to obtain the complete EOL distribu-
tion. The pseudocode for the prediction procedure is
given as Algorithm 1 (Daigle and Goebel, 2011). Each
sample i in the state-parameter distribution is propa-
gated forward until TEOLf (xif (k),θif (k)) evaluates to
1, at which point EOL has been reached for this parti-
cle, and the EOL prediction is weighted by the weight
of the sample at kP .

Note that we need to hypothesize future inputs of the
system, û(k), for prediction, since fault progression is
dependent on the operational conditions of the system.
The choice of expected future inputs depends on the
knowledge of expected operational settings.

4 CASE STUDY
We apply the approach to a simulation of a propel-
lant loading system. The system schematic is shown
in Fig. 2 and is based on a subset of the system pre-
sented in (Goodrich et al., 2009). Liquid is drained
from a storage tank through a transfer line via a pump,
into a vehicle tank. In normal operation, both valves
V1 and V2 on the transfer line are fully open, and the
valve V3 on the recirculation line is fully closed.

In our case study, we assume there is a loading
schedule that defines what valves to open and what
RPM to run the pump at. We are interested in pre-
dicting how many fueling operations a component will
last. To this end, this schedule is maintained through-
out the experiment, as back-to-back loading scenarios
are simulated. Hence, in this work, we assume fu-
ture inputs are known. However, in general, devel-
opment of efficient methods for handling future in-
put uncertainty is still an open problem in prognostics,
with some examples being, assuming a single fixed
trajectory; or assuming several fixed trajectories, and

Storage Tank Vehicle Tank

V1
V2

Pump

V3

qp

ps pd

h1 h2

Transfer Line

Recirculation Line

Figure 2: Fueling system schematic.

weighting them by probability, predicting each trajec-
tory, and finally weighting these predictions.

System measurements include the tank heights, h1
and h2, the suction and discharge pressures of the
pump, ps and pd, the rotational velocity of the pump,
ωp, the discharge flow of the pump, qp, and the thrust
bearing, radial bearing, and oil temperatures of the
pump, Tt, Tr, and To, respectively (the location of
temperature sensors are not shown in Fig. 2).

In the remainder of this section, we first describe the
system model. We then provide an example scenario
to demonstrate the approach, followed by a summary
of diagnosis and prognosis results.

4.1 Nominal System Modeling
The storage and vehicle tank masses are described by

ṁ1(t) = qV 3 − qV 1 − ql1
ṁ2(t) = qV 2 − qV 3 − ql2,

where the flows qV i through valve Vi are defined as

qV 1 = uV 1AV 1

√
|p1 − ps|sign(p1 − ps)

qV 2 = uV 2AV 2

√
|pd − p2|sign(pd − p2)

qV 3 = uV 3AV 3

√
|p2 − p1|sign(p2 − p1)

such that uV i ∈ [0, 1] denotes the commanded position
of valve Vi with 0 denoting the valve is fully closed,
and 1 denoting the valve is fully open; andAC denotes
the product of the cross-sectional area of componentC
and its flow coefficient, with leakage flows:

ql1 = Al1
√
|p1 − patm|sign(p1 − patm)

ql2 = Al2
√
|p2 − patm|sign(p2 − patm).

Leakage areas Al1 and Al2 are nominally 0.
The tank pressures are given by

p1 = patm + ρgh1

p2 = patm + ρgh2,

with hj = mj/(ρAj), where ρ is the liquid density
and Aj is the tank cross-sectional area (the tanks are
assumed to have a uniform cross-sectional area). The
suction and discharge pressures are given by

ṗs = 1/Cs(qV 1 − qp)
ṗd = 1/Cd(qp − qp2),

where Cs and Cd are pipe capacitances, and qp is the
pump flow.
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Figure 3: Centrifugal pump.

The centrifugal pump takes in fluid through its inlet,
and the rotation of its impellar forces the fluid through
the outlet. Fig. 3 presents the schematic of a centrifu-
gal pump.

The rotational velocity of the pump is described us-
ing a torque balance,

ω̇p =
1

J
(τe(t)− rωp(t)− τL(t)) ,

where J is the lumped motor/pump inertia, τe is the
electromagnetic torque provided by the motor, r is the
lumped friction parameter, and τL is the load torque.
A torque is produced on the rotor only when there is
a difference (i.e., slip) between the synchronous speed
of the supply voltage, ωs and the mechanical rotation,
ωp, where slip s is defined as

s =
ωs − ωp
ωs

.

