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ABSTRACT

Systems health monitoring is essential in guaran-
teeing the safe, efficient, and correct operation of
complex engineered systems. Diagnosis, which
consists of detection, isolation and identification
of faults, and prognosis, which consists of predic-
tion of the remaining useful life of components,
subsystems, or systems constitute system health
monitoring. This paper presents a comprehen-
sive framework for integrated model-based diag-
nosis and prognosis of complex systems, where
we make use of a common modeling paradigm
to model both the nominal and faulty behavior
in all aspects of health monitoring. We illus-
trate our approach using a simulated propellant
loading system that includes tanks, valves, and
pumps.

1 INTRODUCTION
Systems health monitoring is essential in guaranteeing
the safe, efficient, and correct operation of complex en-
gineered systems. The integral tasks of systems health
monitoring include diagnostics and prognostics. Di-
agnosis involves detecting when a fault has occurred,
isolating the true fault from many possible fault can-
didates, and identifying the true damage to the sys-
tem. While diagnosis involves determining what has
happened to the system, prognosis, on the other hand,
involves determining what will happen. Specifically,
prognosis involves predicting how much useful life re-
mains in the different components, subsystems, or sys-
tems. Based on these predictions, effective actions can
be taken to minimize (or completely remove) any loss
of life or property, optimize maintenance, and extend
component life.

A large body of research exists for both diagnostics
and prognostics. However, many diagnosis approaches
stop at the fault isolation step, and seldom perform
fault identification, and most prognostic approaches
assume some diagnosis has been performed and fo-
cus on prognosis of a single failure mode. This pa-
per presents an integrated framework for model-based
diagnostics and prognostics of complex systems, in

which we make use of a common modeling framework
for modeling both the nominal and faulty system be-
havior. We assume only single faults in this paper.

In our approach, we start with modeling the nom-
inal system behavior, as well as how different faults
manifest in the system behavior and progress over
time. An observer built with the nominal model is
used to generate estimates of nominal system behav-
ior, and when the deviation of observed measurements
from the nominal estimates is statistically significant,
a fault is detected. Fault isolation involves compar-
ing the observed measurement deviations to predic-
tions of how these measurements would deviate for
different possible faults, and removing from consider-
ation fault candidates that are inconsistent with the ob-
served deviations. Fault identification involves track-
ing the observed system measurements using multi-
ple observers, each built with a hypothesized fault
model integrated with the nominal model, and per-
forming joint state-parameter estimation (Roychoud-
hury, 2009). The prognosis module predicts the re-
maining useful life of a component, subsystem, or sys-
tem, using, for each hypothesized fault, a predictor
based on the fault progression model integrated with
the nominal model (Daigle and Goebel, 2010). We
demonstrate our approach on a simulated propellant
loading system. Our experiments illustrate that our in-
tegrated diagnostic and prognostic approach diagnosed
faults and predicted the EOL accurately.

This paper is organized as follows. Section 2 pro-
vides the problem formulation and architecture for our
diagnostic and prognostic framework, and Section 3
describes the different components of our integrated
diagnostic and prognostic approach. The case study
and experimental results are presented in Section 4.
Section 5 concludes the paper.

2 DIAGNOSTIC AND PROGNOSTIC
ARCHITECTURE

In this section, we formulate the diagnosis and prog-
nosis problem, and provide an architecture for an inte-
grated diagnosis and prognosis approach.
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Figure 1: The integrated diagnostic and prognostic architecture.

2.1 Problem Formulation
We define a system model for representing system be-
havior under nominal operation, as follows:

ẋ(t) = f(t,x(t),θ(t),u(t),v(t))

y(t) = h(t,x(t),θ(t),u(t),n(t)),

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is
the parameter vector, u(t) ∈ Rnu is the input vector,
v(t) ∈ Rnv is the process noise vector, f is the state
equation, y(t) ∈ Rny is the output vector, n(t) ∈ Rnn

is the measurement noise vector, and h is the output
equation. The parameters θ(t) evolve in an unknown
way, but, in practice, are usually considered as con-
stants.

Any change in the above nominal system model rep-
resents a fault. In this work, we restrict faults solely to
changes in system parameters, θ(t). Under the single
fault assumption, only one parameter can deviate from
nominal. Hence, we denote a fault, f ∈ F , as a tu-
ple, (θ, gf ), where, θ ∈ θ is the faulty parameter, and
gf denotes the fault progression function according to
which, fault f is manifested in parameter θ, i.e.,

θ̇(t) = gf (t,xf (t),θf (t),u(t),mf (t)),

where xf (t) = [x(t), θ(t)]T , θf (t) =
[θ(t)\{θ(t)},φf (t)]T , φf (t) ∈ Rnφf is a vec-
tor of fault progression model parameters, and
mf (t) ∈ Rnmf is a process noise vector associated
with the fault progression model.

