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Advanced Control and Evolvable Systems Group @

- Advanced Control and Evolvable Systems (ACES) Group within the
Intelligent Systems Division (code TI) has 21 researchers, 13 with Ph.D.

« Conduct GNC research and multidisciplinary fixed-wing vehicle dynamic
modeling and simulations

* More than 90% research supports aeronautics with some space-related
GNC
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Introduction @

Composite wing technology in modern passenger aircraft affords weight
reduction but also causes increased wing flexibility
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Impact on Aerodynamics @

* Increased wing deflection impacts optimal span load at off-design, causing
increase in drag
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Impact on Flight Load, Stability and Control @

* Increased wing flexibility causes reduced flutter margin, aeroservoelastic
interactions with dynamics and control, and increased gust response
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AATT Project Research Themes @

Based on Goal-Driven Advanced Concept Studies
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Performance Adaptive Aeroelastic Wing Research @

« Multidisciplinary design analysis optimization (MDAQO) capabilities for
development of advanced adaptive wing technology concepts

Multi-Fidelity Modeling

* Multi-fidelity aero modeling (Cart3D,
Overflow, Lava, Vorlax, Vspaero)

« Coupled FEM (Beam3D, NASTRAN) with
aero codes

* Aeroelasticity / Aeroservoelasticity (ASE)

ASE - Flight Dynamics

* Coupled ASE —rigid aircraft flight
dynamics

* Gust modeling

* Actuator dynamics of ASE control
effectors

Control Effectors

* VCCTEF / continuous leading
edge slat

* Distributed control surfaces

e Other novel concept

Multidisciplinary Optimization

* Aerodynamic design optimization for
drag reduction

* MDO for drag minimization, load
alleviation, and active ASE control

ASE Flight Control

* ASE control (flutter suppression,
load alleviation)

* multi-objective flight control

* Real-time drag optimization

Performance Analysis

* Design trade-study

* Mission analysis / trajectory
optimization to minimize fuel
burn




Performance Adaptive Aeroelastic Wing @

« Variable Camber Continuous Trailing Edge Flap (VCCTEF) developed by
NASA and Boeing Research & Technology as adaptive wing control
technology for drag reduction

| SMA and EMA Hinge Line Actuation |

Individual Flap Deflection for
Spanwise Lift Optimization

for Gap Covering to Eliminate
Flap Noise and Reduce Drag

[Conformal Mold Line Material}
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Flexible Wing High-Aspect Ratio Transport Models @

* Flexible conventional transport and next-generation Truss Brace Wing

NASA Generic Truss-Braced Wing
Transport Model - Aircraft (TBW)
gTM) ,

 VCCTEF is equipped as an adaptive wing control technology

[')

19 Flaps (4 Inboard,
15 Outboard), 3
Camber Segments
per Flap

10 Flaps, 2 Camber
Segments per Flap
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Multi-Fidelity Coupled Aerodynamic Tools

&

* Right fidelity tools — Euler and high-fidelity RANS CFD for optimization and
vortex-lattice with transonic and viscous flow corrections for MDAO

CART3D Static Aero-Structure

OVERFLOW Static Aero-Structure
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(—m Panel Method (Panair 6-DOF Fiight Dynamics
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Geometry Deformation Finite-Element Model

VORLAX Static & Dynamic FEM / NASTRAN

LAVA CFD
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Drag and Maneuver Load Control Optimization

« Drag and maneuver load minimization with VCCTEF
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Aeroservoelasticity @/

« Gust and maneuver load responses are important design considerations
for flexible wing transports

- Integrated coupled ASE flight dynamics provides flight prediction
capability of combined flexible vehicle stability and control response
characteristics

Trim Solution from Aerodynamic
Coupled Aero-Nonlinear | ===  Coefficients & Stability | i No""";::‘::::: Flight
FEM & Control Derivatives
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Integrated Coupled ASE Tool @

- Integrated coupled ASE tool can rapidly generate nonlinear and linear ASE
state space models with gust models and with transonic and viscous
corrections
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Simulations of Gust Response of Truss-Braced Wing @
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Multidisciplinary Flight Control

- ASE flight control enables both adaptive
wing performance and safe flight
operation

* Increased aircraft performance can be
realized by addressing multidisciplinary
interactions in flight control design

+ Integrated adaptive wing design by
incorporating flight control in the MDAO
cycle for weight and drag reduction
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Multi-Objective Flight Control @/

« Multi-objective flight control, first introduced in 2012, takes advantage of
multi-functional flight control surfaces such as VCCTEF to allow new
capabilities in flight control to achieve multiple objectives simultaneously
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ASE State Space Model

ASE state space model with gust disturbance
2 A Bl : { :ir:Arrxr+Arexe+Brur+Wr
Xe = AerXr +AceXe + Botte + W,
Output equation for accelerometers
y=Cx+Du=Cwx;+C.x.+ Drur + D u,

Drag model
ACp =Cpx+Cp,u+x'Cp ,x+x'Cp,u+u'Cp ,u

Wing root bending moment measurement
My, = Myx + M,u + M,,w

Accelerometers
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Multi-Objective Optimal Control

* Multi-objective cost function
J=J+J,

Jr = lim = / (z—r) Qr( —r)+uTR,ur]d
tf_)oo2 T

Pilot Command Tracking

J, = lim = / Qexe + uTR eUe +gpACp +MTqMM )dt

1 1

ASE Mode Suppression Drag Minimization || Load Alleviation

 Drag minimization and load alleviation multi-objective optimal control
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Adaptive Gust Estimation @

