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This paper presents a recently developed computational tool for aeroelastic analysis of aircraft perfor-
mance. The computational tool couples a vortex-lattice code, Vorview, with an aeroelastic model that com-
putes wing structural deflections under a combined coupled bending-torsion motion. The aeroelastic model of
the wing structure is based on a one-dimensional structural dynamic theory using steady state aerodynamics
assumption. An automated aircraft geometry modeler is developed to generate a deformed aircraft geometry
based on the structural deflection aeroelastic analysis. The computation is iterated until the solution converges
within a specified error tolerance. This computational tool is capable to predict both steady state aerodynamics
as well as aeroelastically induced unsteady aerodynamics. Simulations are conducted for a generic transport
aircraft to demonstrate the capability of the computational tool.

I. Introduction

Light weight aircraft design has received a considerable attention in recent years as a means for improving cruise
efficiency. Reducing aircraft weight results in lower lift requirement which directly translates into lower induced drag,
hence reduced engine thrust requirement during cruise. The use of light-weight materials such as advanced composite
materials has been adopted by airframe manufacturers in a number of current and future aircraft. Modern light-
weight materials can provide less structural rigidity while maintaining sufficient load-carrying capacity. As structural
flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important
consideration in aircraft design. Understanding aeroelastic effects can improve the prediction of aircraft aerodynamic
performance and provide an insight into how to design an aerodynamically efficient airframe that exhibits a high
degree of flexibility. Moreover, there exist potential adverse interactions between airframe flexibility and dynamics of
highly flexible aircraft that can compromise vehicle stability and control.

This paper describes a recent development of a computational capability that couples a static and dynamic aeroelas-
tic model of aircraft wing structures with a vortex-lattice aerodynamic code for aerodynamic performance prediction.
The aeroelastic model is based on one-dimensional structural dynamic theory that models a wing structure as a beam
in a combined coupled bending-torsion motion. Aeroelastic analysis is performed based on the quasi-steady state
aerodynamic assumption. The coupling between the aeroelastic model and the vortex-lattice code is made possible by
a computational geometry model that updates the aircraft deformed geometry at each iteration.
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II. Computational Tools

A. Vorview Vortex-Lattice Code

Vorview is a computational aerodynamic tool that is used for the development of the aeroelastic computational ca-
pability.1 Vorview provides a rapid method for estimating aerodynamic force and moment coefficients as well as
aerodynamic stability and control derivatives for a given aircraft configuration. It is based on the vortex-lattice lifting
line aerodynamic theory. The vehicle configuration is constructed within Vorview by a series of panels that are formed
by spanwise and chordwise locations of bound vortices. Vorview computes the vehicle aerodynamics in both the longi-
tudinal and lateral directions independently. The longitudinal and lateral aerodynamics are then combined to produce
overall aerodynamic characteristics of the vehicle at any arbitrary angle of attack and angle of sideslip. Due to the in-
viscid nature of any vortex-lattice method, the drag prediction by Vorview is most reliable for induced drag prediction.
For viscous drag due to boundary layer separation or wave drag due to shock-induced boundary layer separation, the
prediction may be less reliable. Vorview can provide a rapid estimation of aerodynamic derivatives including dynamic
derivatives due to angular rates. Owing to the computationally efficient vortex-lattice method, aerodynamic derivatives
can be estimated in Vorview fairly quickly. A flight dynamic model for a given vehicle configuration can be easily
developed with Vorview that supplies the model with all necessary aerodynamic information for the vehicle.

Figure 1 - Vorview Aircraft Model

Vorview has been validated by both wind tunnel data2 as well as NASA Cart3D tool3 which is a high-fidelity invis-
cid (Euler) CFD analysis code targeted at analyzing aircraft performance in conceptual and preliminary aerodynamic
design. In general, both of these aerodynamic codes seem to have similar predictive capabilities when compressibility
is not a factor. Figures 2 and 3 illustrate the comparison of lift and drag prediction of Vorview and Cart3D as compared
to wind tunnel data for a Generic Transport Model (GTM) taken in NASA Langley’s 14-By 22-Foot Wind Tunnel. In
compressible simulations, Cart3D is expected to be substantially more accurate since the vortex panel method used by
Vorview cannot account for compressibility effects (e.g. shock formation and wave-drag) within the flow.
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Figure 2 - CL vs. α Comparison

Figure 3 - CD vs. α Comparison

B. Automated Vehicle Geometry Modeling Tool

To enable a coupled aeroelastic solution, the aircraft deformed geometry must be generated at each iteration. An au-
tomated vehicle geometry modeling tool has been developed in MATLAB to update the aircraft deformed geometry.
The vehicle geometry modeler directly outputs a geometry input file that can be read by Vorview during a solution
cycle. The vehicle geometry modeler has access to the outer mold line of the jig-shape (undeformed) aircraft geom-
etry. The coordinate reference frame (xV ,yV ,zV ) defines the coordinate system used in the vehicle geometry model.
Wing chordwise and flapwise bending deflection shapes and a twist distribution are superimposed on top of the wing
geometry as shown in Figure 4. A deformed wing geometry is generated by a coordinate transformation as follows:

1. A coordinate rotation to account for twist is performed first by rotating a jig-shape wing section about its area
center by a specified twist angle at a given yV -coordinate. The transformed coordinates due to twist are computed
as

x
′
V = x̄+(xV − x̄)cosΘ(yV )− (zV − z̄)sinΘ(yV ) (1)
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z
′
V = z̄+(xV − x̄)sinΘ(yV )+(zV − z̄)cosΘ(yV ) (2)

where Θ is the twist angle, positive nose-down and negative nose-up.

2. A coordinate translation in the xV -direction to account for chordwise bending is performed next by translating
the previously transformed x

′
V -coordinate by a specified chordwise bending deflection at a given yV -coordinate.

The transformed coordinates due to chordwise bending are computed as

x
′′
V = x

′
V +V (yV ) (3)

z
′′
V = z

′
V (4)

where V is the chordwise bending deflection, positive swept back and negative swept forward.

3. Finally, a coordinate translation in the zV -direction to account for flapwise bending is performed by translat-
ing the previously transformed z

′′
V by a specified flapwise bending deflection at a given yV -coordinate. The

transformed coordinates due to flapwise bending are computed as

x
′′′
V = x

′′
V (5)

z
′′′
V = z

′′
V +W (yV ) (6)

where W is the flapwise bending deflection, positive up and negative down.