The expression for the torque τe for an alternating-
current induction motor is (Lyshevski, 1999):

τe =
npR2

sωs

V 2
rms

(R1 +R2/s)2 + (ωsL1 + ωsL2)2
,

whereR1 is the stator resistance,L1 is the stator induc-
tance, R2 is the rotor resistance, L2 is the rotor induc-
tance, n is the number of phases, and p is the number
of pole pairs. Rotor speed is controlled by changing
the input frequency ωs.

The load torque τL is a polynomial function of the
flow rate through the pump and the impeller rotational
velocity (Kallesøe, 2005):

τL = a0ω
2
p + a1ωpqp − a2q

2
p,

where qp is the pump flow, and a0, a1, and a2 are co-
efficients derived from the pump geometry.

The rotation of the impeller creates a pressure differ-
ence from the inlet to the outlet of the pump, driving
the pump flow, qp. The resulting pump pressure is

pp = b0ω
2
p + b1ωpqp − b2q2

p,

where b0, b1, and b2 are coefficients derived from the
pump geometry. The parameter b0 is proportional to
impeller area Ai. Flow through the impeller, qi, is
computed using the pressure differences:

qi = c
√
|ps + pp − pd|sign(ps + pp − pd),

where c is a flow coefficient, ps is the suction pressure,
and pd is the discharge pressure. The small (normal)
leakage flow from the discharge end to the suction end
due to the clearance between the wear rings and the
impeller is described by

ql = cl
√
|pd − ps|sign(pd − ps),

where cl is a flow coefficient. The discharge flow, qp,
is then

qp = qi − ql.
Pump temperatures are often monitored as indica-

tors of pump condition. The oil heats up due to the ra-
dial and thrust bearings and cools to the environment:

Ṫo =
1

Jo
(Ho,1(Tt − To) +Ho,2(Tr − To)−

Ho,3(To − Ta)),

where Jo is the thermal inertia of the oil, and the Ho,i
terms are heat transfer coefficients. The thrust bearings
heat due to the friction between the pump shaft and the
bearings, and cool to the oil and the environment:

Ṫt =
1

Jt
(rtω

2 −Ht,1(Tt − To)−Ht,2(Tt − Ta)),

where Jt is the thermal inertia of the thrust bearings,
rt is the friction coefficient for the thrust bearings, and
the Ht,i terms are heat transfer coefficients. The radial
bearings behave similarly:

Ṫr =
1

Jr
(rrω

2 −Hr,1(Tr − To)−Hr,2(Tr − Ta))

where Jr is the thermal inertia of the radial bearings,
rr is the friction coefficient for the radial bearings, and
the Hr,i terms are heat transfer coefficients. Please re-
fer to (Daigle and Goebel, 2011) for additional details
on pump modeling.

4.2 Faulty System Modeling
We consider the eight faults shown in Table 1. Either
tank can have a leak fault, represented as an abrupt
increase in parameterAl1 orAl2. For tank i, the abrupt
increase inAli is characterized by the fault progression
function,

Ȧli =

{
δ(t)∆Ali, t = tf
0, otherwise

where δ is a Dirac delta function, tf is the time of fault
occurrence, and ∆Ali is the fault parameter.

Valves V1 and V2 are nominally open and valve V3
is nominally closed. Hence, stuck faults in these three
valves are denoted by x−1 , x−2 , and x+

3 where each ∆xi
denotes the difference in the value at which valve Vi
gets abruptly stuck at and its nominal value. Therefore,
the fault progression function for valve Vi is

ẋi =

{
δ(t)∆xi, t = tf
0, otherwise.

