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This paper presents methods for estimating time delay margin for adaptive control of input delay systems
with almost linear structured uncertainty and a step input reference command signal. The bounded linear
stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within
a time window. The time delay margin of this input delay system represents a local stability measure and
is computed analytically by three methods: Padé approximation, Lyapunov-Krasovskii method with sum-of-
squares optimization, and matrix measure method. These methods are applied to the standard model-reference
adaptive control, σ -modification adaptive law, and optimal control modification adaptive law. The windowing
analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time
window and parameters which vary from one time window to the next. The optimal control modification adap-
tive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty
is linear, then the closed-loop input delay system tends to a linear time-invariant system. A lower bound of the
time delay margin of this system can then be estimated uniquely without the need for the windowing analysis.
Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin
estimation.

I. Introduction

Input delay systems are generally non-minimum phase. For linear input delay systems, feedback gain must be
kept to a reasonable value to maintain stability. Input delay influences stability of adaptive control in a similar manner.
Adaptive gain is used to control the rate of adaptation in adaptive control. For model-reference adaptive control,
it is well-known that as the adaptive gain increases, the closed-loop system loses robustness, thereby rendering it
susceptible to instability in the presence of unmodeled dynamics and or input time delay. Thus, to maintain stability
of an input delay adaptive system, the adaptive gain must be carefully selected. For a given value of the adaptive gain,
there exists a corresponding value of input time delay for which the adaptive system is on the verge of instability. This
is known as a time delay margin. To maintain stability, the adaptive gain of the system must be kept below the value
that corresponds to the time delay margin of the system.

Global stability analysis for input delay adaptive systems is a challenging problem. Lyapunov-Krasovskii method
or Lyapunov-Razumikhin method are much more difficult to apply to an adaptive system. Even for a simple scalar
linear time-invariant (LTI) system, both the Lyapunov-Krasovskii method or Lyapunov-Razumikhin method can result
in conservative estimates of the time delay margin.1 So, even if a global stability analysis for input delay adaptive
control is available, the conservatism in the estimation could render it impractical. The lack of available analytical
methods for computing the time delay margin of adaptive control is a hurdle for certification of adaptive control.2

While global stability analysis is challenging, several studies have recently been done to address local stability of
input delay adaptive systems. One such method applies a Padé approximation to transform an input delay system into
a delay-free higher-order system.3 The transformed system is then analyzed using the standard Lyapunov method to
estimate the time delay margin. However, this approach yields a highly conservative time delay margin even for a
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simple scalar adaptive system3 thereby rendering the approach rather less practical. Another method, called bounded
linear stability analysis, attempts to analyze the stability margins of an adaptive system in a local context.4, 5 The
method approximates an adaptive system as a series of bounded linear systems inside time windows. The windowing
analysis allows the bounded linear systems to be analyzed using linear analytical tools. The method has been shown
to provide a less conservative estimate of the time delay margin. Subsequently, a similar method has been developed
using the windowing approach to estimate the stability margin of an adaptive system.6 Linear matrix inequality (LMI)
methods also have been used to analyze stability of adaptive control.7 The Lyapunov-Razumikhin method has been
used to estimate the time delay margin for a simple scalar adaptive system.8 The method requires optimization of the
candidate Lyapunov function in order to reduce the conservatism in the estimated time delay margin.

This paper extends the bounded linear stability analysis method for analyzing input delay adaptive control with
almost linear structured uncertainty. Stability of an input delay adaptive system with a step input reference command
signal is analyzed by three methods: Padé approximation, Lyapunov-Krasovskii method with sum-of-squares opti-
mization, and the matrix measure method, to estimate the local time delay margin of a bounded linear system inside
each time window. Three different adaptive laws are used: the standard MRAC, σ -modification adaptive law,9 and
optimal control modification adaptive law.10 Asymptotic analysis of the time delay margin as the adaptive gain tends
to infinity is performed to study to effect of large adaptive gain on the time delay margin. Simulations are studied to
demonstrate the feasibility of the time delay margin estimation.

II. Input Delay Adaptive Systems and Bounded Linearity Stability Analysis

Given an input delay nonlinear plant

ẋ(t) = Ax(t)+B
[
u(t− td)+Θ

∗>
Φ(x(t))

]
(1)

where x(t) : [0,∞)→ Rn is a state vector, u(t) : [0,∞)→ Rp is a control vector, A ∈ Rn×n and B ∈ Rn×p are known
such that the pair (A,B) is controllable, Θ∗ ∈Rm×p is an unknown constant weight matrix that represents a parametric
uncertainty, Φ(x(t)) : Rn→ Rm is a vector of known functions, and td is an input time delay.

The structure of the uncertainty is assumed to be linearly dominant. That is

Φ(x(t)) = x(t)+δ (x) (2)

where ‖δ (x)‖� ‖x(t)‖ is small.
The input delay td could also be viewed as the time delay margin for robustness against unmodeled dynamics of

the delay-free system
ẋ(t) = Ax(t)+B

[
u(t)+Θ

∗>
Φ(x(t))

]
(3)

The reference model is specified as
ẋm (t) = Amxm (t)+Bmr (t) (4)

where Am ∈ Rn×n is Hurwitz and known, Bm ∈ Rn×p is also known, and r (t) : [0,∞)→ Rp ∈ L∞ is a bounded
command vector.

Defining the tracking error as e(t) = xm (t)− x(t), then the controller u(t) is specified by

u(t) =−Kxx(t)+Krr (t)−uad (t) (5)

where Kx ∈ Rp×n and Kr ∈ Rp×p are known nominal gain matrices, and uad (t) ∈ Rp is an adaptive signal given by

uad (t) = Θ
> (t)Φ(x) (6)

where Θ ∈ Rm×p is an estimate of Θ∗.
Assuming that the model matching conditions can be satisfied, then

Am = A−BKx (7)

Bm = BKr (8)
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The standard model-reference adaptive control law is

Θ̇(t) =−ΓΦ(x(t))e> (t)PB (9)

where Γ = Γ> ∈ Rm×m > 0 and P = P> ∈ Rn×n > 0 solves the Lyapunov equation

PAm +A>mP =−Q (10)

where Q = Q> ∈ Rn×n > 0.
The error equation corresponding to the input delay system (3) can be derived by substituting the time-delay

version of the controller from Eq. (5), thus resulting in

ė(t) = Ae(t)−BKxe(t− td)+Buad (t− td)−BΘ
∗>

Φ(x(t))−BKx [xm (t)− xm (t− td)]+BKr [r (t)− r (t− td)] (11)

To analyze this system, the bounded linear stability analysis method has been proposed to approximate the adaptive
system as a series of bounded linear systems within time windows.4, 5 The windowing analysis then permits the use of
linear tools to analyze stability of the approximated bounded linear systems inside the time windows.

Theorem 1: The adaptive law (9) is bounded locally by a linear approximation as

Θ̇
> (t)Φ(x(t)) =−γB>Pe(t) (12)

where γ is a constant defined locally and retrospectively as

γ =
1
T0

ˆ ti

ti−T0

Φ
> (x(τ))ΓΦ(x(τ))dτ (13)

for t ∈ [ti−T0, ti), where t0 = 0, ti = ti−1 +T0 and i = 1,2, . . . ,n→ ∞.
Proof: Choose a Lyapunov candidate function

V (t) = e> (t)Pe(t)+ trace
[
Θ̃
> (t)Γ

−1
Θ̃(t)

]
(14)

The error equation of the delay-free system is

ė(t) = Ame(t)+BΘ̃
> (t)Φ(x(t)) (15)

where Θ̃(t) = Θ(t)−Θ∗.
Denoting Vg(t) as the Lyapunov candidate function to be evaluated globally using the adaptive law (9) as follows:

V̇g (t) =−e> (t)Qe(t)+2e> (t)PBΘ̃
> (t)Φ(x(t))−2trace

[
Θ̃
> (t)Φ(x(t))e> (t)PB

]
=−e> (t)Qe(t)≤ 0 (16)

Denoting Vl (t) as the Lyapunov candidate function to be evaluated locally with a time window using the locally
bounded linear approximation (12) yields

V̇l (t) =−e> (t)Pe(t)+2e> (t)PBΘ̃
> (t)Φ(x(t))−2trace

[
Θ̃
> (t)Γ

−1 ˙̃
Θ(t)

]
= V̇g (t)+2e> (t)PBΘ̃

> (t)Φ(x(t))−2trace
{

Θ̃
> (t)Φ(x(t))

[
Φ
> (x(t))ΓΦ(x(t))

]−1
Φ
> (x(t)) ˙̃

Θ(t)
}

= V̇g (t)+2e> (t)PBΘ̃
> (t)Φ(x(t))

{
1− γ

[
Φ
> (x(t))ΓΦ(x(t))

]−1}
(17)

for t ∈ [ti−T0, ti), where t0 = 0, ti = ti−1 +T0 and i = 1,2, . . . ,n→ ∞.
Consider the integral form of Eq. (17)
ˆ ti

ti−T0

V̇l (t)dt =
ˆ ti

ti−T0

V̇g (t)dt +
ˆ ti

ti−T0

2e> (t)PBΘ̃
> (t)Φ(x(t))

{
1− γ

[
Φ
> (x(t))ΓΦ(x(t))

]−1}
dt (18)

Then for Vg (t) and Vl (t) to be equal in a time window
ˆ ti

ti−T0

V̇l (t)dt =
ˆ ti

ti−T0

V̇g (t)dt (19)
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which implies ˆ ti

ti−T0

2e> (t)PBΘ̃
> (t)Φ(x(t))

{
1− γ

[
Φ
> (x(t))ΓΦ(x(t))

]−1}
dt = 0 (20)

It is important to note that this is a definite integral equation for which a valid solution can include a constant
solution of γ . Such a solution is called a “weak-form” or integral-form solution which is valid only over a finite
time interval. In contrast, the “strong-form” solution is a global solution that satisfies for all time. In the windowing
analysis, the weak-form solution is used.