Figure 4 - Wing Bending Deflections and Twist

III. Aeroelastic Modeling

Aeroelasticity theory is used to develop a structural deflection model of an aircraft wing structure undergoing a
combined coupled bending-torsion motion. The model uses the aerodynamic information generated from Vorview to
compute the aeroelastic deflections of the wing structure in bending and torsion. The aeroelastic deflections are then
used by the automated vehicle geometry modeler to update the aircraft geometry in Vorview with the deformed wing
shape. The deformed aircraft model is then iterated between Vorview and the aeroelastic model until the static solution
of the aeroelastic deflections converge.
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A. Reference Frames

Figure 5 - Aircraft Reference Frames

Figure 5 illustrates three orthogonal views of a typical aircraft. Several reference frames are introduced to facilitate
the rigid-body dynamic and structural dynamic analysis of the lifting surfaces. For example, the aircraft inertial
reference frame A is defined by unit vectors a1, a2, and a3 fixed to the non-rotating earth. The aircraft body-fixed
reference frame B is defined by unit vectors b1, b2, and b3. The reference frames A and B are related by three
successive rotations: 1) the first rotation about a3 by the heading angle ψ that results in an intermediate reference
frame A

′
defined by unit vectors a′1, a′2, and a′3 (not shown), 2) the second rotation about a′2 by the pitch angle θ

that results in an intermediate reference frame B
′

defined by unit vectors b′1, b′2, and b′3 (not shown), and 3) the third
rotation about b′1 by the bank angle φ that results in the reference frame B. This relationship can be expressed as a1

a2

a3

=

 cosψ −sinψ 0
sinψ cosψ 0

0 0 1


 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ


 1 0 0

0 cosφ −sinφ

0 sinφ cosφ


 b1

b2

b3


=

 cosψ cosθ −sinψ cosφ + cosψ sinθ sinφ sinψ sinφ + cosψ sinθ cosφ

sinψ cosθ cosψ cosφ + sinψ sinθ sinφ −cosψ sinφ + sinψ sinθ cosφ

−sinθ cosθ sinφ cosθ cosφ


 b1

b2

b3

 (7)

The left wing elastic reference frame D is defined by unit vectors d1, d2, and d3. The reference frames B and
D are related by three successive rotations: 1) the first rotation about b3 by the elastic axis sweep angle 3π

2 −Λ that
results in an intermediate reference frame B” defined by unit vectors b”

1, b”
2, and b”

3 (not shown), 2) the second rotation
about negative b”

2 by the elastic axis dihedral angle Γ that results in an intermediate reference frame D
′
defined by unit

vectors d′1, d′2, and d′3 (not shown), and 3) the third rotation about d′1 by an angle π that results in the reference frame
D. This relationship can be expressed as b1

b2

b3

=

 −sinΛ cosΛ 0
−cosΛ −sinΛ 0

0 0 1


 cosΓ 0 −sinΓ

0 1 0
sinΓ 0 cosΓ


 1 0 0

0 −1 0
0 0 −1


 d1

d2

d3


=

 −sinΛcosΓ −cosΛ −sinΛsinΓ

−cosΛcosΓ sinΛ cosΛsinΓ

sinΓ 0 −cosΓ


 d1

d2

d3

 (8)

Generally, the effect of the dihedral angle can be significant. A full analysis with the dihedral angle can be
performed but can also result in a very complex analytical formulation. Thus, to simplify the analysis, the dihedral
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effect is assumed to be negligible in this study. The right wing reference frame C can be established in a similar
manner. In the analysis, the aeroelastic effects on the fuselage, horizontal stabilizers, and vertical stabilizer are not
considered, but the analytical method can be formulated for analyzing these lifting surfaces if necessary. In general, a
whole aircraft analysis approach should be conducted to provide a comprehensive assessment of the effect of structural
flexibility on aircraft performance and stability. However, the scope of this study pertains to only the wing structures.

B. Elastic Analysis

In the subsequent analysis, the combined motion of the left wing is considered. The motion of the right wing is a
mirror image of that of the left wing for symmetric flight. The wing has a varying pre-twist angle γ (x) commonly
designed in many aircraft. Typically, the wing pre-twist angle varies from being nose-up at the wing root to nose-down
at the wing tip. The nose-down pre-twist at the wing tip is designed to delay stall onsets. This is called a wash-out
twist distribution. Under aerodynamic forces and moments, the aeroelastic deflections of a wing introduce stresses
and strains into the wing structure. The internal structure of a wing typically comprises a complex arrangement of load
carrying spars and wing boxes. Nonetheless, the elastic behavior of a wing can be captured by the use of equivalent
stiffness properties. These properties can be derived from structural certification testing that yields information about
wing deflections as a function of loading. For high aspect ratio wings, an equivalent beam approach can be used to
analyze aeroelastic deflections with good accuracy. The equivalent beam approach is a typical formulation in many
aeroelasticity studies.4 It is assumed that the effect of wing curvature is ignored and the straight beam theory is used
to model the wing deflection.

Consider an airfoil section on the left wing as shown in Figure 6 undergoing bending and torsional deflections.

Figure 6 - Left Wing Reference Frame

Let (x,y,z) be the coordinates of a point Q on the airfoil. Then the undeformed local airfoil coordinates of point Q
are [

y
z

]
=

[
cosγ −sinγ

sinγ cosγ

][
η

ξ

]
(9)

where η and ξ are local airfoil coordinates, and γ is the wing section pre-twist angle, positive nose-down.5

Then differentiating with respect to x gives[
yx

zx

]
= γ

′

[
−sinγ −cosγ

cosγ −sinγ

][
η

ξ

]
=

[
−zγ

′

yγ
′

]
(10)

The axial or extensional deflection of a wing is generally very small and therefore can usually be neglected. Let
Θ be a torsional twist angle about the x-axis, positive nose-down, and let W and V be flapwise and chordwise bending
deflections of point Q, respectively.. Then, the rotation angle due to the elastic deformation can be expressed as

φ (x, t) = Θd1−Wxd2 +Vxd3 (11)

where the subscripts x and t denote the partial derivatives of Θ, W , and V .
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Let (x1,y1,z1) be the coordinates of point Q on the airfoil in the reference frame D. Then the coordinates (x1,y1,z1)
are computed using the small angle approximation as x1 (x, t)

y1 (x, t)
z1 (x, t)

=

 x
y+V
z+W

+

 φ × (yd2 + zd3) .d1

φ × (yd2 + zd3) .d2

φ × (yd2 + zd3) .d3

=

 x− yVx− zWx

y+V − zΘ

z+W + yΘ

 (12)

Differentiating x1, y1, and z1 with respect to x yields x1,x

y1,x

z1,x

=

 1− yVxx + zγ
′
Vx− zWxx− yγ

′
Wx

−zγ
′
+Vx− zΘx− yγ

′
Θ

yγ
′
+Wx + yΘx− zγ

′
Θ

 (13)

Neglecting the transverse shear effect, the longitudinal strain is computed as6

ε =
ds1−ds

ds
=

s1,x

sx
−1 (14)

where
sx =

√
1+ y2

x + z2
x =

√
1+(y2 + z2)

(
γ
′)2 (15)

s1,x =
√

x2
1,x + y2

1,x + z2
1,x =

√
1+(y2 + z2)

(
γ
′)2−2yVxx−2zWxx +2(y2 + z2)γ

′
Θx (16)

For a small wing twist angle γ , the longitudinal strain is obtained as

ε =−yVxx− zWxx +
(
y2 + z2)