For these abrupt faults, the component is assumed to
have reached its EOL, i.e., TEOLf = 1, as soon as the
fault occurs, i.e., as soon as a leak is present in a tank,

5



22nd International Workshop on Principles of Diagnosis

Table 1: Faults of Interest
Fault Description θ gf φf

Name

A+
l1 Leak in stor-

age tank
Al1 Ȧl1 =

{
δ(t)∆Al1, t = tf
0, otherwise

∆Al1

A+
l2 Leak in ve-

hicle tank
Al2 Ȧl2 =

{
δ(t)∆Al2, t = tf
0, otherwise

∆Al2

x−
1 V1 stuck at

x1

x1 ẋ1 =

{
δ(t)∆x1, t = tf
0, otherwise

∆x1

x−
2 V2 stuck at

x2

x2 ẋ2 =

{
δ(t)∆x2, t = tf
0, otherwise

∆x2

x+
3 V3 stuck at

x3

x3 ẋ3 =

{
δ(t)∆x3, t = tf
0, otherwise

∆x3

A−
i Impellar

wear
Ai Ȧi(t) = −wAiqi(t)

2 wAi

r+t Thrust bear-
ing wear

rt ṙt(t) = wtrtω
2 wt

r+r Radial bear-
ing wear

rr ṙr(t) = wrrrω
2 wr

or a valve becomes stuck. As a result, RUL predic-
tions associated with these components are trivially 0
whenever they are diagnosed.

Faults in the pump are not abrupt, but incipient, i.e.,
they progress slowly, and include impeller wear, A−i ,
represented as a progressive decrease in impeller area
Ai (Biswas and Mahadevan, 2007; Daigle and Goebel,
2011); and bearing wear faults, r+

t and r+
r , represented

as progressive changes in the thrust bearing friction co-
efficient, rt, or the radial bearing friction coefficient,
rr, respectively (Daigle and Goebel, 2011).

Since the impeller area is proportional to b0, a de-
crease in it causes a decrease in the pump pressure, and
hence, the pump efficiency. The equation to describe
how the impeller area decreases over time (Daigle
and Goebel, 2011) based on the erosive wear equation
(Hutchings, 1992) is as follows:

Ȧi(t) = −wAiqi(t)2.

Bearing wear is based on sliding and rolling
wear equations (Hutchings, 1992; Daigle and Goebel,
2011):

ṙt(t) = wtrtω
2

ṙr(t) = wrrrω
2,

where wt and wr are the wear coefficients.
The pump is still functional, i.e., it is still delivering

fluid, in the presence of the three wear faults. Hence,
its EOL is defined by the effective impeller area de-
ceasing to a certain level A↓i , and by its temperatures
exceeding given thresholds at which irreversible dam-
age occurs, T ↑t , T ↑r , or T ↑o , where abnormal tempera-
ture increases are related to increases in bearing fric-
tion. So, for a pump fault f ∈ F , TEOLf = 1 if
Ai(t) ≤ A↓i , Tt(t) ≥ T ↑t , Tr(t) ≥ T ↑r , or To(t) ≥ T ↑o .

4.3 Demonstration of Approach
We now present a detailed integrated diagnosis and
prognosis scenario to illustrate the approach. The fault
signatures and some selected measurement orderings

are given in Table 2. We assume all random variables
to be Gaussian.

For our case study, we adopt the particle filter as
our filtering scheme. Particle filtering is the most gen-
eral estimation scheme as it can be applied to nonlin-
ear systems with arbitrary probability distributions for
process and measurement noise that can be nonlinearly
coupled with the states. Particle filtering is a sequen-
tial Monte Carlo sampling method for Bayesian filter-
ing and approximates the belief state of a system using
a weighted set of samples, or particles. Each particle
consists of an instantiation of values of the state vector,
and describes a possible system state. As observations
are obtained, each particle is moved stochastically to
a new state using the nominal state transition function,
and the weight of each particle is readjusted to reflect
the likelihood of that observation given the particle’s
new state.

In this scenario, impeller wear begins at t = 0 s
with wear rate wA = 3 × 10−3. A fault is detected at
934 s, via a decrease in the pump flow qp. The initial
candidate list is reduced to {A−i , x

−
1 , x

−
2 } based on the

signatures and orderings. At 2729 s, a decrease in h2

is detected, eliminating x−1 since that fault would have
caused a deviation in ps before h2. At 3117 s, an in-
crease in h1 is detected, eliminating x−2 since that fault
would have produced a change in pd before h1. Thus
the true fault is isolated.

