
 

Accelerated Aging Experiments for 

Prognostics of Damage Growth in 

Composite Materials 

 
  
 

ABSTRACT 

 

Composite structures are gaining importance in the aerospace industry; however, 

uncertain structural integrity due to fatigue under continuous usage is a big concern. It 

is arguably possible to detect precursors of failures as damage progresses and can be 

used to predict impending failures. Prognostic algorithms require large amounts of 

training data to build damage model for making useful predictions. One of the key 

aspects in these data is the trends of damage progression. Since these data are rarely 

available from actual systems an accelerated aging platform is the next possible 

resource to collect such data. A fatigue cycling experiment was designed to stress 

carbon-carbon composite coupons with various layups. Piezoelectric disc sensors were 

used to periodically interrogate the system. Analysis has shown distinct differences in 

the signatures of growing failures between data collected at conditions. Periodic X-

radiographs were taken to assess the damage ground truth. Results from signal 

processing shows clear trends of damage growth in these coupons that were correlated 

to damage assessed from the X-ray images. Results from the analysis are presented in 

this paper. 

 

INTRODUCTION 

 

Use of carbon based composite materials in aerospace structures is increasing due 

to their superior properties of strength, stiffness, weight, performance, excellent 

corrosion resistance, etc. to name a few. A dramatic rise is seen in the application of 

advanced composite materials for aircraft in the last two decades. Current predictions 

estimate that over the period of next ten years the manufacturing of composites will 

quadruple at an increasing usage rate of 7% annually [1]. However, due to lack of 

dependable Structural Health Monitoring (SHM) techniques these systems are 

currently overdesigned to avoid failures and hence are less cost-efficient. In the 

Structural Health Management context, prognostics can be defined as predicting the 

Remaining Useful Life (RUL) of a structure based on a continuous health monitoring 

since the inception of a fault to avoid catastrophic failures through advance warnings. 
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Augmented with the understanding of damage progression model, condition 

monitoring data can help generate growth trajectory that the damage is expected to 

take and provide an estimate of the RUL [1]. Damage growth model may be physics 



based or derived from historical data, detailed understanding of the intrinsic material 

properties, structure geometry, loading environment, etc. For composites these factors 

are not as well understood as for metals. Internal anisotropic structure of composites is 

significantly more complex to study and any model or theoretical development based 

on a particular composite material rarely generalizes to other variants. There is a 

barrage of theoretical models for composite failure but hardly any consensus on a 

single candidate. Thus for any given material a significant model adjustment and fresh 

validation is required before one could use these models with confidence. 

Prognostics estimates expected RUL of a structure that leads to more informed 

decisions for future actions such as launch/abort decisions, near term repairs, or 

maintenance schedules. Data required for studying fault growth and subsequently 

develop models for prediction algorithms are rarely available from real applications, 

especially for composites where the applications are relatively new. Therefore, the 

scientific community relies on customized accelerated ageing experiments to collect 

detailed run-to-failure data. From prognostics point of view such experiments address 

several key issues such as (i) allowing collection of relevant failure data in reasonable 

timeframe, (ii) ability to control various competing stress factors and in-situ 

measurements for desired parameters, (iv) develop fault growth models and relate 

model parameters to identified stress factors, and (v) validation of prognostics and 

SHM methods.  

The analysis presented in this paper builds on existing understanding of the fault 

modes in composites. This paper investigates faults in laminated ply composites. Such 

structures mainly suffer from two damage types: matrix micro-cracks and inter-

laminar delamination. When subject to fatigue loading matrix micro-cracks develop in 

the matrix through the ply thickness direction, creating high stress concentration at the 

ply interfaces. As more cracks form, an increased interfacial stress leads to initiation of 

delamination, which then starts to propagate further. Delamination significantly 

degrades the strength of the structure and is generally the ultimate cause of failure in 

composite structures. This implies that the two damage modes co-exist, which should 

be perceivable from the sensor measurements from the controlled experiments and, 

therefore, motivates this effort. 

Several efforts have characterized composite failures due to fatigue; however, 

most approaches focused on statistically estimating S-N curves by recording the 

number of cycles to fail under different loads. i.e. no failure progression data was 

collected [2]. Many non-destructive inspection techniques are available for hidden 

damage characterization but most of them require structure disassembly for inspection. 