γ
′
Θx (17)

The moments acting on the wing are then obtained as Mx

My

Mz

=

 GJΘx

0
0

+
¨

Eε


(
y2 + z2

)(
γ
′
+Θx

)
−z
−y

dydz (18)

=

 GJ +EB1

(
γ
′
)2

−EB2γ
′ −EB3γ

′

−EB2γ
′

EIyy −EIyz

−EB3γ
′ −EIyz EIzz


 Θx

Wxx

Vxx

 (19)

where E is the Young’s modulus; G is the shear modulus; γ
′

is the derivative of the wing pre-twist angle; Iyy, Iyz, and
Izz are the section area moments of inertia about the flapwise axis; J is the torsional constant; and B1, B2, and B3 are
the bending-torsion coupling constants which are defined as B1

B2

B3

=
¨ (

y2 + z2)
 y2 + z2

z
y

dydz (20)

The strain analysis shows that, for a pre-twisted wing, the bending deflections are coupled to the torsional deflection
via the slope of the wing pre-twist angle. This coupling can be significant if the wash-out slope γ

′
is dominant as in

highly twisted wings such as turbomachinery blades. For an aircraft wing structure, a simplification can be made by
neglecting the chordwise bending deflection. Thus, the resulting moments are now given as[

Mx

My

]
=

 GJ +EB1

(
γ
′
)2

−EB2γ
′

−EB2γ
′

EIyy

[ Θx

Wxx

]
(21)
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C. Aeroelastic Angle of Attack

The relative velocity of the air approaching a wing section includes the contribution from the wing elastic deflection
that results in changes in the local angle of attack. Since aerodynamic forces and moments are dependent on the local
angle of attack, the wing aeroelastic deflections will generate additional elastic forces and moments. The local angle
of attack depends on the relative approaching air velocity as well as the rotation angle φ from Eq. (11). The relative
air velocity in turn also depends on the deflection-induced velocity. The local velocity components at point Q in the
reference frame D are given by5 vx

vy

vz

=

 −usinΛ+ x1,t

−ucosΛ+ y1,t

−w−qxa + z1,t

=

 −usinΛ− zWxt

−ucosΛ− zΘt

−w−qxa +Wt + yΘt

 (22)

where u≈V∞, w≈V∞α , q is the aircraft pitch rate, xa is the position of point Q with respect to the aircraft C.G. (positive
aft of C.G.) measured in the aircraft reference frame B, and y and z are coordinates of point Q in the reference frame
D.

In order to compute the aeroelastic forces and moments, the velocity must be transformed from the reference frame
D to the airfoil local coordinate reference frame defined by (µ,η ,ξ ) (see Figure 9). Then the transformation can be
performed using two successive rotation matrix multiplication operations as vµ

vη

vξ

=

 1 0 0
0 cos(Θ+ γ) sin(Θ+ γ)
0 −sin(Θ+ γ) cos(Θ+ γ)


 cosWx 0 sinWx

0 1 0
−sinWx 0 cosWx


 vx

vy

vz


=

 vx cosWx + vz sinWx

−vx sinWx sin(Θ+ γ)+ vy cos(Θ+ γ)+ vz cosWx sin(Θ+ γ)
−vx sinWx cos(Θ+ γ)− vy sin(Θ+ γ)+ vz cosWx cos(Θ+ γ)

 (23)

For small deflections, the local velocity components can be simplified as vµ

vη

vξ

=

 vx + vzWx

vy + vz (Θ+ γ)
vz− vxWx− vy (Θ+ γ)

 (24)

Referring to Figure 7, the local aeroelastic angle of attack on the airfoil section due to the velocity components vη

and vξ in the reference frame D is computed as

αc =
vξ

vη

=
v̄ξ +∆vξ

v̄η +∆vη

(25)

where
v̄ξ =−w−qxa (26)

v̄η =−ucosΛ (27)

∆vξ = Wt + yΘt − vxWx− vy (Θ+ γ) (28)

∆vη =−zΘt + vz (Θ+ γ) (29)

Then the local aeroelastic angle of attack can be evaluated as

αc =
vξ

v̄η

−
v̄ξ ∆vη

v̄2
η

=
−w−qxa +Wt + yΘt − vxWx− vy (Θ+ γ)

−ucosΛ
− (−w−qxa) [−zΘt + vz (Θ+ γ)]

u2 cos2 Λ
(30)

Ignoring the nonlinear terms, the expression for the local aeroelastic angle of attack is obtained as5

αc (x,y,z) =
α

cosΛ
+

qxa

V∞ cosΛ
− γ (x)−Wx tanΛ−Θ−Wt + yΘt

V∞ cosΛ
− (w+qxa) [zΘt +(w+qxa)(Θ+ γ)]

u2 cos2 Λ
(31)

The terms Wt and Θt contribute to aerodynamic damping forces which can be significant for aeroelastic stability.
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Figure 7 - Aeroelastic Angle of Attack

For aeroelastic analysis, the steady state aerodynamic method assumes that the steady state lift circulation oc-
curs at the aerodynamic center of the oscillating airfoil, which may be taken to be the quarter-point. On the other
hand, the unsteady aerodynamic method assumes that the unsteady circulation acts at the 3/4-chord point.5 Both
the Theodorsen’s method for simple harmonic airfoil motion7 and Peters’ finite-state method can be used to analyze
unsteady aerodynamics.4 Based on the steady state aerodynamic assumption, the local angle of attack of an airfoil
section at the elastic axis is evaluated at y =−e and z = 0. Neglecting the last term, the expression for αc is

αc (x) =
α

cosΛ
+

qxac

V∞ cosΛ
− γ (x)−Wx tanΛ−Θ−Wt − eΘt

V∞ cosΛ
(32)

where xac is the distance from aircraft C.G. to the quarter-chord point measured in aircraft reference frame B (positive
aft of C.G.) e is the distance between the quarter-chord point and the elastic axis.

For unsteady aerodynamics, the local angle of attack is evaluated at y = b
( 1

2 −a
)

αc (x) =
α

cosΛ
+

qxac

V∞ cosΛ
− γ (x)−Wx tanΛ−Θ−

Wt +b
( 1

2 −a
)

Θt

V∞ cosΛ
(33)

where b is the half-chord length and −1≤ a≤ 1 is a parameter such that the elastic axis is located at a distance −ab
from the mid-chord and a < 0 when the elastic axis is forward of the mid-chord.

In the present computational approach, the steady state aerodynamic method is used in the aeroelastic analysis. It
is also noted that the three-dimensional lifting line effect that gives rise to the induced angle of attack is neglected in
the analysis.

D. Wing Aeroelasticity

The wing deformation is comprised of two components: bending deflection W (x) and torsional deflection Θ(x), where
x is the wing local elastic axis. Furthermore, these deflections include both the static and dynamic contributions. Thus

Θ(x, t) = Θ̄(x)+∆Θ(x, t) (34)

W (x, t) = W̄ (x)+∆W (x, t) (35)

where W̄ (x) and Θ̄(x) are the static bending and torsional deflections, and ∆W (x, t) and ∆Θ(x, t) are the dynamic
bending and torsional deflections.