The mean value theorem for integration states that

ˆ b

a
F (t)G(t)dt = F (c)

ˆ b

a
G(t)dt (21)

where c ∈ [a,b] and G(t)≥ 0.
Let t ∈ [ti−T0, ti), then applying the mean value theorem for integration to Eq. (20) yields

ˆ ti

ti−T0

2e> (t)PBΘ̃
> (t)Φ(x(t))

[
Φ
> (x(t))ΓΦ(x(t))

]−1 [
Φ
> (x(t))ΓΦ(x(t))− γ

]
dt =

+2e> (t)PBΘ̃
> (t)Φ(x(t))

[
Φ
> (x(t))ΓΦ(x(t))

]−1
[ˆ ti

ti−T0

Φ
> (x(t))ΓΦ(x(t))dt− γT0

]
= 0 (22)

Hence, (13) is thus obtained. Then it follows that

Vl (ti)−Vl (ti−T0) = Vg (ti)−Vg (ti−T0)≤ 0 (23)

Thus, the local Lyapunov candidate function Vl (t) is a piecewise approximation of the global Lyapunov candidate
function Vg (t) where their values are equal at the beginning and end points of a time window.

Using the bounded linear approximation of the adaptive law (9), one gets a piecewise locally bounded linear
approximation of the standard MRAC adaptive law (9)

u̇ad (t) = Θ̇
> (t)Φ(x(t))+Θ

> (t)Φ̇(x(t))≈−γB>Pe(t)+Θ
> (t)Φ̇(x(t)) (24)

for t ∈ [ti−T0, ti), where t0 = 0, ti = ti−1 +T0, and i = 1,2, . . . ,n→ ∞.
The second term in the right hand side can be locally approximated by a first-order Taylor series as

Θ
> (t)Φ̇(x(t)) = Θ

>
i

n

∑
j=1

∂Φ(x(ti))
∂x j

ẋ j (ti)+Θ
>
i

n

∑
j=1

n

∑
k=1

∂ 2Φ(x(ti))
∂x j∂xk

ẋ j (ti) [xk (t)− xk (ti)]

+Θ
>
i

n

∑
j=1

∂Φ(x(ti))
∂x j

[ẋ j (t)− ẋ j (ti)]+ . . .

= Θ
>
i Φ

′
i [ẋm (t)− ė(t)]+Θ

>
i Φ

′′
i ẋi [xm (t)− e(t)− xi]+ . . . (25)

where Θi = Θ(ti),
(

Φ
′
i

)
j
= ∂Φ(x(ti))/∂x j and

(
Φ
′′
i ẋi

)
j
= ∑

n
k=1 ẋk (ti)∂ 2Φ(x(ti))/∂x j∂xk, j = 1, . . . ,n.

Ignoring higher-order terms, the locally bounded linear approximation of the error equation and the standard
MRAC adaptive law are expressed as

ė(t) = Ae(t)−BKxe(t− td)+Buad (t− td)−BΘ
∗>

Φi−BΘ
∗>

Φ
′
i [xm (t)− e(t)− xi]−BKx [xm (t)− xm (t− td)]

+BKr [r (t)− r (t− td)] (26)

u̇ad (t) =−γB>Pe(t)+Θ
>
i Φ

′
i [ẋm (t)− ė(t)] (27)

for t ∈ [ti−T0, ti), where t0 = 0, ti = ti−1 +T0 and i = 1,2, . . . ,n→ ∞.
Equations (26) and (27) show that the stability of the locally bounded linear approximation depends on several

factors:
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• The initial condition x(0)

• The structure of the matched uncertainty Φ(x(t))

• The parametric uncertainty Θ∗

• The plant model matrices A, B, Am, and Bm

• The reference model xm (t)

• The input function r (t)

• The adaptive gain parameter γ which includes the adaptive gain Γ as well as the square of the amplitude of
Φ(x(t))

Thus, it can be seen that this bounded linear approximation appears to capture the complex nature of stability of a
nonlinear adaptive control system, at least in a local sense.

In a special case when Φ(x(t)) = x(t), then the bounded linear approximation of the error equation and the
standard MRAC adaptive law become

ė(t) = Ae(t)−BKxe(t− td)+Buad (t− td)−BΘ
∗> [xm (t)− e(t)]−BKx [xm (t)− xm (t− td)]+BKr [r (t)− r (t− td)]

(28)
u̇ad (t) =−γB>Pe(t)+Θ

>
i [ẋm (t)− ė(t)] (29)

III. Time Delay Margin Estimation of LTI Systems

Consider an input delay closed-loop LTI system

ẋ(t) = Ax(t)−BKx(t− td) (30)

where x(t) : [0,∞)→ Rn and λ (A−BK) ∈ C−, i.e., A−BK is Hurwitz.
The time delay margin is defined by the following characteristic equation

det
(

jωI−A+BKe− jωtd
)

= 0 (31)

For simple systems, analytical solutions of td can be computed, but in general such solutions are not easily obtained.
We present three methods for estimating the time delay margin.

A. Padé Approximation

The Laplace transform of the input delay LTI system is

sX (s)− x(0) = AX (s)−BKX (s)e−tds (32)

Consider the following first-order Padé approximation

e−tds ≈ 2− tds
2+ tds

(33)

Then the approximate input delay system becomes

(2+ tds)s [X (s)− x(0)] = (2+ tds)AX (s)− (2− tds)BKX (s) (34)

In the time domain, this is expressed as

td ẍ(t) = (−2I + tdA+ tdBK) ẋ(t)+2(A−BK)x(t) (35)

The time delay margin is then found by

det
[

ω
2I + jω

(
− 2

td
I +A+BK

)
+

2
td

(A−BK)
]

= 0 (36)
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Alternatively, the time delay margin can also be obtained as

det

[
jωI −I

− 2
td

(A−BK) jωI + 2
td

I−A−BK

]
= 0 (37)

Example: Given

A =

[
0 1
−1 1

]
, BK =

[
0 0
0 2

]
The time delay margin using the first-order Padé approximation is estimated to be td = 0.528 sec.
The exact results can be determined from

det

[
jω −1
1 jω−1+2

(
cosωt∗d − j sinωt∗d

) ]=−ω
2 +2ω sinωt∗d +1− jω (1−2cosωt∗d ) = 0

ω =
√

3+
√

7
2

= 2.189 rad/sec

td =
2π

3
(√

3+
√

7
) = 0.478 sec

The effective phase margin is obtained as
φ = ωtd =

π

3
So the time delay margin by Padé approximation is non-conservative.

B. Lyapunov-Krasovskii Method with Sum-of-Squares Optimization

Stability of time-delay differential equations based on the Lyapunov-Krasovskii method using Lyapunov-Krasovskii
functionals have been studied exhaustively.11, 12 The negative-definiteness of the time derivative of a Lyapunov-
Krasovskii functional results in a linear matrix inequality that can be solved for a time delay margin. The solution is
generally non-unique since it depends on the choice of a Lyapunov-Krasovskii functional. As a result, the time delay
margin obtained by the Lyapunov-Krasovskii method can be conservative.