Fault identification was initiated once the number
of fault candidates was reduced to three or less (i.e.,
σ = 3) by the qualitative isolator, or if the qualita-
tive isolator has executed for p = 3000 s. For our
particular problem, we found N = 50 particles suffi-
cient for accurate tracking, and used ∆kmax = 0 for
each observer used for fault identification. For the im-
peller wear fault, the wear rate wA estimate averaged
to wA = 3.13 × 10−3 with small output error. Fig. 4
shows the estimated wear parameter estimate for im-
peller wear. Because the fault progression is so slow,
by the end of the first fueling (at 10, 000 s) the esti-
mate is still converging. In further fuelings the esti-
mate has converged with a small spread and remains
fairly steady, due to the use of the variance control al-
gorithm presented in (Daigle and Goebel, 2011) that
dynamically modifies the random walk variance of the
prediction algorithm to maintain a user-specified rel-
ative spread of the unknown fault parameters. The
corresponding RUL predictions, made at the halfway
point and the end of each fueling are shown in Fig. 5.
By the third prediction point, the algorithm has con-
verged and predictions remain within the desired ac-
curacy window of 10%. The predictions were made
assuming known future system inputs, so the uncer-
tainty in the predictions is due solely to that resulting
from the identification stage.

4.4 Simulation Results
Table 3 summarizes the results of several simulation
experiments. The columns of the table represent the
true fault; true injected value of the fault parameter φf ;
kf , the time of fault occurrence in seconds from the
start of experiment; ∆kd, the time in seconds to detect
the fault; ∆ki, the time in seconds for qualitative iso-
lation to reduce the candidate set as much as possible;
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Table 2: Fault signatures and selected measurement orderings.
Faults h1 h2 ps pd ωp qp Tt Tr To Measurement Orderings
A+
l1 0− 0− 0− 0+ 0− 0− 0− 0− 0− h1 ≺ qp, h1 ≺ h2, h1 ≺ Tt, h1 ≺ Tr

A+
l2 0− 0− 0− 0− 0+ 0+ 0+ 0+ 0+ h2 ≺ qp, h2 ≺ h1, h2 ≺ Tt, h2 ≺ Tr

x−
1 0+ 0− 0− 0− 0− 0− 0− 0− 0− ps ≺ h2, ps ≺ Tt, ps ≺ Tr
x−
2 0+ 0− 0+ 0+ 0− 0− 0− 0− 0− pd ≺ h1, pd ≺ Tt, pd ≺ Tr
x+
3 0− 0+ 0− 0+ 0− 0− 0− 0− 0− h1 ≺ qp, h2 ≺ qp, h1 ≺ Tt, h1 ≺ Tr
A−
i 0+ 0− 0+ 0− 0− 0− 0− 0− 0− qp ≺ h1, qp ≺ h2, qp ≺ Tt, qp ≺ Tr

r+t 0+ 0− 0+ 0− 0− 0− 0+ 0+ 0+ Tt ≺ To, To ≺ Tr, Tt ≺ Q, Tt ≺ h1, Tt ≺ h2

r+r 0+ 0− 0+ 0− 0− 0− 0+ 0+ 0+ Tr ≺ To, To ≺ Tt, Tr ≺ Q, Tr ≺ h1, Tr ≺ h2
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Figure 4: Estimated wAi values.

the set of fault candidates after qualitative fault isola-
tion; the true fault parameter identified after qualitative
fault isolation and quantitative identification; RA, the
relative accuracy (RA) averaged over every prediction
point, where RA is defined as

RAkP = 100

(
1−
|RUL∗kP − R̂ULkP |

R̂ULkP

)
,

such that RUL∗kP is the true RUL at time kP , and
R̂ULkP is the mean of the prediction (Saxena et al.,
2010); and the maximum number of fault identifiers
running concurrently. For the abrupt faults, EOL is
reached as soon as the fault is detected, and hence,
RA is not applicable. For the pump wear faults, how-
ever, the EOL is reached when certain thresholds are
reached, and so EOL/RUL predictions are performed
every half loading cycle, or 5000 s, and RA is com-
puted.