The equilibrium conditions for bending and torsion are expressed as

∂Mx

∂x
=−mx (36)

∂ 2My

∂x2 = fz−
∂my

∂x
(37)

where mx is the pitching moment per unit span about the elastic axis, fz is the lift force per unit span, and my is the
bending moment per unit span about the flapwise axis of the wing which is assumed to be zero.

The local pitching moment and lift coefficients are given by

cm (x) = cmac +
e
c

[
cL0 + cLα

αc (x)
]
+

m

∑
k=1

(
cmδk

+
e
c

cLδk

)
δk (38)

cL (x) = cL0 + cLα
αc (x)+ cLδ

δ (39)
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where cmac is the section pitching moment coefficient about the section at the quarter-chord point at trim which is
usually small and thus may be assumed to be zero, cL0 is the section lift coefficient at zero angle of attack, cLα

is the
section lift vs. angle of attack curve slope, c is the section chord, δk is the surface deflection of the k-th flap, and cLδk
and cmδk

are the section lift and pitching moment control derivative at the quarter-chord point due to the k-th flap.

Figure 8 - Airfoil Forces and Moment

Using the sign convention as shown in Figure 8, the pitching moment per unit span can now be expressed as

mx =−

[
cL0 + cLα

(
α

cosΛ
+

qxac

V∞ cosΛ
− γ−Wx tanΛ−Θ−Wt − eΘt

V∞ cosΛ

)
+

m

∑
k=1

(c
e

cmδk
+cLδk

)
δk

]
eq∞ cos2

Λc

+ρgAecg−ρIxxΘtt +ρAecgWtt (40)

where q∞ is the dynamic pressure, ρ is the wing material density including fuel density, A is the cross sectional area
of a wing section, ecg is the eccentricity between the center of mass and the elastic axis (positive corresponding to the
center of mass located forward of the elastic axis), Ixx is the section polar area moment of inertia, and the term cos2 Λ

accounts for the wing sweep angle Λ as measured from the elastic axis.
The lift force per unit span is given by

fz =

[
cL0 + cLα

(
α

cosΛ
+

qxac

V∞ cosΛ
− γ−Wx tanΛ−Θ−Wt − eΘt

V∞ cosΛ

)
+

m

∑
k=1

cLδk
δk

]
q∞ cos2

Λc

−ρgA−ρAWtt +ρAecgΘtt (41)

where A is the cross sectional area of a wing section.
The bending and torsion aeroelastic equations then become

∂

∂x

{[
GJ +EB1

(
γ
′
)2
]

Θx−EB2γ
′
Wxx

}
=[

cL0 + cLα

(
α

cosΛ
+

qxac

V∞ cosΛ
− γ−Wx tanΛ−Θ−Wt − eΘt

V∞ cosΛ

)
+

m

∑
k=1

(c
e

cmδk
+cLδk

)
δk

]
eq∞ cos2

Λc

−ρgAecg +ρIxxΘtt −ρAecgWtt (42)

∂ 2

∂x2

(
−EB2γ

′
Θx +EIyyWxx

)
=[

cL0 + cLα

(
α

cosΛ
+

qxac

V∞ cosΛ
− γ−Wx tanΛ−Θ−Wt − eΘt

V∞ cosΛ

)
+

m

∑
k=1

cLδk
δk

]
q∞ cos2

Λc

−ρgA−ρAWtt +ρAecgΘtt (43)

subject to fixed-end symmetric-mode boundary conditions Θ(0, t)= Θx (L, t)= 0 and W (0, t)=Wx (0, t)= EIWxx (L, t)=
d
dx (EIWxx (L, t)) = 0, whereupon the x-coordinate of the wing elastic axis is translated such that the wing root section
is at x = 0 and wing tip section is at x = L.

These equations describe the wing bending and torsional deflections due to aerodynamic forces and moments.
Using the Galerkin’s method,8 the static and dynamic bending and torsional deflections can be approximated as

Θ̄(x) = θ̄Ψ1 (x) (44)
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W̄ (x) = w̄Φ1 (x) (45)

∆Θ(x, t) =
n

∑
j=0

θ j (t)Ψ j (x) (46)

∆W (x, t) =
n

∑
j=1

w j (t)Φ j (x) (47)

where w̄ and θ̄ are the generalized coordinates for static bending and torsion, θ j (t) and w j (t) are the generalized co-
ordinates, and Ψ j (x) and Φ j (x) are the assumed normalized eigenfunctions of the j-th bending and torsion aeroelastic
modes, respectively, j = 1,2, . . . ,n.

The normalized eigenfunctions are given by

Ψ j (x) =
√

2sin
(2 j−1)πx

2L
(48)

Φ j (x) = cosh(β jx)− cos(β jx)−
cosh(β jL)+ cos(β jL)
sinh(β jL)+ sin(β jL)

[sinh(β jx)− sin(β jx)] (49)

where β jL = 1.87510, 4.69409, . . . is the eigenvalue of the j-th bending mode of a uniform cantilever beam, and the
eigenfunctions Ψ j (x) and Φ j (x) satisfy the orthogonal condition

ˆ L

0
Ψi (x)Ψ j (x)dx =

ˆ L

0
Φi (x)Φ j (x)dx =

L i = j

0 i 6= j
(50)

1. Static Analysis

The unsteady motion of the wing results in a time-varying angle of attack as

α (t) = ᾱ +∆α (t) (51)

where ᾱ is a trim angle of attack and ∆α is a time-varying incremental angle of attack.
The flap deflection is generally time-varying resulting from flight control actions, and therefore can be decomposed

into a steady state component and time-varying component as follows:

δk (t) = δ̄k +∆δk (t) (52)

where δ̄k is the trim flap deflection and ∆δk is a time-varying incremental flap deflection.
For steady state motion, both the time-varying incremental angle of attack and the pitch rate are zero. Therefore,

the static bending and torsion aeroelastic equations are expressed as

d
dx

{[
GJ +EB1

(
γ
′
)2
]

Θ̄
′ −EB2γ

′
W̄
′′
}

=[
cL0 + cLα

(
ᾱ

cosΛ
− γ−W̄

′
tanΛ− Θ̄

)
+

m

∑
k=1

(c
e

cmδk
+cLδk

)
δ̄k

]
eq∞ cos2

Λc−ρgAecg (53)

d2

dx2

(
−EB2γ

′
Θx +EIyyWxx

)
=

[
cL0 + cLα

(
ᾱ

cosΛ
− γ−W̄

′
tanΛ− Θ̄

)
+

m

∑
k=1

cLδk
δ̄k

]
q∞ cos2

Λc−ρgA (54)

The weak-form integral expressions of the aeroelastic equations are obtained by multiplying the bending and
torsion aeroelastic equations by Φ1 (x) and Ψ1 (x), respectively, and then integrating over the wing span. This yields