Theorem 2: For the closed-loop input delay system (30), the system is asymptotically stable if the following linear
matrix inequality is satisfied:

(A−BK)>P+P(A−BK)+(α +β ) tdPBKK>B>P+
td
α

A>A+
td
β

K>B>BK < 0 (38)

The time delay margin is the largest value that renders the LMI feasible.
Proof: For the input delay LTI system (30), we write

ˆ t

t−td
ẋ(τ)dτ = x(t)− x(t− td) (39)

Then

x(t− td) = x(t)−
ˆ t

t−td
Ax(τ)dτ +

ˆ t

t−td
BKx(τ− td)dτ (40)

The input delay system now becomes

ẋ(t) = (A−BK)x(t)+BK
ˆ t

t−td
Ax(τ)dτ−BK

ˆ t

t−td
BKx(τ− td)dτ (41)

Consider the following Lyapunov-Krasovskii functional11

V (t) = x> (t)Px(t)+
ˆ t

t−td

ˆ t

τ

x> (θ)Qx(θ)dθdτ +
ˆ t

t−td

ˆ t

τ−td
x> (θ)Sx(θ)dθdτ > 0 (42)
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where P = P> > 0.
Evaluating V̇ (t) yields

V̇ (t) = ẋ> (t)Px(t)+ x> (t)Pẋ(t)+
ˆ t

t−td
x> (t)Qx(t)dτ−

ˆ t

t−td
x> (τ)Qx(τ)dτ +

ˆ t

t−td
x> (t− td)Sx(t− td)dτ

−
ˆ t

t−td
x> (τ− td)Sx(τ− td)dτ (43)

This becomes

V̇ (t) = x> (t)
[
(A−BK)>P+P(A−BK)

]
x(t)+2x> (t)PBK

ˆ t

t−td
Ax(τ)dτ−2x> (t)PBK

ˆ t

t−td
BKx(τ− td)dτ

+ tdx> (t)Qx(t)−
ˆ t

t−td
x> (τ)Qx(τ)dτ + tdx> (t)Sx(t)−

ˆ t

t−td
x> (τ− td)Sx(τ− td)dτ (44)

From the following quadratic expressions

αtdx> (t)PBKK>B>Px(t)−2x> (t)PBK
ˆ t

t−td
Ax(τ)dτ +

1
αtd

(ˆ t

t−td
x> (τ)A>dτ

)(ˆ t

t−td
Ax(τ)dτ

)
≥ 0 (45)

β tdx> (t)PBKK>B>Px(t)+2x> (t)PBK
ˆ t

t−td
BKx(τ− td)dτ

+
1

β td

(ˆ t

t−td
x> (τ− td)K>B>dτ

)(ˆ t

t−td
BKx(τ− td)dτ

)
≥ 0 (46)

we obtain

2x> (t)PBK
ˆ t

t−td
Ax(τ)dτ ≤ αtdx> (t)PBKK>B>Px(t)+

1
αtd

(ˆ t

t−td
x> (τ)A>dτ

)(ˆ t

t−td
Ax(τ)dτ

)
≤ αtdx> (t)PBKK>B>Px(t)+

1
α

ˆ t

t−td
x> (τ)A>Ax(τ)dτ (47)

−2x> (t)PBK
ˆ t

t−td
BKx(τ− td)dτ ≤ β tdx> (t)PBKK>B>Px(t)

+
1

β td

(ˆ t

t−td
x> (τ− td)K>B>dτ

)(ˆ t

t−td
BKx(τ− td)dτ

)
≤ β tdx> (t)PBKK>B>Px(t)+

1
β

ˆ t

t−td
x> (τ− td)K>B>BKx(τ− td)dτ (48)

for some α > 0 and β > 0.
Choose Q = A>A/α and S = K>B>BK/β . Then

V̇ (t)≤ x> (t)
[
(A−BK)>P+P(A−BK)

]
x(t)+αtdx> (t)PBKK>B>Px(t)+β tdx> (t)PBKK>B>Px(t)

+
td
α

x> (t)A>Ax(t)+
td
β

x> (t)K>B>BKx(t) (49)

For stability, V̇ (t) < 0. Thus we obtain the LMI (38).
Example: For the previous example in Section 3.1

A =

[
0 1
−1 1

]
, BK =

[
0 0
0 2

]
7 of 26

American Institute of Aeronautics and Astronautics



Choose α = 1 and β = 1. Let
(A−BK)>P+P(A−BK) =−Q

and choose Q = I where I is the identity matrix. Then the time delay margin is estimated to be td = 0.068 sec.
td can be maximized by a suitable selection of α and β . Figure 1 is a plot of td as a function of α and β . The

maximum value of td is 0.072 sec corresponding to α = 0.51 and β = 0.89. As expected, the Lyapunov-Krasovskii
method produces a very conservative estimation of the time delay margin.

Fig. 1 - Time Delay Margin by Lyapunov-Krasovskii Method

The time delay margin achieved by the Lyapunov-Krasovskii method is directly dependent on the choice of a
Lyapunov-Krasovskii functional, which is non-unique. The chosen Lyapunov-Krasovskii functional in Eq. (42) results
in a highly conservative estimate of the time delay margin in the example. However, selecting an optimal choice of
the Lyapunov-Krasovskii functional by inspection is generally difficult. Thus, sum-of-squares (SOS) optimization is
a method that can be employed to search over a specific class of Lyapunov-Krasovskii functionals13 to improve the
estimation of the time delay margin.

A polynomial p is a sum-of-squares (SOS) if there exist polynomials { fi}m
i=1 such that

p =
m

∑
i=1

f 2
i

For example the polynomial p = x2 − 3xy + 14y2 is a SOS since p = (x−3y)2 + 5y2. All SOS polynomials
are positive semi-definite. However, the converse is not true as seen by the Motzkin polynomial p = x2y4 + x4y2 +
1− 3x2y2, which is positive semi-definite, but is not a SOS. Hence, it is apparent that this technique is useful for
constructing polynomial Lyapunov functions.

If p is a polynomial of degree less than 2d in n variables, then there exists a Q = Q> ≥ 0 ∈ Rlz×lz such that
p = z> (x)Qz where

z(x) =
[

1 x1 x2 . . . xn x2
1 x1x2 . . . x2

n . . . xd
n

]>
(50)

with z ∈ Rlz and lz =
(n+d

d

)
.

This is known as the Gram matrix representation of a SOS. By representing a SOS in the Gram matrix form, the
challenge of finding a SOS representation reduces to an LMI. The advantage of the Gram matrix representation of the
polynomial is that p is a SOS if and only if there exists Q≥ 0 such that p = z> (x)Qz(x). However, the Gram matrix
Q is generally non-unique.

Naturally, SOS is a useful tool to search over polynomial Lyapunov functions for systems with polynomial dynam-
ics.14 In particular, we can recast the Lyapunov-Krasovskii stability condition as a SOS program and search over all
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possible polynomials to find an optimal Lyapunov-Krasovskii functional13 that can give the best estimate of the time
delay margin. Consider the alternate Lyapunov-Krasovskii functional

V (x(tm)) = V0 (x(t))+
ˆ 0

−td
V1 (τ,x(t) ,x(t + τ))dτ +

ˆ 0

−td

ˆ t

t+τ

V2 (x(θ))dθdτ (51)

where tm ∈ [t− td , t], and V0 , V1, and V2 are polynomials to be optimized.
Thus, we can search over all possible polynomials V0, V1, and V2 to maximize the time delay margin. The search

method involves invoking the following lemma:13

Lemma 1: Let ẋ(t) = f (x(t) ,x(t− td)) and assume that the origin is an equilibrium point. Assume that there
exist V0, V1, and V2 and polynomial ψ (x(t)) > 0 such that the following conditions are satisfied:

1. V0 (x(t))−ψ (x(t))≥ 0

2. V1 (τ,x(t) ,x(t + τ))≥ 0∀τ ∈ [−td ,0]

3. V2 (x(θ))≥ 0

4. V̇ (x(tm))= dV0
dx(t) f (x(t) ,x(t− td))+td

∂V1
∂x(t) f (x(t) ,x(t− td))−r ∂V1

∂τ
+V1 (0,x(t) ,x(t))−V1 (−td ,x(t) ,x(t− td))+

tdV2 (x(t))− tdV2 (x(t + τ))≤ 0∀τ ∈ [−td ,0]

Then the origin is a stable equilibrium for all time delays in [0, td ].
Condition 1 simply ensures that V0 is positive definite. Conditions 2 and 3 requires V1 and V2 to be positive

semi-definite on appropriate intervals. Thus, V will be positive definite. Lastly, condition 4 guarantees that V̇ ≤ 0.
Hence, if Lemma 1 holds, then the Lyapunov-Krasovskii functional in Eq. (51) certifies the stability of the system
ẋ(t) = f (x(t) ,x(t− td)) with f (0,0) = 0 for time delays up to td .