SHM, on the other hand, uses a network of sensors attached to the structure that are 

able to rapidly inspect the structure. Apart from many other techniques active PZT-

sensor networks have been shown to be very good for guided Lamb waves based 

interrogation of composite structures [3, 4]. A review of existing guided Lamb waves 

techniques for composite structural health monitoring clearly indicates that majority of 

the research conducted to date has focused on damage localization [4-6]. Also these 

approaches mostly just refer to damage detection without isolating a particular damage 

type. Others simulate damages by attaching mass, or drilling a through hole. Some 

research papers [7, 8] have reported results on the effect of matrix micro-cracks on 

Lamb wave propagation, in particular how it affects wave velocity, but has not directly 

quantified matrix micro-cracking density or developed a matrix micro-cracking 

diagnosis. Other papers look at methods to study delamination effects using lamb 



waves [6, 9]. Overall, not many efforts are seen on fatigue damaging a coupon with in-

situ damage state estimation or looking for signatures of cracks and delamination 

separately. Therefore in this effort a run-to-failure experiment is used to collect data 

and analyze growth patterns for damage types typical of laminated sheet composites. 

 

 

EXPERIMENTAL SETUP 

 

The fatigue cycling experiments serve several objectives– (i) ability to collect run-

to-failure data with periodic system health data using health monitoring sensors, (ii) 

ability to collect ground-truth data for the damage to validate measurement data 

analysis, (iii) account for variations between samples of same internal structure 

(layup), and (iv) characterize variations between sample of different internal 

structures. Three symmetric layup configurations were chosen to account for the effect 

of ply orientation: Layup 1: [02/904], Layup 2: [0/902/45/-45/90], and Layup 3: 

[902/45/-45]2. Torayca T700G uni-directional carbon-prepreg material was used for 

6in x 10in coupons with dogbone geometry and a notch to induce stress concentration. 

Two six-PZT-sensor SMART Layer® from Acellent Technologies, Inc (Figure 1(a)). 

were attached to the surface of each sample. This configuration allows six actuators 

and six sensors to monitor wave propagation through the samples, Figure 1(a) shows 

one such path from actuator 5 to sensor 8 (path 58) that will be used as an example 

throughout this paper. Strains of about 0.3-0.4% were estimated at the sensor location. 

Off the shelf data acquisition software and hardware was used to actuate and receive 

the corresponding signals for the 36 actuator-sensor paths at various actuation 

frequencies in the range of 150-450 KHz, with an average input voltage of 50 volts 

and a gain of -20dB. These frequencies were selected so that the fundamental 

symmetric and anti-symmetric modes can be as distinguishable as possible based on 

the differences in their phase velocities.  

Static failure load (σs) was determined through static tests run-to-failure for two or 

three samples of each layup to determine maximum fatigue load (σf) that was set to 

75-85% of σs. All tests were performed on an MTS machine with a load ratio (R) of 

approximately 0.14, following ASTM Standards D3039 and D3479 [10, 11]. The 

fatigue tests followed a sinusoidal load profile at a frequency of 5Hz. The fatigue 

cycling tests were stopped every 50,000 cycles to collect PZT sensor data for all paths 

and interrogation frequencies. X-rays of the samples were taken using a dye-penetrant 

to enhance X-ray absorption. The main goal of this test procedure is to be able to 

acquire sensor data as a function of damage progression; which is clearly visible from 

X-ray images Figure 1(c). 

 

 

DATA ANALYSIS 

 

The approach taken in this effort is to understand the damage progression 

characteristics through experimental run-to-failure data and seek following goals: 

 Understand how faults grow in composites under fatigue environments. 

 If multiple failure modes co-exist, then how to isolate and characterize their 

individual growth characteristics from the monitoring data. 

 Identifying relevant Condition Indicators (CIs) from the monitoring data. 



 Understand the effects of material geometry, construction, and loading sequences. 

 Identify and distinguish between various sources of uncertainty in the 

experimental set up and incorporate them for more accurate predictions. 

 Develop empirical models describing fault growths for prognostic modeling. 

CIs or features were extracted from monitoring data and the trends observed thereby 

were compared to those obtained from assessment of X-rays, which is regarded as 

measured ground truth. This validates the CIs and also helps identify useful features of 

damage (area, length, intensity, etc.) in the X-rays. Once a good set of CIs is obtained 

that correlate well with the damage growth observed from the X-rays, an empirical 

model can be developed for prognostics. X-ray images were processed to extract 

damage quantifiers like matrix crack density and delamination area. Visible growth in 

damage was observed for both fault modes (Figure 1(b)). Delamination area grows 

significantly with fatigue cycling (Figure 1(c)). Delamination areas were measured 

and plotted against corresponding cycle index. Number of cracks was counted on the 

path between a sensor-actuator pair and normalized by path length to obtain the 

estimate of the crack density. To reduce the uncertainty in the measurements this 

process was repeated multiple times. 