ˆ L

0
Ψ1

d
dx

{[
GJ +EB1

(
γ
′
)2
]

θ̄Ψ
′
1−EB2γ

′
w̄Φ

′′
1

}
dx =

ˆ L

0
Ψ1

[
cL0 + cLα

(
ᾱ

cosΛ
− γ− w̄Φ

′
1 tanΛ− θ̄Ψ1

)
+

m

∑
k=1

(c
e

cmδk
+cLδk

)
δ̄k

]
eq∞ cos2

Λcdx−
ˆ L

0
Ψ1ρgAecgdx (55)

11 of 26

American Institute of Aeronautics and Astronautics



ˆ L

0
Φ1

d2

dx2

(
−EB2γ

′
θ̄Ψ

′
1 +EIyyw̄Φ

′′
1

)
dx =

ˆ L

0
Φ1

[
cL0 + cLα

(
ᾱ

cosΛ
− γ− w̄Φ

′
1 tanΛ− θ̄Ψ1

)
+

m

∑
k=1

cLδk
δ̄k

]
q∞ cos2

Λcdx−
ˆ L

0
Φ1ρgAdx (56)

The expressions of the left hand sides can be integrated by parts as

ˆ L

0
Ψ1

d
dx

{[
GJ +EB1

(
γ
′
)2
]

θ̄Ψ
′
1−EB2γ

′
w̄Φ

′′
1

}
dx = Ψ1

{[
GJ +EB1

(
γ
′
)2
]

θ̄Ψ
′
1−EB2γ

′
w̄Φ

′′
1

}∣∣∣∣L
0

−
ˆ L

0
Ψ
′
1

{[
GJ +EB1

(
γ
′
)2
]

θ̄Ψ
′
1−EB2γ

′
w̄Φ

′′
1

}
dx (57)

ˆ L

0
Φ1

d2

dx2

(
−EB2γ

′
θ̄Ψ

′
1 +EIyyw̄Φ

′′
1

)
dx = Φ1

d
dx

(
−EB2γ

′
θ̄Ψ

′
1 +EIyyw̄Φ

′′
1

)∣∣∣∣L
0

− Φ
′
1

(
−EB2γ

′
θ̄Ψ

′
1 +EIyyw̄Φ

′′
1

)∣∣∣L
0
+
ˆ L

0
Φ
′′
1

(
−EB2γ

′
θ̄Ψ

′
1 +EIyyw̄Φ

′′
1

)
dx (58)

Then, by enforcing the zero boundary conditions at the two end points, the weak-form static aeroelastic equations
are obtained as

ˆ L

0
Ψ
′
1

{[
GJ +EB1

(
γ
′
)2
]

θ̄Ψ
′
1−EB2γ

′
w̄Φ

′′
1

}
dx

+
n

∑
j=1

ˆ L

0
Ψ1

[
cL0 + cLα

(
ᾱ

cosΛ
− γ− w̄Φ

′
1 tanΛ− θ̄Ψ1

)
+

m

∑
k=1

(c
e

cmδk
+cLδk

)
δ̄k

]
eq∞ cos2

Λcdx−
ˆ L

0
Ψ1ρgAecgdx

(59)

n

∑
j=1

ˆ L

0
Φ
′′
1

(
−EB2γ

′
θ̄Ψ

′
1 +EIyyw̄Φ

′′
1

)
dx

−
n

∑
j=1

ˆ L

0
Φ1

[
cL0 + cLα

(
ᾱ

cosΛ
− γ− w̄Φ

′
1 tanΛ− θ̄Ψ1

)
+

m

∑
k=1

cLδk
δ̄k

]
q∞ cos2

Λcdx+
ˆ L

0
Φ1ρgAdx (60)

These equations are expressed in a matrix form as[
k̄θθ k̄θw

k̄wθ k̄ww

][
θ̄

w̄

]
+

[
h̄θα

h̄wα

]
ᾱ =

[
f̄θ

f̄w

]
+

m

∑
k=1

[
ḡθ ,k

ḡw,k

]
δ̄k (61)

where

k̄θθ =
ˆ L

0

[
GJ +EB1

(
γ
′
)2
](

Ψ
′
1

)2
dx−q∞

ˆ L

0
cLα

eccos2
Λ(Ψ1)

2 dx (62)

k̄θw =−
ˆ L

0
EB2γ

′
Ψ
′
1Φ
′′
1dx−q∞

ˆ L

0
cLα

ec tanΛcos2
ΛΨ1Φ

′
1dx (63)

k̄wθ =−
ˆ L

0
EB2γ

′
Φ
′′
1Ψ

′
1dx+q∞

ˆ L

0
cLα

ccos2
ΛΦ1Ψ1dx (64)

k̄ww =
ˆ L

0
EIyy

(
Φ
′′
1

)2
dx+q∞

ˆ L

0
cLα

c tanΛcos2
ΛΦ1Φ

′
1dx (65)

h̄θα = q∞

ˆ L

0
cLα

eccosΛΨ1dx (66)
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h̄wα =−q∞

ˆ L

0
cLα

ccosΛΦ1dx (67)

f̄θ =−q∞

ˆ L

0
cL0eccos2

ΛΨ1dx+g
ˆ L

0
ρAecgΨ1dx (68)

f̄w = q∞

ˆ L

0
cL0 ccos2

ΛΦ1dx−g
ˆ L

0
ρAΦ1dx (69)

ḡθ ,k =−q∞

ˆ L

0

(
cmδk

c+ cLδk
e
)

ccos2
ΛΨ1dx (70)

ḡw,k = q∞

ˆ L

0
cLδk

ccos2
ΛΦ1dx (71)

Note that the bending-torsion divergence speed occurs when the stiffness matrix[
k̄θθ k̄θw

k̄wθ k̄ww

]
=

[
k̄11−q∞∆11 k̄12−q∞∆12

k̄21 +q∞∆21 k̄22 +q∞∆22

]
(72)

is singular. Therefore the divergence speed is obtained from the solution of the following equation

(∆12∆21−∆11∆22)q2
∞ +

(
k̄11∆22− k̄22∆11 + k̄21∆12− k̄12∆21

)
q∞ +

(
k̄11k̄22− k̄12k̄21

)
= 0 (73)

2. Dynamic Analysis

The weak-form integral expressions of the dynamic aeroelastic equations are obtained by multiplying the bending and
torsion aeroelastic equations by Φi (x) and Ψi (x), and then integrating over the wing span. This yields

n

∑
j=1

ˆ L

0
Ψi

d
dx

{[
GJ +EB1

(
γ
′
)2
]