Example: For the previous example, the SOS optimization of V0, V1, and V2 is performed using the freely available
software SOSOPT.15 The resulting polynomials are given by

V0 (x(t)) = 500.3x2
1 (t)+344.3x1 (t)x2 (t)+61.83x2

2 (t)

V1 (x(t) ,x(t + τ)) = 660.9x2
1 (t)−267.4x1 (t)x2 (t)−46.71x1 (t)x1 (t + τ)+435.9x1 (t)x2 (t + τ)+3273x2

2 (t)

−1.972x2 (t)x1 (t + τ)−4037x2 (t)x2 (t + τ)+27.82x2
1 (t + τ)−4.292x1 (t + τ)x2 (t + τ)+1280x2

2 (t + τ)

V2 (x(θ)) = 40.76x2
1 (θ)+23x1 (θ)x2 (θ)+3307x2

2 (θ)

The time delay margin for the example is td = 0.216 sec which is three times greater than the previous result using
the Lyapunov-Krasovskii functional in Eq. (42).

The challenge using a SOS optimization is that the problem can quickly become intractable as the number of states
n or the degree of the polynomial 2d increases. However, this method is extremely useful on modest-sized problems.

C. Matrix Measure Method

The matrix measure method has been developed recently and affords a simple way to estimate the time delay margin
and the effective phase margin for the MIMO LTI system.1 The matrix measure µ is defined as an eigenvalue of a
symmetric part of a complex matrix11 such that

µi (C) = λi

(
C +C∗

2

)
(52)

where C ∈ C is a complex matrix and C∗ is its complex conjugate transpose.
The following properties hold for µ:

µi (C) ∈ R (53)

µ (C) = max
1≤i≤n

λi

(
C +C∗

2

)
= lim

ε→0

‖I + εC‖−1
ε

(54)
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µ (C) = min
1≤i≤n

λi

(
C +C∗

2

)
= lim

ε→0

1−‖I− εC‖
ε

(55)

µ (C)≤ Reλi (C)≤ µ (C) (56)

Imλ (C)≤ µ (− jC) (57)

Theorem 3: The input delay LTI system (30) is asymptotically stable if the following inequalities hold

td ≤
1
ω

cos−1
[

µ (A)+ µ ( jBK)
‖BK‖

]
(58)

ω = µ (− jA)+‖BK‖ (59)

where ‖.‖= ‖.‖2 is the L2-norm.
Proof: The real parts of the system poles are bounded from above by

σ = Reλ
(
A−BKe− jωtd

)
≤ µ (A)+ µ

(
−BKe− jωtd

)
≤ µ (A)+ µ (−BK) |cosωtd |+ µ ( jBK) |sinωtd | (60)

Let 0≤ ωtd ≤ π

2 , then the input delay system is stable if σ ≤ 0 which implies

µ (A)≤−µ (−BK)cosωtd−µ ( jBK)sinωtd = µ (BK)cosωtd−µ ( jBK)sinωtd

≤ µ (BK)cosωtd−µ ( jBK)sinωtd (61)

Upon some algebra, this can be expressed as[
µ

2 (BK)+ µ
2 ( jBK)

]
cos2

ωtd−2µ (A)µ (BK)cosωtd + µ
2 (A)−µ

2 ( jBK)≥ 0 (62)

The solution yields a bound on time delay margin td as

td ≤
1
ω

cos−1
µ (A)µ (BK)+ µ ( jBK)

√
µ

2 (BK)+ µ
2 ( jBK)−µ

2 (A)

µ
2 (BK)+ µ

2 ( jBK)
(63)

But
µ

2 (BK)≤ µ
2 (BK)+ µ

2 ( jBK)≤ ‖BK‖2 (64)

So

td ≤
1
ω

cos−1

µ (A)‖BK‖+ µ ( jBK)
√
‖BK‖2−µ

2 (A)

‖BK‖2

≤ 1
ω

cos−1
[

µ (A)+ µ ( jBK)
‖BK‖

]
(65)

The imaginary parts of the system poles are bounded from above by

ω = Imλ
(
− jA+ jBKe− jωtd

)
≤ µ (− jA)+ µ

(
jBKe− jωtd

)
≤ µ (− jA)+ µ ( jBK) |cosωtd |+ µ (BK) |sinωtd | (66)

which can be expressed as

ω ≤ µ (− jA)+
√

µ
2 (BK)+ µ

2 ( jBK)≤ µ (− jA)+‖BK‖ (67)

Since td must be the smallest value for all permissible values of ω , therefore the equality sign applies. Thus

ω = µ (− jA)+
√

µ
2 (BK)+ µ

2 ( jBK)≤ µ (− jA)+‖BK‖ (68)

Example: For the previous example

A =

[
0 1
−1 1

]
, BK =

[
0 0
0 2

]
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ω and td are computed as follows:
µ (A) = 1

µ ( jBK) = 0

‖BK‖= 2

ω = µ (− jA)+‖BK‖= 3 rad/sec

td =
1
ω

cos−1
[

µ (A)
‖BK‖

]
=

π

9
= 0.349 sec

Comparing the result with the exact time delay margin, the matrix measure method produces the least conser-
vative estimation of the time delay margin. Moreover, the solution is much simpler to compute than both the Padé
approximation and Lyapunov-Krasovskii method.

The matrix measure method can also estimate the effective phase margin of a MIMO system. For this example,
the phase margin estimate is the same as the exact value.

In summary, the comparison among the methods presented is shown in Table 1.

Method td , sec

Padé Approximation 0.528
Lyapunov-Krasovskii α = β = 1 0.072

Lyapunov-Krasovskii with SOS Optimization 0.216
Matrix Measure 0.349

Exact Value 0.478

Table 1 - Comparison of Time Delay Margin Estimates of LTI Example

IV. Time Delay Margin Estimation of Adaptive Control

A. Standard MRAC

Using the bounded linear stability analysis method to approximate the standard MRAC as a bounded linear approxi-
mation within a given time window, the time delay margin of adaptive control can be estimated by any of the methods
previously presented. Differentiating the error equation and substituting in the adaptive law which yield

ë(t) =
(

A+BΘ
∗>

Φ
′
i

)
ė(t)−

(
BKx +BΘ

>
i Φ

′
i

)
ė(t− td)− γBB>Pe(t− td)+BΘ

>
i Φ

′
iẋm (t− td)

−BΘ
∗>

Φ
′
iẋm (t)−BKx [ẋm (t)− ẋm (t− td)]+BKr [ṙ (t)− ṙ (t− td)] (69)

for t ∈ [ti−T0, ti), where t0 = 0, ti = ti−1 +T0 and i = 1,2, . . . ,n→ ∞.
To use the previous results, the problem is restricted to the case when the reference model is zero or with a step

input reference command signal. Let r (t) be a constant signal, then ṙ (t) = ṙ (t− td) = 0. Then ẋm (t) = ẋm (t− td) = 0
after some time t = t0 > 0. Then the error equation can be recast as

ż(t) = Ciz(t)−Diz(t− td) (70)

for t ∈ [ti−T0, ti), where ti = ti−1 +T0 and i = 1,2, . . . ,n→ ∞, and z(t) =
[

e(t) ė(t)
]

and

Ci =

[
0 I
0 A+BΘ∗>Φ

′
i

]
(71)

Di =

[
0 0

γBB>P BKx +BΘ>i Φ
′
i

]
(72)
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1. Padé approximation:

Using the result in the previous section, the time delay margin can be found by solving the following character-
istic equation

det

[
jωiI −I

− 2
tdi

(Ci−Di) jωi + 2
td

I−Ci−Di

]
= 0 (73)

Alternatively, the first-order Padé approximation of the bounded linear approximation of the error equations and
adaptive law can be expressed as

sE (s)−e(0) =
(

A+BΘ
∗>

Φ
′
i

)
E (s)−BKxE (s)

2− tds
2+ tds

+BUad (s)
2− tds
2+ tds

−BΘ
∗>

Φi−BΘ
∗>

Φ
′
i [Xm (s)− xi]

−BKx

[
Xm (s)−Xm (s)

2− tds
2+ tds

]
+BKr

[
R(s)−R(s)

2− tds
2+ tds

]
(74)

Uad (s) =−γB>P
E (s)

s
+Θ

>
i Φ

′
i [Xm (s)−E (s)] (75)

Then the time delay margin can be computed from the following characteristic equation:

det
[

jωiI−
(

A+BΘ
∗>

Φ
′
i

)
+
(

BKx +BΘ
>
i Φ

′
i +

γBB>P
jωi

)
2− jωitdi

2+ jωitdi

]
= 0 (76)

or equivalently

det

 jωiI −I 0

− 2
tdi

(
A+BΘ∗>Φ

′
i−BKx

)
+ γBB>P jωiI + 2

tdi
I−A−BΘ∗>Φ

′
i−BKx−BΘ>i Φ

′
i − 2

tdi
B

−γB>P Θ>i Φ
′
i jωiI

= 0 (77)

2. Lyapunov-Krasovskii method:

Applying the result of the Lyapunov-Krasovskii method from the previous section, the time delay margin can
be computed from the following LMI:

(Ci−Di)
>P+P(Ci−Di)+(α +β ) tdiPDiD>i P+

tdi

α
C>i Ci +

tdi

β
D>i Di < 0 (78)

The SOS optimization can also be used to obtain a better time delay margin estimate.