 
Figure 1(a) Coupon specimen, SMART Layers location, and diagnostic path from actuator 5 to sensor 8.  

(b) Development of cracks and delamination leading to fatigue failure. (c) Growth in delamination area 

during the course of fatigue cycling experiment. 

 

Health monitoring data using Lamb wave propagation in pitch-catch configuration 

was collected from the PZT sensors to see effects of damage growth in the propagated 

signal. Separate CIs for matrix cracks and delamination were computed to track the 

growth of both damage types individually. Since the coupons are relatively small, it is 

hard to distinguish the fundamental anti-symmetric A0 mode from edge reflections; 

therefore this work focused only on the fundamental symmetric S0 mode. In order to 

distinguish the S0 mode from the rest of the signal, theoretically calculated group 

velocity estimates and the known actuator to sensor path lengths were used to 

approximate an S0 mode window as shown in Figure 2(a). Following CIs were 

computed from the windowed signals. 

 Change in Power Spectral Density - Power Spectral Density (PSD) as a function 

of time for the actuation frequency was extracted from Short Time Fourier Transform 

(STFT) for the signal. The peak value within the specified S0 mode window decreases 

as a function of the matrix cracks that developed (see Figure 2(b)). Change in the PSD 

peak value normalized by the baseline PSD peak was computed. This feature, referred 
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to as the ΔPSD throughout this paper, has been shown to correlated well to matrix 

micro-cracks on any given actuator sensor path [12]. 
 

 
Figure 2(a) Isolating the first S0 mode by windowing the sensed signal. (b) Change in Power 

Spectral Density curves with increasing matrix crack density. 

 

Composite Feature for Delamination – It was found that two signal parameters, 

scatter energy and change in the time of flight (ΔTOF), changes with the delamination 

growth. Scatter energy is calculated as the difference in the signal energy of first S0 

mode Figure 2(a) in the current signal and the baseline signal (damage free condition) 

whereas, ΔToF is estimated as the delay in the arrival of the first wave packet. 

Physically, delamination in the coupons degrades the mechanical properties, which in 

turn reduces Lamb wave velocity thereby increasing ToF. On the other hand, 

delamination also scatters the propagating Lamb waves in proportion to its size.  

a.) Scatter Energy - It was observed that the scatter energy for L2 Layup was 

relatively much higher than the scatter energy for L3 layup. This can be due to 

multiple delaminations initiated on different ply interfaces through coupon thickness. 

Possibly delamination exists between 0/90, 90/45, and -45/90 ply interfaces whereas 

for L2 layup the delamination initiation sites are only 0/90 interfaces.  

b.) ToF - It was observed that the increase in ToF for L3 Layup was relatively 

much higher than that for the L2 layup. The reason for the higher ToF can be due to 

mechanical property degradation caused by delamination at 90/45 ply interface and 

matrix cracking in the outer 90° plies. For L2 Layup, the increase in ToF is less due to 

less degradation in mechanical property due to the presence of 0º outer plies.  

The trends of these individual parameters, scatter energy and ΔToF, did not match 

very well with the delamination area growth curves as observed through X-rays for 

either layups, but a composite signal feature (Scatter Energy x ΔToF) showed 

matching trends and is proposed for tracking delamination growth in the composite 

coupons. 

 

RESULTS AND ANALYSIS 

 

As shown in Figure 3, several comparisons can be drawn. First, the samples of the 

same layup type are compared. As shown in Figure 3 (a) and (b) delamination feature 

shows good correlations to the trends observed in the X-rays for L2 layups (L2S17 & 

L2S20). Likewise for L3 layups (L3S18 & L3S20) these trends look repeatable, for 

instance an increase in load at 600 cycle for L3S20 results in increased delamination 

area, which is also reflected in the corresponding feature. However, the magnitude of 

the delamination features does not correspond to same levels for the two layups, i.e. 