θ jΨ
′
j−EB2γ

′
w jΦ

′′
j

}
dx =

n

∑
j=1

ˆ L

0
Ψi

[
cLα

(
∆α

cosΛ
+

qxac

V∞ cosΛ
−w jΦ

′
j tanΛ−θ jΨ j−

ẇ jΦ j− eθ̇ jΨ j

V∞ cosΛ

)
+

m

∑
k=1

(c
e

cmδk
+cLδk

)
∆δk

]
eq∞ cos2

Λcdx

+
n

∑
j=1

ˆ L

0
ΨiρIxxθ̈ jΨ jdx−

n

∑
j=1

ˆ L

0
ΨiρAecgẅ jΦ jdx (74)

n

∑
j=1

ˆ L

0
Φi

d2

dx2

(
−EB2γ

′
θ jΨ

′
j +EIyyw jΦ

′′
j

)
dx =

n

∑
j=1

ˆ L

0
Φi

[
cLα

(
∆α

cosΛ
+

qxac

V∞ cosΛ
−w jΦ

′
j tanΛ−θ jΨ j−

ẇ jΦ j− eθ̇ jΨ j

V∞ cosΛ

)
+

m

∑
k=1

cLδk
∆δk

]
q∞ cos2

Λcdx

−
n

∑
j=1

ˆ L

0
ΦiρAẅ jΦ jdx+

n

∑
j=1

ˆ L

0
ΦiρAecgθ̈ jΨ jdx (75)

Upon enforcing the zero boundary conditions at the two end points, the weak-form dynamic aeroelastic equations
are obtained as

n

∑
j=1

ˆ L

0
Ψ
′
i

{[
GJ +EB1

(
γ
′
)2
]

θ jΨ
′
j−EB2γ

′
w jΦ

′′
j

}
dx

+
n

∑
j=1

ˆ L

0
Ψi

[
cLα

(
∆α

cosΛ
+

qxac

V∞ cosΛ
−w jΦ

′
j tanΛ−θ jΨ j−

ẇ jΦ j− eθ̇ jΨ j

V∞ cosΛ

)
+

m

∑
k=1

(c
e

cmδk
+cLδk

)
∆δk

]
eq∞ cos2

Λcdx

+
n

∑
j=1

ˆ L

0
ΨiρIxxθ̈ jΨ jdx−

n

∑
j=1

ˆ L

0
ΨiρAecgẅ jΦ jdx = 0 (76)
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n

∑
j=1

ˆ L

0
Φ
′′
i

(
−EB2γ

′
θ jΨ

′
j +EIyyw jΦ

′′
j

)
dx

−
n

∑
j=1

ˆ L

0
Φi

[
cLα

(
∆α

cosΛ
+

qxac

V∞ cosΛ
−w jΦ

′
j tanΛ−θ jΨ j−

ẇ jΦ j− eθ̇ jΨ j

V∞ cosΛ

)
+

m

∑
k=1

cLδk
∆δk

]
q∞ cos2

Λcdx

+
n

∑
j=1

ˆ L

0
ΦiρAẅ jΦ jdx−

n

∑
j=1

ˆ L

0
ΦiρAecgθ̈ jΨ jdx = 0 (77)

These equations can be expressed as

n

∑
j=1

(
mθθ ,i jθ̈ j +mθw,i jẅ j + cθθ ,i jθ̇ j + cθw,i jẇ j + kθθ ,i jθ j + kθw,i jw j +hθα,i∆α +hθq,iq

)
=

n

∑
j=1

m

∑
k=1

gθ ,ik∆δk (78)

n

∑
j=1

(
mwθ ,i jθ̈ j +mww,i jẅ j + cwθ ,i jθ̇ j + cww,i jẇ j + kwθ ,i jθ j + kww,i jw j +hwα,i∆α +hwq,iq

)
=

n

∑
j=1

m

∑
k=1

gw,ik∆δk (79)

where

mθθ ,i j =
ˆ L

0
ρIxxΨiΨ jdx (80)

mθw,i j =−
ˆ L

0
ρAecgΨiΦ jdx (81)

mwθ ,i j =−
ˆ L

0
ρAecgΦiΨ jdx (82)

mww,i j =
ˆ L

0
ρAΦiΦ jdx (83)

cθθ ,i j =
1
2

ρ∞V∞

ˆ L

0
cLα

e2ccosΛΨiΨ jdx (84)

cθw,i j =−1
2

ρ∞V∞

ˆ L

0
cLα

eccosΛΨiΦ jdx (85)

cwθ ,i j =−1
2

ρ∞V∞

ˆ L

0
cLα

eccosΛΦiΨ jdx (86)

cww,i j =
1
2

ρ∞V∞

ˆ L

0
cLα

cosΛcΦiΦ jdx (87)

kθθ ,i j =
ˆ L

0

[
GJ +EB1

(
γ
′
)2
]

Ψ
′
iΨ
′
jdx−q∞

ˆ L

0
cLα

eccos2
ΛΨiΨ jdx (88)

kθw,i j =−
ˆ L

0
EB2γ

′
Ψ
′
iΦ
′′
j dx−q∞

ˆ L

0
cLα

ec tanΛcos2
ΛΨiΦ

′
jdx (89)

kwθ ,i j =−
ˆ L

0
EB2γ

′
Φ
′′
i Ψ

′
jdx+q∞

ˆ L

0
cLα

ccos2
ΛΦiΨ jdx (90)

kww,i j =
ˆ L

0
EIyyΦ

′′
i Φ
′′
j dx+q∞

ˆ L

0
cLα

c tanΛcos2
ΛΦiΦ

′
jdx (91)

hθα,i = q∞

ˆ L

0
cLα

eccosΛΨidx (92)

hθq,i =
1
2

ρ∞V∞

ˆ L

0
cLα

ecxac cosΛΨidx (93)

hwα,i =−q∞

ˆ L

0
cLα

ccosΛΦidx (94)
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hwq,i =−1
2

ρ∞V∞

ˆ L

0
cLα

cxac cosΛΦidx (95)

gθ ,ik =−q∞

ˆ L

0

(
cmδk

c+ cLδk
e
)

ccos2
ΛΨidx (96)

gw,ik = q∞

ˆ L

0
cLδk

ccos2
ΛΦidx (97)

The resultant matrix equation is obtained as

Mẍe +Cẋe +Kxe +Hxa = G∆δ (98)

where xe =
[

θ1 θ2 · · · θn w1 w2 · · · wn

]>
is an elastic state vector of the generalized coordinates, xa =[

∆α q
]>

is an aerodynamic state vector of the angle of attack and pitch rate, ∆δ =
[

∆δ1 ∆δ2 · · · ∆δn

]>
is a control vector of the incremental flap deflections, M is the generalized mass matrix, C is the generalized damping
matrix, K is the generalized stiffness, H is the generalized aerodynamic coupling matrix, and G is the generalized
force derivative vector due to the flap and slat deflections.

The generalized damping matrix is comprised of both the structural damping and the aerodynamic damping. The
structural damping matrix can be obtained from a modal analysis that transforms the generalized coordinates into the
modal coordinates via the eigenvalue analysis.