3. Matrix measure method:

Using the matrix measure method, the time delay margin is estimated as

tdi ≤
1
ωi

cos−1
[

µ (Ci)+ µ ( jDi)
‖Di‖

]
(79)

ωi = µ (− jCi)+‖Di‖ (80)

Another approach is to derive the time delay margin from the characteristic equation of the bounded linear
approximation of the error equation (69)

det
[

jωiI−
(

A+BΘ
∗>

Φ
′
i

)
+
(

BKx +BΘ
>
i Φ

′
i +

γBB>P
jωi

)
e− jωitdi

]
= 0 (81)

Then, applying the matrix measure method, the time delay margin is estimated from

σ ≤ µ

(
A+BΘ

∗>
Φ
′
i

)
+ µ

[
−
(

BKx +BΘ
>
i Φ

′
i

)]
cosωitdi + µ

[
j
(

BKx +BΘ
>
i Φ

′
i

)]
sinωitdi

+
1
ωi

µ

(
jγBB>P

)
cosωitdi +

1
ωi

µ

(
γBB>P

)
sinωitdi ≤ 0 (82)
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which yields

tdi ≤
1
ωi

cos−1

ωiµ

(
A+BΘ∗>Φ

′
i

)[
ωi

∥∥∥BKx +BΘ>i Φ
′
i

∥∥∥−µ
(

jγBB>P
)]

ω2
i

∥∥BKx +BΘ>i Φ
′
i

∥∥2 +
∥∥γBB>P

∥∥2

+

[
ωiµ

[
j
(

BKx +BΘ>i Φ
′
i

)]
+
∥∥γBB>P

∥∥]√ω2
i

∥∥BKx +BΘ>i Φ
′
i

∥∥2 +
∥∥γBB>P

∥∥2

ω2
i

∥∥BKx +BΘ>i Φ
′
i

∥∥2 +
∥∥γBB>P

∥∥2

 (83)

The frequency is computed from

ωi ≤ µ

[
− j
(

A+BΘ
∗>

Φ
′
i

)]
+ µ

[
j
(

BKx +BΘ
>
i

)
e− jωitdi

]
+

1
ωi

µ

(
γBB>Pe− jωitdi

)
≤ µ

[
− j
(

A+BΘ
∗>

Φ
′
i

)]
+
∥∥∥BKx +BΘ

>
i

∥∥∥+
1
ωi

∥∥∥γBB>P
∥∥∥ (84)

which yields the value of ωi that renders td a minimum

ωi =
µ

[
− j
(

A+BΘ∗>Φ
′
i

)]
+
∥∥BKx +BΘ>i

∥∥
2

1+

√√√√1+
4
∥∥γBB>P

∥∥{
µ
[
− j
(
A+BΘ∗>Φ

′
i

)]
+
∥∥BKx +BΘ>i

∥∥}2


(85)

It is noted that ωi→∞ as γ→∞. Consequently, the time delay margin tends to zero as Γ→∞. This is consistent
with the behavior of the standard MRAC.

B. Scalar MRAC

Consider an input delay scalar MRAC system with linear structured uncertainty

ẋ(t) = ax(t)+b [u(t− td)+θ
∗x(t)] (86)

The reference model is given by
ẋm (t) = amxm (t)+bmr (t) (87)

The controller is given by
u(t) =−kxx(t)+ krr (t)−θ (t)x(t) (88)

θ̇ (t) =−Γx(t) pbe(t) (89)

1. The time delay margin is estimated from the matrices Ci and Di

Ci =

[
0 1
0 a+bθ ∗

]
(90)

Di =

[
0 0

γb2 p bkx +bθi

]
(91)

where

γ =
Γ

T0

ˆ ti

ti−T0

x2 (τ)dτ (92)

Using the matrix measure method, the following parameters are computed analytically as

µ (Ci) =
a+bθ ∗+

√
(a+bθ ∗)2 +1

2
(93)
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µ (− jCi) =
1
2

(94)

µ ( jDi) =
γb2 p

2
(95)

‖Di‖=
√

(bkx +bθi)
2 + γ2b4 p2 (96)

ωi and tdi are then estimated as

ωi =
1
2

+
√

(bkx +bθi)
2 + γ2b4 p2 (97)

tdi =
1
ωi

cos−1

a+bθ ∗+
√

(a+bθ ∗)2 +1+ γb2 p

2
√

(bkx +bθi)
2 + γ2b4 p2

 (98)

2. Using the original system parameters, the time delay margin is estimated as

ωi =
|bkx +bθi|

2
+

1
2

√
(bkx +bθi)

2 +4γb2 p (99)

tdi =
1
ωi

cos−1

ω2
i (a+bθ ∗) |bkx +bθi|+ γb2 p

√
ω2

i (bkx +bθi)
2 + γ2b4 p2

ω2
i (bkx +bθi)

2 + γ2b4 p2

 (100)

Both approaches yield somewhat different results. The “exact” values of ωi and tdi for the locally bounded linear
approximation of the error equation can be determined as follows:

det
[

jω− (a+bθ
∗)+(bkx +bθi)e− jωtd + γb2 p

e− jωtd

jω

]
= 0 (101)

This results in two equations

−ω
2
i +(bkx +bθi)ωi sinωitdi + γb2 pcosωitdi = 0 (102)

−(a+bθ
∗)ωi +(bkx +bθi)ωi cosωitdi − γb2 psinωitdi = 0 (103)

The frequency equation is obtained as

ω
4
i +
[
(a+bθ

∗)2− (bkx +bθi)
2
]

ω
2
i − γ

2b4 p2 = 0 (104)

The “exact” solution gives

ωi =

√√√√√ (bkx +bθi)
2− (a+bθ ∗)2 +

√[
(a+bθ ∗)2− (bkx +bθi)

2
]2

+4γ2b4 p2

2
(105)

tdi =
1
ωi

cos−1

[
ω2

i (a+bθ ∗)(bkx +bθi)+ω2
i γb2 p

ω2
i (bkx +bθi)

2 + γ2b4 p2

]
(106)

It is well-known that td → 0 as as Γ→ ∞ for the standard MRAC. This behavior is exhibited in the time delay
margin estimation by the matrix measure method and the “exact” solution since

lim
γ→∞

1
ωi

= lim
γ→∞

1√
γb2 p

= 0 (107)

For γ = 0, the system is non-adaptive and the time delay margin estimation by the matrix measure method using
the Ci and Di yields

td =
2

1+2bkx
cos−1

a+bθ ∗+
√

(a+bθ ∗)2 +1

2bkx

 (108)
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The exact time delay margin is computed to be

td =
1√

(bkx)
2− (a+bθ ∗)2

cos−1
(

a+bθ ∗

bkx

)
(109)

Example: Given a = 1, b = 1, θ ∗ = 0.1, am = −1, bm = 1, p = 1, θ (0) = 0, r (t) = 1. The control gains are
computed to be kx = 2 and kr = 1. The adaptive gain is selected as Γ = 1.

For the non-adaptive LTI system for which θ (t) = 0 for all t, the time delay margin estimates and the exact value
are shown in Table 2.

Method td , sec

Padé Approximation 0.646
Lyapunov-Krasovskii α = β = 1 0.137

Lyapunov-Krasovskii with SOS Optimization 0.235
Matrix Measure in Part 1 0.347
Matrix Measure in Part 2 0.494

Exact Value 0.592

Table 2 - Time Delay Margin Estimation of Non-Adaptive System

Thus, it can be seen that the time delay margin computed by the matrix measure method is the least conservative
lower bound estimate of the true time delay margin among the present approaches. The difference in both approaches
using the matrix measure method is noted. The approach using the matrices Ci and Di are more conservative.