Kalman filter state estimation of flexible aircraft dynamics
-’ée = AgeXe +Aerxr+L (y _}A’) + Beute + We

Plant modeling error
& = )'C'\,- —Xr = (Arr +Berr) (ir _-xr) +Are (fe _xe) +Wwr—w,

Wing root bending moment estimation error
ey = My — My = My % + Myu+ My, W, + My, W, — M,

Least-squares gradient adaptive gust estimation
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Real-Time Adaptive Drag Minimization Control

* Real-time drag minimization is a technology that can truly harvest full
potential of adaptive aeroelastic wing technology
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Adaptive Drag Optimization Wind Tunnel Test @/

« A wind tunnel test will be conducted in University of Washington
Aeronautical Laboratory (UWAL) in FY17 to demonstrate adaptive drag
optimization technique

« Wind tunnel model will be a flexible CRM (Common Research Model) wing
with 10% wing tip deflection
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Wind Tunnel Tests

« Two wind tunnel tests conducted in University of Washington
Aeronautical Laboratory (UWAL) in August 2013 and July 2014

Mechanically interlocking surfaces to mate with
silicone elastomer material between flap sections

g

Triple-hinged flap
N\

Cruise Configuration Test in FY13

5% L/D Improvement |
~ 6% Drag Reduction |

HIGH LIFT CONFIGURATION //

High-Lift Test in FY14 ’



UWAL Test of Cruise Configuration

Flaps Fully Deflected Alpha: 3°




Flight Path Angle Control with Drag Minimization @/

Wing Tip Deflection

Flight Path Angle

Drag Coefficient
L/D

e —

1.25% L/D Improvemeht

e
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2.5 g Pull-Up Pitch Rate Control with Load Alleviation @/

Wing Tip Deflection
Pitch Rate

Drag Coefficient
Wing Root Bending Moment

s ————
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Design 1 provides best compromise
between drag minimization and load
alleviation

Pareto Frontier Multi-Objective Optimization Analysis @
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Multi-Objective Flight Control Simulations

Aeroservoelasticity Control
Conceptual Design Model

Intelligent Systems Division
NASA Ames Research Center

&
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Adaptive Maneuver Load Alleviation @/

 Many physical plants are designed to meet performance specifications or
constraints. For example, aircraft wing structures are designed to meet
certain load limits which cannot be exceeded in-flight.

« Conventional adaptive control generally does not take into account
performance optimality.

« Physical plant performance optimization can achieve performance
objective.

« Adaptive control with performance optimization has been developed in
connection with time-varying modification of reference model

Xm = (Am~+ BpKy) &m+ (Bm +ByK,) r

Ke=-R"' (BJW+D}qC)

-1
5> _ 5-lpT (T BT
Kk, =R'B} (AT -WB,R"'B}) WB,
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Adaptive Maneuver Load Alleviation

- Simulations of flexible wing transport aircraft

Original Ref. Model
Response

:// Performance Optimizing Ref. Model

Pitch Rate Wing Root Bending Moment
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Adaptive Flutter Suppression @

« Aeroelastic uncertainty can degrade ASE flutter suppression control

« Adaptive control could be used to improve robustness to uncertainty —
leverage previous adaptive flight control work on F-18 with Optimal
Control Modification with NASA AFRC

Flight Test of Optimal Control Modification in 2010

« Adaptive Linear Quadratic Gaussian control

u=Kx+AK2+K,(y—3)
% 3

AR = —T287 (P —VAK] BTPA,;I) B

K[ =-T,0-9) [f'P—v,0—5) K B"PA,!| B
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Flutter Animation
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Flutter Suppression Animation

33



X-56A Flight Control Collaboration @

« Collaboration with AFRC on X-56A flight control validation of ASE flutter
suppression and multi-objective flight control

— POC: Steve Jacobson and Matt Boucher
— AFRC sent ARC X-56A simulations on January 23, 2016 for control development

X-56A with Interchangeable Wings
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X-56A Model @/

* Reduced-order model for longitudinal dynamics

— 214 states including 5 rigid-body states {h, 0, u, a, ¢}, elastic and lag states for 25
elastic modes, and sensor and actuator dynamics

— 16 outputs and 5 symmetric inputs including 1 body flap and 4 wing flaps per wing

 Reduced-order reference model only includes 5 elastic modes and no
sensor and actuator dynamics

ASESNSR 1000 YHROTR WEF2R
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Adaptive Augmentation @

- LQR design for flight path angle control with adaptive augmentation for
matched uncertainty

_f9  Reference | Xui!
Command Plant
Signal r(f) >
(Flight Path Angle) e(t) +
u(t) MRAC
Controller
Xtrue(t)
5 TruePlant > y(
nt) (Flight Path Angle)

Y = ([ - K, )K.,z—0'®(z)

K

u

= T K,z(e'P-v,2" K] K,B"PA;!) B

O =-Ted(z)[e'P—v,®" (z)OB'PA,'| B

 Demonstrate adaptive flutter suppression at two flight conditions on either
side of flutter boundary without gain scheduling
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Simulations — Above Flutter Boundary

* Trim point at 1 45My knots, 60 Ibs of fuel above flutter boundary
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Other Collaborations @

 NASA-funded EPSCoR project with Wichita State University “Active Wing
Shaping Control for Morphing Aircraft”

— Wichita State University, Kansas University, and Missouri University of Science &
Technology

— FY15-18 performance period

« Possible collaboration with Boeing Research & Technology on Integrated
Adaptive Wing Technology Maturation NRA funded by AATT project
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