Consider the zero-speed structural dynamic equations

ẍe +M−1Csẋe +M−1Ksxe = M−1F (99)

where Cs is the structural damping matrix, Ks is the structural stiffness matrix corresponding to the stiffness matrix K
at zero speed, and F is the force vector.

Assuming that the eigenvalues of the matrix M−1Ks are positive real and distinct, then by the similarity transfor-
mation, the matrix M−1Ks can be decomposed as

M−1Ks = XΩ
2X−1 (100)

where X is the eigenvector matrix and Ω = diag(ω1,ω2, . . . ,ωn) is the diagonal matrix whose elements are the fre-
quencies of the structural modes.

Let q = X−1xe be the modal coordinates, then the transformed structural dynamics equation can be obtained as

q̈+X−1M−1CsXq̇+Ω
2q = X−1F (101)

which can be expressed in the modal coordinates as

q̈i +2ζiωiq̇i +ω
2
i qi = fi (102)

where ζi is the damping ratio of the i-th mode.
Let ζ = diag(ζ1,ζ2, . . . ,ζn) be the damping ratio diagonal matrix, then the structural damping matrix is computed

as
Cs = 2MXζ ΩX−1 (103)

The total damping matrix includes both the structural damping matrix and the aerodynamic damping matrix ac-
cording to

C = Cs +Ca (104)

where Ca is the aerodynamic damping matrix whose elements are defined by cθθ ,i j, cθw,i j, cwθ ,i j, and cww,i j.
The aeroelastic modes of the aeroelastic equations are then obtained by the eigenvalue analysis of the following

system: [
ẋe

ẍe

]
=

[
0 I

−M−1K −M−1C

][
xe

ẋe

]
+

[
0

M−1 (G∆δ −Hxa)

]
(105)

The flutter boundary is defined to be an airspeed at which the real parts of the eigenvalues of the systems become
zero.
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IV. Coupled Aeroelastic Computation

To perform the coupled aeroelastic computation, the static aeroelastic model is coupled with Vorview through the
automated vehicle geometry modeler. Aerodynamic force and moment coefficients as computed from Vorview are used
as inputs to the static aeroelastic model. The computed aeroelastic deflections are then used to generate the aircraft
deformed geometry by the automated vehicle geometry modeler. The aerodynamic solution is then recomputed with
the aircraft deformed geometry in Vorview. This process is iterated until the solution is converged when errors in the
computed aeroelastic deflections are within a specified tolerance. A flow chart for the coupled aeroelastic computation
is shown in Fig. 9.

Fig. 9 - Coupled Aeroelastic Vortex Lattice Computation Flow Chart

The solution provides aerodynamic information for the deformed aircraft under static aerodynamic loading. The
dynamic aeroelastic analysis can be used to estimate the unsteady contribution to wing aerodynamics. Given an
atmospheric disturbance due to turbulence or a wind gust, or a time-varying motion of a flight control surface, the
dynamic aeroelastic analysis can be used to compute the unsteady component of the aerodynamic force and moment
coefficients.

Assuming steady state aerodynamics, the lift coefficient of an aircraft for symmetric flight can be expressed as

CL (t) = CL0 +∆CL0 +CLα
[ᾱ +∆α (t)]+CLqq(t)+CLδk

δk (t)+
n

∑
j=1

CLθ j
θ j (t)+

n

∑
j=1

CLw j
w j (t)

+
n

∑
j=1

CL
θ̇ j

θ̇ j (t)+
n

∑
j=1

CLẇ j
ẇ j (t) (106)

where ∆CL0 is the incremental lift coefficient at zero angle of attack due to static aeroelasticity obtained from the
coupled solution, and CLθ j

, CLw j
, CL

θ̇ j
, and CLẇ j

are the aeroelastic lift sensitivities

CLθ j
=−2cLα

S

ˆ L

0
cos2

ΛcΨ jdx (107)

CLw j
=−2cLα

S

ˆ L

0
tanΛcos2

ΛcΦ
′
jdx (108)
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CL
θ̇ j

=
2cLα

V∞S

ˆ L

0
ecosΛcΨ jdx (109)

CLẇ j
=−2cLα

V∞S

ˆ L

0
cosΛcΦ jdx (110)

The drag coefficient may be modeled by a parabolic drag polar

CD (t) = CD0 +∆CD0 +
C2

L (t)
πARε

(111)

where ∆CD0 is the incremental parasitic drag coefficient at zero lift due to static aeroelasticity obtained from the
coupled solution, AR is the wing aspect ratio, and ε is the span efficiency factor.

For small drag contributions by the aeroelastic effects, the drag coefficient may be approximated as

CD (t) = CD0 +∆CD0 +
C̄2

L
πARe

+
2C̄L

πARe

[
CLα

∆α (t)+CLqq(t)+CLδk
δk (t)+

n

∑
j=1

CLθ j
θ j (t)+

n

∑
j=1

CLw j
w j (t)+

n

∑
j=1

CL
θ̇ j

θ̇ j (t)+
n

∑
j=1

CLẇ j
ẇ j (t)

]
(112)

where C̄L is the trim lift coefficient
C̄L = CL0 +∆CL0 +CLα

ᾱ (113)

In addition, the pitching moment coefficient of an aircraft is also influenced by the aeroelastic effects due to changes
in wing lift characteristics. The pitching moment coefficient can be expressed as

Cm = Cm0 +∆Cm0 +Cmα
[ᾱ +∆α (t)]+CLqq(t)+Cmδk

δk (t)+
n

∑
j=1

Cmθ j
θ j (t)+

n

∑
j=1

Cmw j
w j (t)

+
n

∑
j=1

Cm
θ̇ j

θ̇ j (t)+
n

∑
j=1

Cmẇ j
ẇ j (t) (114)

where ∆Cm0 is the incremental pitching moment coefficient at zero angle of attack due to static aeroelasticity obtained
from the coupled solution, and CLθ j

, CLw j
, CL

θ̇ j
, and CLẇ j

are the aeroelastic lift sensitivities

Cmθ j
=

2cLα

Sc̄

ˆ L

0
xac cos2

ΛcΨ jdx (115)

Cmw j
=

2cLα

Sc̄

ˆ L

0
xac tanΛcos2

ΛcΦ
′
jdx (116)

Cm
θ̇ j

=− 2cLα

V∞Sc̄

ˆ L

0
xacecosΛcΨ jdx (117)

Cmẇ j
=

2cLα

V∞Sc̄

ˆ L

0
xac cosΛcΦ jdx (118)

Thus, the aeroelastic deflections of the aircraft wings are coupled with aircraft dynamics through the angle of
attack and pitch rate. The coupled system thus dictates both the aircraft responses as well as the aeroelastic deflections
statically and dynamically.