Figure 2 is a plot of the variation of the local time delay margin estimates computed by the matrix measure method
using the matrices Ci and Di within three different time windows with T0 = 1 sec, T0 = 5 sec, and T0 = 10 sec based
on the bounded linear stability analysis method. It is noted that as the window size increases, the initial transients in
the time delay margin estimates tend to decrease. However, the estimates do converge to a constant value regardless of
the time window sizes. In a previous study, it was found that the mean value of the computed local time delay margins
is relatively insensitive to the window size.
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Fig. 2 - Time Delay Margin Estimates
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Fig. 3 - Time Delay Margin Variation with Unknown Parameter θ ∗

Figure 3 is a plot of the mean value of the time delay margin estimates by all the different methods as a function
of the unknown parameter −1 ≤ θ ∗ ≤ 1 for T0 = 1 sec. Generally, θ ∗ is not known, so in a verification setting,
the time delay margin should be computed over all possible parameter variations within their physical bounds. Also
plotted is the numerical evidence of the time delay margin from simulations. Comparing to the numerical evidence,
both the time delay margin estimates by the matrix measure method using the matrices Ci and Di and the original
system parameters are reasonably conservative. The matrix measure method using the original system parameters
is able to estimate the time delay margin better than the same method but using the matrices Ci and Di. The Padé
approximation gives the best estimate of the time delay margin, but is non-conservative since it over-estimates the
time delay margin for θ ∗ > 0. The Lyapunov-Krasovskii method, as expected, yields the most conservative estimates
of the time delay margin. The difference ranges from about 7 times smaller for θ ∗ =−1 to 11 times smaller θ ∗ = 1.
However, with the SOS optimization of the Lyapunov-Krasovskii functional, the time delay margin estimates are
improved considerably. Thus, in summary, the matrix measure method using the original system parameters appears
to produce more reasonably conservative estimation of the time delay margin among all the methods.
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Fig. 4 - Time Delay Margin Variation with Adaptive Gain

Figure 4 is a plot of the mean value of the time delay margin estimates by the matrix measure method using the
matrices Ci and Di as a function of the adaptive gain 1 ≤ Γ ≤ 100 for T0 = 1 sec. It can be seen that as the adaptive
gain Γ increases, the time delay margin of the adaptive system decreases as expected for the standard MRAC.
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C. σ -Modification

The σ -modification adaptive law9 is given by

Θ̇(t) =−ΓΦ(x(t))
[
e> (t)PB+σΘ(t)

]
(110)

Using the bounded linear stability analysis method, the adaptive law is approximated as

u̇ad (t) =−γB>Pe(t)−Γσuad (t)+Θ
>
i Φ

′
i [ẋm (t)− ė(t)] (111)

for t ∈ [ti−T0, ti), where t0 = 0, ti = ti−1 +T0 and i = 1,2, . . . ,n→ ∞, and Γ = λmin (Γ).
Then the error equation is obtained as

ë(t) =
(

A+BΘ
∗>

Φ
′
i−Γσ

)
ė(t)−

(
BKx +BΘ

>
i Φ

′
i

)
ė(t− td)+Γσ

(
A+BΘ

∗>
Φ
′
i

)
e(t)

−
(

γBB>P+ΓσBKx

)
e(t− td)−ΓσBΘ

∗>
[
Φi +Φ

′
ixm (t)−Φ

′
ixi

]
−ΓσBKx [xm (t)− xm (t− td)]

+ΓσBKr [r (t)− r (t− td)]+BΘ
>
i Φ

′
iẋm (t− td)−BΘ

∗>
Φ
′
iẋm (t)−BKx [ẋm (t)− ẋm (t− td)]

+BKr [ṙ (t)− ṙ (t− td)] (112)

For a step input reference command signal, the error equation becomes

ż(t) = Ciz(t)−Diz(t− td) (113)

where z(t) =
[

e(t) ė(t)
]

and

Ci =

[
0 I

Γσ

(
A+BΘ∗>Φ

′
i

)
A+BΘ∗>Φ

′
i−Γσ

]
(114)

Di =

[
0 0

γBB>P+ΓσBKx BKx +BΘ>i Φ
′
i

]
(115)

The time margin for the σ -modification adaptive law can then be estimated by the following methods:

1. Padé Approximation:

The time delay margin can be found from the following characteristic equation:

det
[

jωiI−
(

A+BΘ
∗>

Φ
′
i

)
+
(

BKx +BΘ
>
i Φ

′
i

jωi

jωi +Γσ
+

γBB>P
jωi +Γσ

)
2− jωitdi

2+ jωitdi

]
= 0 (116)

or equivalently

det

 jωiI −I 0

− 2
tdi

(
A+BΘ∗>Φ

′
i−BKx

)
+ γBB>P jωiI + 2

tdi
I−A−BΘ∗>Φ

′
i−BKx−BΘ>i Φ

′
i − 2

tdi
B− 1

tdi
BΓσ

−γB>P Θ>i Φ
′
i jωiI +Γσ


= 0 (117)

2. Lyapunov-Krasovskii method:

In theory, the time delay margin could be estimated using Eq. (78) and the matrices Ci and Di, but the result
is expected to be extremely conservative so the solution of the LMI may be infeasible. A suitable Lyapunov-
Krasovskii method should be considered to account for the σ -modification term in the adaptive law.
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3. Matrix measure method:

The time delay margin may be estimated from Eqs. (79) and (80) using the matrices Ci and Di. However, it is
observed that as Γ→ ∞, ‖Di‖ → ∞ so that ωi→ ∞ which yields td → 0. This is not consistent which the fact
that robust modification will result in a finite time delay margin as Γ→ ∞. Thus, the characteristic equation of
the input delay adaptive system

det
[

jωiI−
(

A+BΘ
∗>

Φ
′
i

)
+
(

BKx +BΘ
>
i Φ

′
i

jωi

jωi +Γσ
+

γBB>P
jωi +Γσ

)
e− jωitdi

]
= 0 (118)

should be used to compute the time delay margin for the σ -modification adaptive law instead. The characteristic
equation can be recast as

det

{
−ωiI + jΓσ − j

(
A+BΘ

∗>
Φ
′
i

)
−
(

A+BΘ
∗>

Φ
′
i

)
Γσ

ωi

+
[

j
(

BKx +BΘ
>
i Φ

′
i

)
+

1
ωi

(
γBB>P+BKxΓσ

)]
e− jωitdi

}
= 0 (119)

The time delay margin can be obtained from

σ ≤ ωi + µ

[
j
(

A+BΘ
∗>

Φ
′
i

)]
+

1
ωi

µ

[(
A+BΘ

∗>
Φ
′
i

)
Γσ

]
+ µ

[
− j
(

BKx +BΘ
>
i Φ

′
i

)]
cosωitdi

+ µ

[
−
(

BKx +BΘ
>
i Φ

′
i

)]
sinωitdi +

1
ωi

µ

[
−
(

γBB>P+BKxΓσ

)]
cosωitdi

+
1
ωi

µ

[
j
(

γBB>P+BKxΓσ

)]
sinωitdi ≤ 0 (120)

which yields

tdi ≤
1
ωi

cos−1

[{
ω

2
i +ωiµ

[
j
(

A+BΘ
∗>

Φ
′
i

)]
+ µ

[(
A+BΘ

∗>
Φ
′
i

)
Γσ

]}
×

×

{∥∥γBB>P+BKxΓσ
∥∥−ωiµ

[
j
(

BKx +BΘ>i Φ
′
i

)]}
ω2

i

∥∥BKx +BΘ>i Φ
′
i

∥∥2 +
∥∥γBB>P+BKxΓσ

∥∥2

+

{
µ
[

j
(
γBB>P+BKxΓσ

)]
−ωiµ

[(
BKx +BΘ>i Φ

′
i

)]}
√

ω2
i

∥∥BKx +BΘ>i Φ
′
i

∥∥2 +
∥∥γBB>P+BKxΓσ

∥∥2

]
(121)

The frequency is computed from

0≤−Γσ + µ

(
A+BΘ

∗>
Φ
′
i

)
+

1
ωi

µ

[
− j
(

A+BΘ
∗>

Φ
′
i

)
Γσ

]
+ µ

[
−
(

BKx +BΘ
>
i Φ

′
i

)]
e− jωitdi

+
1
ωi

µ

[
j
(

γBB>P+BKxΓσ

)]
e− jωitdi

≤−Γσ + µ

(
A+BΘ

∗>
Φ
′
i

)
+

1
ωi

µ

[
− j
(

A+BΘ
∗>

Φ
′
i

)
Γσ

]
+
∥∥∥BKx +BΘ

>
i Φ

′
i

∥∥∥+
∥∥∥γBB>P+BKxΓσ

∥∥∥
(122)

which yields the value of ωi that renders td a minimum

ωi =
µ

[
− j
(

A+BΘ∗>Φ
′
i

)
Γσ

]
+
∥∥γBB>P+BKxΓσ

∥∥
Γσ −µ

(
A+BΘ∗>Φ

′
i

)
−
∥∥BKx +BΘ>i Φ

′
i

∥∥ (123)
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provided Γσ > µ

(
A+BΘ∗>Φ

′
i

)
+
∥∥∥BKx +BΘ>i Φ

′
i

∥∥∥.