for very different magnitudes of delamination area the feature shows similar values. 
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These differences in the trend of the feature and delamination area curves could be due 

to several following reasons that require further investigation: (i) difference in layup 

types, (L2:[0/902/+45/-45/90]2 vs. L3:[902/+45/-45]2s) and hence effect of 

delamination geometry and orientation on sensor signals, (ii) discrepancies in the 

delamination area measurement from the conventional X-ray images, especially if the 

delamination appears on different interfaces which is not detectable from X-rays but 

still affects the signal significantly. Therefore, the layup type should be an important 

factor in interpreting the results and a good repeatability within a single layup type is 

desirable. Similarly, one can see from Figure 3(c) that the matrix crack density grows 

very quickly initially and then flattens out for both layup types. The cracks grow 

rapidly again when the loads are ramped up, e.g from 6 to 7 kips for L3S20 at cycle 

450K and corresponding gains are visible from the ΔPSD feature in Figure 3(d). The 

differences between the two different layup types can be observed but also the 

repeatability between the same layup types.  

 
Figure 3. (a) Delamination area as observed from X-ray and (b) corresponding condition indicator from 

measurement data. (c) Matrix Crack density from X-ray and (c) corresponding condition indicator. 

There were several limitations in the experimental setup that posed technical 

challenges leading to various uncertainties in the process and are expected to have 

contributed to some of the differences that were observed above. It is important to 

consider these sources of uncertainty while interpreting the results from data analysis 

therefore, we present here some such aspects that have been identified and are 

currently under investigation. 

X-Ray analysis – (1) The X-ray machine used in this project was analog and 

resulted in non-uniform digitization leading to variance in contrasts, brightness, 

scaling, and orientations leading to some uncertainty in ground truth estimation 

despite calibration steps. (2) X-ray images cannot pinpoint the exact ply interface 

where the delamination is present. Therefore a single delaminated layer shows same 
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(d) PSD Based Feature for Matrix Cracks
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(c) Matrix Crack Density (Path 5-8)
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features in the image as for multiple delaminated layers. (3) Matrix crack counting 

process is a manual process and prone to errors. (4) Cracks appear in different 

orientations in different layups, and manual counting results in more uncertainties. 

Data Collection Setup – (1) Due to high-strain fatigue test wiring connections, and 

the adhesive all degrade with fatigue cycling limiting our ability to collect high quality 

fatigue data towards the end of the tests [13, 14]. (2) Since the experiments required 

the samples to be taken out of the MTS for measurements, re-loading of sample 

resulted in slight changes in orientation of the coupon that may affect the fault growth 

as tensile axis changes with orientation. (3) Dye penetrant when wet significantly 

affected the signal. (4) Manufacturing variability between coupons of the same type 

also leads to different damage trajectories. (5) Determining optimal load such that 

coupons break in a reasonable timeframe has been a challenge. Data on single load 

levels is not yet available. 

 

Prognostic Algorithm Development 

 

Prognostic algorithm development can take various approaches that may be data-

driven or model based. Data-driven approaches learn current damage estimate from 

condition indicators and damage growth rates from load factors, which then are used 

to extrapolate the damage to a preset damage threshold to compute estimated RUL. 

Model based methods make use of a damage progression model instead and extend 

the current damage estimate through the use of those models. It was determined that 

so far the collected data is not sufficient to train these models. But with more 

experiments planned two individual models for delamination growth and matrix crack 

density growth will be developed. These models will be used to estimate growth of 

both damages and then combined to produce a common end-of-life estimate through a 

recursive Bayesian filtering methods like Particle Filters (PF). PFs have been shown to 

represent and manage the uncertainty in the prediction process through Importance 

Sampling, thereby refining the current estimates of multiple damage growth model 

predictions using evidence from measurement data [15]. Furthermore, a data-driven 

Gaussian Process Regression approach will also be explored. GPR is a probabilistic 

technique for nonlinear regression that computes posterior degradation estimates by 

constraining the prior distribution to fit the available training data [16]. It provides 

variance around its mean predictions to describe associated uncertainty in the 

predictions, which will be extremely useful in incorporating the effect of various 

uncertainties listed above in RUL predictions. 

 

 

CONCLUSIONS & FUTURE WORK 

 

It was shown in this paper that it is possible to extract separate damage growth 

indicators that will be useful for prognostic model development. These indicators were 

compared to the observations from X-ray images and positive correlations were shown 

to be found. However the authors would like to conduct more experiments to establish 

statistical significance of these results. It is also planned to use strain gage rosettes at 

multiple locations to collect additional data in further tests. That will provide 

additional information about the strain levels during the fatigue tests and help refine 



data analysis and interpretation. Data analysis, model development, and algorithm 

work will continue to carry out damage prognosis on composite structures. 
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