V. Numerical Simulations

A Generic Transport Model (GTM) which represents a notional twin-engine, 200-passenger transport aircraft
is used in the simulation study. The geometry is obtained by scaling up a 5.5% wind tunnel model of the GTM.
Aerodynamic data for the sub-scale GTM are available from wind tunnel testing in NASA Langley’s 14-ft by 22-ft
wind tunnel.9
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Figure 10 - Generic Transport Model

In general, structural information for commercial aircraft is not publicly available. Therefore, the uncertainty on
the aeroelastic analysis can be high. Nonetheless, certain assumptions can be made for the structural stiffness of a
wing if the wing deflection is known. In the study, the wing deflection for the GTM at 1-g loading at cruise is assumed
to be about 3 ft at the tip. This is based on an extrapolation of the result of a structural certification test on a Boeing
777 wing. This wing deflected at the tip about 24 ft with an applied load of 3.75 g’s. This corresponds to 1.5 times the
design load which is established at 2.5 g’s. The wing span of Boeing 777 is 200 ft and the wing span of the GTM is
124 ft. So the deflection of the Boeing 777 at 1-g loading is estimated to be about 6.4 ft by scaling the deflection by
the loading ratio. The wing tip deflection for a cantilever beam with a different length L and structural stiffness EI is
proportional to L3/EI. Assuming that EI is proportional to L3/2. Then, the wing tip deflection is proportional to L3/2.
Using this approximation, the GTM wing is modeled as equivalent beam structure with a mass density that results in
the correct wing weight. The Young’s modulus and shear modulus are then adjusted by trial and error until the desired
wing tip deflection is obtained. The distributions of the GTM wing structural stiffness values are plotted in Figures 11
and 12.
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Figure 11 - Estimated Wing Bending and Torsional Stiffness
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Figure 12 - Estimated Wing Bending-Torsion Coupling Stiffness

A. Static Aeroelastic Response

The aircraft weighs 175,000 lbs and cruises at mach 0.8 at 30,000 ft. The initial trim angle of attack with no aeroelastic
deflection is 2.05o. After 4 iterations, the trim angle of attack is 0.80o as shown in Table 1. Thus, the aeroelastic
deflections effectively contributes 1.25o to the angle of attack of the aircraft. The wing tip bending and torsional
deflections are 3.064 ft vertically upward and 2.204o nose up as shown in Figure 13. Figures 14 and 15 are the plots
of the pressure coefficient Cp distributions for the rigid aircraft and the flexible aircraft. Because of the effective
increase in the attack of attack, the pressure loading on the wing also increases for the same angle of attack of the
aircraft. It is also noticed that the drag coefficient increases when the aeroelastic effects are present. The increase in
drag is probably due to changes in the induced drag associated with changes in the wing lift distribution caused by the
aeroelastic deflections.

Iteration α , deg CL0 CLα
CL CD Cmα

Cm W̄tip, ft Θ̄tip, deg

1 2.0498 0.0899 6.3931 0.3186 0.0090 -1.7619 -0.1852 3.0592 -2.2049
2 0.7984 0.2297 6.3755 0.3186 0.0155 -1.7227 -0.1540 3.0641 -2.2041
3 0.8039 0.2288 6.3970 0.3186 0.0155 -1.7150 -0.1540 3.0582 -2.2051
4 0.7982 0.2298 6.3756 0.3186 0.0155 -1.7227 -0.1539 3.0640 -2.2041

Table 1 - Coupled Aeroelastic-Vorview Solution
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Figure 13 - Wing Aeroelastic Deflections

Figure 14 - Cp Distribution for Rigid Aircraft
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Figure 15 - Cp Distribution for Flexible Aircraft

B. Dynamic Aeroelastic Response

The dynamic motion of the wing is assumed to be predominantly due to the first bending and torsion modes. The
forcing function is assumed to be a light vertical wind gust with a turbulence intensity based on the Dryden turbulence
model.10 The vertical wind speed wa and the turbulent pitch rate qa are shown in Figures 16 and 17.
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Figure 16 - Turbulence Vertical Wind Speed
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Figure 17 - Turbulence Pitch Rate

The time varying angle of attack and pitch rate act as sources of excitation to the aircraft wings. The structural
damping is assumed to be ξ = 0.2. This structural damping corresponds to a flutter speed at Mach 0.845. The first
symmetric bending mode is at 9.0 rad/sec with a damping of 0.16, while the first symmetric torsion mode is at 11.8
rad/sec with a damping of 0.37. The aircraft incremental angle of attack, pitch rate, and wing tip dynamic bending and
torsional deflections are plotted in Figures 18 through 21. The aircraft unsteady lift coefficient, drag coefficient, and
pitching moment coefficient are plotted in Figures 22, 23, and 24.
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Figure 19 - Pitch Rate
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Figure 20 - Wing Bending Deflection
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Figure 21 - Wing Torsional Deflection
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Figure 22 - Aircraft Unsteady Lift
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Figure 23 - Aircraft Unsteady Lift Coefficient
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Figure 24 - Aircraft Unsteady Pitching Moment Coefficient

VI. Discussion

The coupling between the vortex-lattice code and the aeroelastic model is facilitated by an external geometry mod-
eler. While this approach is reasonable, perhaps an alternative implementation is to actually incorporate an aeroelastic
model directly into a vortex-lattice formulation. The advantage of the alternative approach is that the static aeroelastic
effects on aerodynamic characteristics are probably more accurately predicted as the aeroelastic contribution to the
angle of attack is properly accounted for. Moreover, using a dynamic aeroelastic response model, a quasi-unsteady
aerodynamic model of an aircraft could be constructed to properly estimate the unsteady downwash effect of the wings
on the tail plane. In the present approach, this downwash effect is not accounted for, so the dynamic aeroelastic re-
sponse solution only provides the wing-alone contribution to the overall aerodynamic characteristics of the aircraft.
The disadvantage of the alternative approach is the complex numerical implementation that requires a truly coupled
numerical solution at the algorithmic level that integrates an aeroelastic solution method with the vortex-lattice method.

Future work will extend the present method using the unsteady aerodynamic methods of Theodorsen and or Peters
for the aeroelastic analysis. Furthermore, the asymmetric aeroelastic motion would be developed in the future work.
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VII. Conclusion

This paper presents a coupled aeroelastic and vortex-lattice aerodynamic modeling approach for analyzing aerody-
namic and aeroelastic characteristics of flexible aircraft. The vortex-lattice code Vorview provides a rapid aerodynamic
prediction tool for preliminary aircraft concept studies. With the addition of static and dynamic aeroelastic capability,
the prediction tool is further capable of analyzing aerodynamics of flexible aircraft configurations. The aeroelastic
model estimates the effects of the coupled wing bending-torsion motion on the aircraft aerodynamics. The aeroelas-
tic angle of attack is a function of the elastic deflections of the wing in bending and torsion. This causes airspeed
dependent frequencies and damping that give rise to wing divergence and flutter. A generic transport model is used
to demonstrate the tool capability. The coupled aeroelastic and vortex-lattice solution provides the static aeroelastic
deflections of the wings which result in changes in the aircraft trim angle of attack, and lift and drag characteristics. A
dynamic aeroelastic model with a turbulent wind gust is computed separately to estimate quasi-unsteady aerodynamics
of the aircraft.
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