Consider the case when Γ→∞. The time delay margin for the standard MRAC is known to be zero but remains
finite for the σ -modification adaptive law. To see this, consider the time delay margin in the limit as Γ→ ∞

which becomes

tdi ≤
1
ωi

cos−1

µ

[(
A+BΘ∗>Φ

′
i

)]
+ µ

[
j
(

γBB>P
Γσ

+BKx

)]
∥∥∥ γBB>P

Γσ
+BKx

∥∥∥
 (124)

ωi = µ

[
− j
(

A+BΘ
∗>

Φ
′
i

)]
+
∥∥∥∥γBB>P

Γσ
+BKx

∥∥∥∥ (125)

If Γ = cI where c > 0 is a constant, then

γ

Γσ
=

1
σT0

ˆ ti

ti−T0

Φ
> (x(τ))Φ(x(τ))dτ (126)

is finite.

Thus, we conclude that tdi and ωi also remain finite as Γ→ ∞. The σ -modification adaptive law is therefore
robust. We can also see that as Γ→ ∞ in the limit, the error equation tends to

ė(t) =
(

A+BΘ
∗>

Φ
′
i

)
e(t)−

(
γBB>P

Γσ
+BKx

)
e(t− td)−BΘ

∗>
[
Φi +Φ

′
ixm (t)−Φ

′
ixi

]
−BKx [xm (t)− xm (t− td)]+BKr [r (t)− r (t− td)] (127)

which yields the same time delay margin and frequency as in Eqs. (124) and (125).

It is noted that the frequency and time delay margin are dependent on time windows since γ varies with different
time windows.

Example: For the same example in Section 4.2, the σ -modification adaptive law is implemented with σ = 1 and
Γ = 50. Figure 5 is a plot of the time delay margin estimates using the matrix measure method and the numerical
evidence of the time delay margin for both the σ -modification adaptive law and the standard MRAC. The time
delay margin estimates are conservative but are fairly accurate. The estimation error is about 25% below the
numerical evidence. The numerical evidence of the time delay margin for the standard MRAC is significantly
below that for the σ -modification as expected due to lack of robustness in the standard MRAC.
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Fig. 5 - Time Delay Margin Estimate by Matrix Measure Method
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D. Optimal Control Modification

The lack of robustness to unmodeled dynamics16 and input time delay of the standard MRAC is well-known, as
illustrated in the previous section. Increasing the adaptive gain allows the adaptation to attain a better tracking per-
formance, but usually at the expense of the ability to maintain stability in the presence of unmodeled dynamics or
time delay. To improve robustness, the two well-known robust modification methods; namely, the σ -modification9

and ε-modification,17 have been used extensively in adaptive control. The optimal control modification method is a
recently developed adaptive law to address robustness due to fast adaptation.10 This adaptive law is given by

Θ̇(t) =−Γ

[
Φ(x(t))e> (t)PB−νΦ(x(t))Φ

> (x(t))Θ(t)B>PA−1
m B

]
(128)

where ν > 0 is a weighting constant.
In can be shown that in the limiting case as Γ→ ∞ and for a linear matched uncertainty where Φ(x(t)) = x(t),

the optimal control modification exhibits an asymptotic linear behavior.18, 19 This behavior can be explained using the
analysis techniques developed herein.

The bounded linear stability analysis provides a method for analyzing an adaptive system with input time delay
using a time windowing approach. Using the bounded linear approximation of an adaptive system, the matrix measure
method can provide a non-conservative lower bound local estimate of the time delay margin. Unfortunately, the local
estimation is non-unique and is dependent on the length of a time window, as is evident in Figure 2. The optimal
control modification adaptive law has a unique property that enables it to be analyzed for stability without the use of
the windowing approach of the bounded linear stability analysis as Γ→ ∞ for Φ(x(t)) = x(t). Thus, the time delay
margin can be uniquely estimated for this adaptive law.

The bounded linear approximation of the optimal control modification adaptive law is

u̇ad (t) =−γB>Pe(t)+ γνB>A−>m PBuad (t)+Θ
>
i Φ

′
i [ẋm (t)− ė(t)] (129)

for t ∈ [ti−T0, ti), where t0 = 0, ti = ti−1 +T0 and i = 1,2, . . . ,n→ ∞.
Let G =−BB>A−>m P > 0, then the error equation is obtained as

ë(t) =
(

A+BΘ
∗>

Φ
′
i− γνG

)
ė(t)−

(
BKx +BΘ

>
i Φ

′
i

)
ė(t− td)+ γνG

(
A+BΘ

∗>
Φ
′
i

)
e(t)

−
(

γBB>P+ γνGBKx

)
e(t− td)− γνGBΘ

∗>
[
Φi +Φ

′
ixm (t)−Φ

′
ixi

]
− γνGBKx [xm (t)− xm (t− td)]

+ γνGBKr [r (t)− r (t− td)]+BΘ
>
i Φ

′
iẋm (t− td)−BΘ

∗>
Φ
′
iẋm (t)−BKx [ẋm (t)− ẋm (t− td)]

+BKr [ṙ (t)− ṙ (t− td)] (130)

The time margin for the optimal control modification adaptive law can then be estimated by the following methods:

1. Padé Approximation:

The time delay margin can be found from the following characteristic equation:

det
{

jωiI−
(

A+BΘ
∗>

Φ
′
i

)
+
[
BKx +( jωiI + γνG)−1

(
jωiBΘ

>
i Φ

′
i + γBB>P

)] 2− jωitdi

2+ jωitdi

}
= 0 (131)

or equivalently

det

 jωiI −I 0

− 2
tdi

(
A+BΘ∗>Φ

′
i−BKx

)
+ γBB>P jωiI + 2

tdi
I−A−BΘ∗>Φ

′
i−BKx−BΘ>i Φ

′
i − 2

tdi
B− 1

tdi
BγνG

−γB>P Θ>i Φ
′
i jωiI + γνG


= 0 (132)

2. Matrix measure method:
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Using the result for the σ -modification adaptive law, we obtain the time delay margin for the optimal control
modification adaptive law as

tdi ≤
1
ωi

cos−1

[{
ω

2
i +ωiµ

[
j
(

A+BΘ
∗>

Φ
′
i

)]
+ µ

[(
A+BΘ

∗>
Φ
′
i

)
γνG

]}
×

×

{∥∥γBB>P+BKxγνG
∥∥−ωiµ

[
j
(

BKx +BΘ>i Φ
′
i

)]}
ω2

i

∥∥BKx +BΘ>i Φ
′
i

∥∥2 +
∥∥γBB>P+BKxγνG

∥∥2 +

+

{
µ
[

j
(
γBB>P+BKxγνG

)]
−ωiµ

[(
BKx +BΘ>i Φ

′
i

)]}
√

ω2
i

∥∥BKx +BΘ>i Φ
′
i

∥∥2 +
∥∥γBB>P+BKxγνG

∥∥2

]
(133)

ωi =
µ

[
− j
(

A+BΘ∗>Φ
′
i

)
γνG

]
+
∥∥γBB>P+BKxγνG

∥∥
‖γνG‖−µ

(
A+BΘ∗>Φ

′
i

)
−
∥∥BKx +BΘ>i Φ

′
i

∥∥ (134)

provided that ‖γνG‖> µ

(
A+BΘ∗>Φ

′
i

)
+
∥∥∥BKx +BΘ>i Φ

′
i

∥∥∥.

From the fact that td → 0 as Γ→ ∞ for the standard MRAC, so a lower bound estimate of the time delay
margin for which an adaptive law is stable can be estimated by the value of td that corresponds to Γ→ ∞ or
equivalently γ → ∞. Consider the case when γ → ∞ and the matched uncertainty is linear with Φ(x(t)) = x(t).
The asymptotic solution of the bounded linear approximation of the optimal control modification is obtained by
taking the limit as γ → ∞

Buad (t) =
1
ν

P−1A>mPe(t) (135)

Then the asymptotic error equation as γ → ∞ becomes

ė(t) =
(

A+BΘ
∗>
)

e(t)−
(

BKx−
1
ν

P−1A>mP
)

e(t− td)−BΘ
∗>xm (t)−BKx [xm (t)− xm (t− td)]

+BKr [r (t)− r (t− td)] (136)

which is a LTI input delay equation independent of any time windowing parameters such as γ .

The characteristic equation of the asymptotic error equation can be obtained by letting γ → ∞ which yields

det
[

jωI−
(

A+BΘ
∗>
)

+
(

BKx +
1
ν

G−1BB>P
)

e− jωitdi

]
= 0 (137)

where G−1BB>P =−P−1A>mP.

The time delay margin and frequency of the optimal control modification adaptive law as γ → ∞ can then be
estimated by the matrix measure method as

td ≤
1
ω

cos−1

[
µ
(
A+BΘ∗>

)
+ µ

(
j
[
BKx− 1

ν
P−1A>mP

])∥∥BKx− 1
ν

P−1A>mP
∥∥

]
(138)

ω = µ

(
− jA− jBΘ

∗>
)

+
∥∥∥∥BKx−

1
ν

P−1A>mP
∥∥∥∥ (139)

The asymptotic results of td and ω can be verified to be the same as those from Eqs. (133) and (134) as γ → ∞.