In most cases, the faults were isolated fairly quickly
after detection, mainly due to the diagnostic power of
the measurement orderings. E.g., if Tt deviates first
then the only consistent fault is r+

t . Isolation times
were slower when more measurement deviations were
necessary to reduce the candidate set. Since in our case
study the faults produced only incipient changes on the
measurements, fault detection times were fairly slow
since the fault effect has to get large enough before
small changes in the state and presence of a fault can
be detected. However, for faults in V1 and V2, fault
detection was fast because these quickly produced sig-
nificant changes that were easy to detect. Moreover,
incipient faults do not cause discontinuous changes in
the magnitude of sensor values, and hence, may re-
sult in more qualitative ambiguity, causing slower fault

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

Time (cycles)

R
U

L
 (

cy
cl

es
)

Figure 5: Predicted RUL of pump in the number of
loading cycles (1 cycle = 10000 s). The mean is indi-
cated with a dot and confidence intervals for 5% and
95% by lines. The gray cone depicts an accuracy re-
quirement of 10%.

isolation than for abrupt faults, which often cause dis-
continuous changes in the magnitude of measurement
values. In each experiment, fault identification always
determined the true fault candidate with good accu-
racy, and in the cases where qualitative fault isolation
could not provide a unique candidate, fault identifica-
tion made it clear which fault was the true fault. For the
pump faults, RUL was predicted with high RA, rang-
ing above 90%.

5 CONCLUSIONS
This paper presented an integrated model-based di-
agnostic and prognostic framework. Our approach
makes use of a common modeling paradigm to model
both the nominal behavior and fault progression. We
demonstrated our approach on a representative propel-
lant loading system, where we diagnosed faults and
prognosed the RUL accurately.

While a large body of research exists for diagnos-
tics and prognostics, most approaches focus on either
diagnosis or prognosis, but some notable exceptions
include (Patrick et al., 2007; Orchard and Vachtse-
vanos, 2009). However, unlike our approach, these ap-
proaches use a single model incorporating all possible
faults to estimate states and parameters for different
stages of diagnosis and prognosis. For real-world sys-
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Table 3: Diagnosis Results
True Fault True φf kf ∆kd ∆ki Fault Candidates Estimated φf RA Max. No. Fault Identifiers
Nominal N/A N/A ∞ ∞ ∅ N/A N/A N/A
A+
l1 1.00× 10−3 1000 94 94 ∆Al1 = 1.00× 103, e = 2.36× 10−3 ∆Al1 = 1.00× 10−3 N/A 2

∆x3 = 1.39, e = 1.07× 101

A+
l2 1.00× 10−3 1000 224 224 ∆Al2 = 9.98× 10−4, e = 2.24× 10−3 ∆Al2 = 9.98× 10−4 N/A 2

∆x2 = 1.80, e = 9.03

x−
1 −5.00× 10−1 1000 0 14 ∆x1 = −5.00× 10−1, e = 2.32× 10−3 ∆x1 = −5.00× 10−1 N/A 1

x−
2 −5.00× 10−1 1000 0 13 ∆x2 = −5.00× 10−1, e = 2.27× 10−3 ∆x2 = −5.00× 10−1 N/A 1

x+
3 5.00× 10−1 1000 103 111 ∆x3 = 4.99× 10−1, e = 2.30× 10−3 ∆x3 = 4.99× 10−1 N/A 1

A−
i 3.00× 10−3 1 933 3116 wAi = 3.13× 10−3, e = 2.57× 10−3 wAi = 3.13× 10−3 96.19 1

r+t 8.00× 10−11 1 491 491 wt = 7.37× 10−11, e = 2.72× 10−3 wt = 7.37× 10−11 96.75 1

r+r 9.00× 10−11 1 428 428 wr = 9.40× 10−11, e = 2.57× 10−3 wr = 9.40× 10−11 91.28 1

tems, the large number of states and parameters would
lead to scalability issues for these approaches. More-
over, while the system is still nominal, a lot of com-
putational resources are used to estimate faults that
are not present. Our approach makes use of multi-
ple single-fault observers to address the efficiency and
scalability issues. Also, we save on computational re-
sources by only estimating fault parameters after the
fault has detected, and the fault candidates are reduced
to a tractable number. Multiple single-fault observers
also yield more accurate fault identification than an ob-
server using a model that includes all possible faults.

In future work, we will apply this approach to larger
systems, to study the scalability of our diagnosis and
prognosis scheme; and expand the capability of this
approach to hybrid systems, as well as diagnosis and
prognosis of multiple faults. Finally, we will compare
our approach with other relevant techniques for inte-
grated diagnosis and prognosis.
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