The effective phase margin is estimated as

φ = cos−1 µ
(
A+BΘ∗>

)
+ µ

(
j
[
BKx− 1

ν
P−1A>mP

])∥∥BKx− 1
ν

P−1A>mP
∥∥ (140)
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It is noted that both the asymptotic time delay and phase margins are independent of the time windows in the
limit as Γ→∞ so the subscript i is dropped from the expressions. Because the time delay margin is a minimum as
Γ→ ∞, the time delay margin estimate for the asymptotic solution of the optimal control modification adaptive
law establishes a lower bound of the time delay margin for any adaptive gain Γ < ∞. Thus, to maintain stability
of the input delay adaptive system using the optimal control modification adaptive law, a suitable selection
of the weighting constant ν can be chosen to satisfy the time delay margin requirement and or phase margin
requirement in an adaptive control design. In order to compute this estimate, the knowledge of the unknown
parametric uncertainty Θ∗ must be available.

Example: For the same example in Section 4.2, the optimal control modification (OCM) adaptive law is imple-
mented with ν = 1 and Γ = 50. Figure 6 is a plot of the time delay margin estimates using the matrix measure
method and the numerical evidence of the time delay margin for both the optimal control modification adaptive
law and the standard MRAC. The time delay margin estimates are reasonably conservative. The estimation
error is greater for θ ∗ < 0 but improves for θ ∗ > 0. The numerical evidence of the time delay margin for the
optimal control modification adaptive law is significantly greater than that for the standard MRAC. Therefore,
the optimal control modification is robust.
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Fig. 6 - Time Delay Margin Estimate by Matrix Measure Method

V. Simulations

Consider a longitudinal pitch dynamic model of an aircraft mV +
CLα̇

q̄Sc̄
2V 0 0

0 1 0

−Cmα̇
q̄Sc̄2

2V 0 Iyy


 α̇ (t)

θ̇ (t)
q̇(t)

=

 mgγ−CLα
q̄S −mgγ mV − CLq q̄Sc̄

2V
0 0 1

Cmα
0

Cmq q̄Sc̄2

2V


 α (t)

θ (t)
q(t)



+

 −CLδe

0
Cmδe


δe (t− td)+

[
θ ∗α 0 θ ∗q

] α (t)
θ (t)
q(t)


 (141)

where td is a time delay.
A numerical model for a full-scale generic transport model (GTM) at Mach 0.8 and 30,000 ft with the flight path
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angle γ = 0 is given by α̇ (t)
θ̇ (t)
q̇(t)

=

 −0.7018 0 0.9761
0 0 1

−2.6923 0 −0.7322


︸ ︷︷ ︸

A

 α (t)
θ (t)
q(t)



+

 −0.0573
0

−3.5352


︸ ︷︷ ︸

B

δe (t− td)+
[

0.1393 0 −0.2071
] α (t)

θ (t)
q(t)




A desired reference model of the pitch attitude is given by

θ̈m (t)+2ζ ωnθ̇m (t)+ω
2
n θm (t) = ω

2
n r (t) (142)

where ζ = 0.85 and ωn = 1.5 rad/sec are chosen to give a desired handling characteristic.

Let x(t) =
[

α (t) θ (t) q(t)
]>

, u(t) = δe (t), and Θ∗> =
[

θ ∗α 0 θ ∗q

]
=
[

0.4 0 −0.3071
]
. The

parametric uncertainty Θ∗ results in the short-period mode damping ratio of 0.095 which corresponds to almost neutral
stability, whereas the nominal short-period mode has a damping ratio of 0.405. A nominal controller is designed
as unom (t) = −Kxx(t) + krr (t) where Kx = 1

b3

[
a31 ω2

n 2ζ ωn +a33

]
=
[

0.7616 −0.6365 −0.5142
]

and

kr = 1
b3

ω2
n = −0.6365. The closed-loop eigenvalues are −0.6582 and −1.2750± 0.7902i. The nominal closed-loop

plant is then chosen to be the reference model as α̇m (t)
θ̇m (t)
q̇m (t)


︸ ︷︷ ︸

ẋm

=

 −0.6582 −0.0365 0.9466
0 0 1
0 −2.2500 −2.5500


︸ ︷︷ ︸

Am

 αm (t)
θm (t)
qm (t)


︸ ︷︷ ︸

xm

+

 0.0365
0

2.2500


︸ ︷︷ ︸

Bm

r (t)

The control input is given by
u(t) =−Kxx(t)+ krr (t)−Θ

> (t)x(t) (143)

where r (t) is a pitch attitude doublet.
Figures 7 and 8 are plots of the estimates of phase and time delay margins of the optimal control modification

adaptive law for Γ→ ∞ computed by the matrix measure method from Eqs. (140) and (138) as a function of ν with
and without the parametric uncertainty Θ∗. Note that the phase margin generally decreases as ν increases and reaches
a steady state value, while the time delay margin reaches a maximum at about ν = 1. Thus, for practical design
purposes, ν should be kept between 0 and 1. A large value of ν produces a better time delay margin, but also results
in a poorer tracking. For the specified uncertainty Θ∗, the maximum time delay margin is estimated to be 78 msec.
Therefore, the input delay adaptive system will be stable with the optimal control modification adaptive law for any
td < 78 msec.

Suppose the input time delay of the system is td = 50 msec. For this input time delay, the optimal control modifi-
cation adaptive law produces a stable adaptation for ν ≥ 0.244. The controller is then implemented with ν = 0.25 and
Γ = 3000I selected. Figures 9 and 10 illustrate the pitch angle and pitch rate responses due to the standard MRAC and
optimal control modification adaptive law. The MRAC with the adaptive gain Γ = 3000I does not track the reference
pitch angle very well. High frequency oscillations are discernible in the pitch rate response. On the other hand, the
optimal control modification adaptive law produces good tracking of the reference pitch angle and pitch rate. The
high frequency oscillations in the pitch rate response with the standard MRAC is substantially reduced by the optimal
control modification adaptive law.
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Fig. 7 - Phase Margin Estimation of Optimal Control Modification
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Fig. 8 - Time Delay Margin Estimation of Optimal Control Modification

The time delay margin of the closed-loop system is estimated by numerical evidence to verify the lower bound
estimate of the time delay margin for the optimal control modification. The results are shown in Table 1.

Time Delay Margin, msec

No Adaptation 550
MRAC 50
OCM 100

Table 1 - Time Delay Margin Estimates

The numerical evidence of the time delay margin for the optimal control modification adaptive law is estimated to
be 100 msec. This is a factor of two larger than the time delay margin of 51 msec as estimated by the matrix measure
method for ν = 0.25.
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Fig. 10 - Pitch Rate Response

VI. Conclusions

A method for analyzing input delay adaptive systems is presented. Three adaptive laws are considered in the
study: standard MRAC, σ -modification, and optimal control modification. The bounded linear stability analysis
approximates a nonlinear adaptive system as a bounded linear approximation within a time window. The windowing
analysis is used to analyze local stability of the bounded linear approximation to estimate local stability behavior
of the original nonlinear system within a given time window. Analytical approaches for computing the time delay
margin are presented for three different methods: Padé approximation, Lyapunov-Krasovskii method with sum-of-
squares optimization, and matrix measure method. Among the methods, the Padé approximation using a first-order
Padé rational polynomial generally tends to be non-conservative, while the Lyapunov-Krasovskii method tends to be
highly conservative in the time delay margin estimation. However, the sum-of-squares optimization demonstrates
that a better Lyapunov-Krasovskii functional can be found by optimization to produce a less conservative time delay
margin estimate. The matrix measure method seems to be able to estimate the time delay margin with reasonable
accuracy. Moreover, the method is much simpler to use and does not require solving a linear matrix inequality as in
the case of the Padé approximation or Lyapunov-Krasovskii method.

The asymptotic behavior of the time delay margin as the adaptive gain tends to infinity is studied. The standard
model-reference adaptive control has zero time delay margin as the adaptive gain tends to infinity, as expected. The
time delay margins for both the σ -modification adaptive law and optimal control modification adaptive law remain
finite as the adaptive gain tends to infinity. The optimal control modification adaptive law also exhibits another useful
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feature in that the asymptotic value of the time delay margin is independent of the time window and the closed-loop
input delay adaptive system tends to a LTI system. This behavior enables a lower bound of the time delay margin to be
estimated with ease using the matrix measure method to guarantee stability for the input delay adaptive system. Flight
control simulations demonstrate that the time delay margin estimation by the matrix measure method provides a good
lower bound.
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