The single fault assumption also implies that the
faulty system model for fault f = (θ, gf ) involves
integrating a single fault progression model into the
nominal system model described above, as shown be-
low:

ẋf (t) = ff (t,xf (t),θf (t),u(t),v(t))

y(t) = h(t,x(t),θ(t),u(t),n(t)),

where,

ff (·) =

[
f(t,x(t),θ(t),u(t),v(t))
gf (t,xf (t),θf ,u(t),m(t))

]
=

[
ẋ(t)
θ̇(t)

]
.

Since any of the several parameters in a system
model can be faulty, the goal of diagnosis is to:

1. Detect a change in some θ ∈ θ;
2. Isolate, under the single fault assumption, the

true f ∈ F , i.e., both the parameter θ that has
changed, and its fault progression model gf ; and

3. Identify the extent of damage by computing
p(xf (k),θf (k)|y(0 :k)), where y(0 :k) denotes
all measurements observed up to the present dis-
crete time step, k, and xf (k) and θf (k) denote
the value of xf and θf at time step k, respec-
tively.

The goal of prognosis is to predict for a given
fault, f , using, p(xf (k),θf (k)|y(0 :kP )), a prob-
ability distribution of end of life (EOL), i.e.,
p(EOLf (kP )|y(0 :kP )), and/or remaining useful life
(RUL), i.e., p(RULf (kP )|y(0 :kP )) at a given time
point kP (Daigle and Goebel, 2010). We predict
the probability distribution, rather than the exact EOL
and/or RUL, since, there is inherent uncertainty in the
prediction of state, as well as, the future input uncer-
tainty. A set of constraints define the acceptable behav-
ior of a system. EOL is reached when one or more of
the constraints are no more met. We define TEOLf = 1
if these constraints are valid, and TEOLf = 0 otherwise.

So, EOLf may be defined as EOLf (kP ) , inf{k ∈
R : k ≥ kP and TEOLf (xf (k),θf (k)) = 1}. i.e.,
EOL is the earliest time point at which the threshold
is reached. Given EOLf (kP ), RUL may then be de-
fined with RULf (kP ) , EOLf (kP )− kP .

2.2 Architecture
Fig. 1 illustrates the architecture of our combined di-
agnostic and prognostic scheme. At each discrete
time, k, the system takes as inputs u(k), and out-
puts measurements y(k). The nominal observer also
takes as inputs u(k), and generates estimates of nom-
inal measurements, ŷ(k). The fault detector then
takes in the observed and estimated measurements,
y(k) and ŷ(k), and detects when a fault has oc-
curred based on the residual, r(k) = y(k) − ŷ(k).
Once a fault is detected, fault isolation is initiated.
The fault isolation block takes as inputs the measure-
ment residuals. These measurement residuals are used
along with predictions of how each measurement is
expected to deviate from nominal for each possible
fault in the system to generate a set of fault candi-
dates F (k) at time k that explain the observed devi-
ations in measurements till time k. The fault iden-
tification module, for each fault, f ∈ F (k), esti-
mates p(xf (k),θf (k)|y(0 :k)). Finally, the predic-
tion module takes in as input p(xf (k),θf (k)|y(0 :k))
to make predictions of EOL and/or RUL, i.e.,
p(EOLf (k)|y(0 :k)) and/or p(RULf (k)|y(0 :k)).
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3 DIAGNOSIS AND PROGNOSIS APPROACH
In this section, we describe how we implement each of
the different modules of the integrated diagnosis and
prognosis architecture.

3.1 Nominal Observer
The nominal observer takes as inputs the system in-
puts, u(k), and measurements, y(0 : k), and the ini-
tial state of the system, and uses the state transition
function, f(·) and observation function h(·) to estimate
distributions of states, x(k) and parameters, θ(k), i.e.,
p(x(k),θ(k)|y(0 :k)).

While any standard filtering scheme, e.g., Kalman
filter, extended Kalman filter, unscented Kalman filter,
among others, can be adopted as our nominal observer,
we adopt the particle filter as a general solution (Aru-
lampalam et al., 2002). Particle filtering is the most
general estimation scheme as it can be applied to non-
linear systems with arbitrary probability distributions
for measurement noise and modeling error that can
be nonlinearly coupled with the states. Particle filter-
ing is a sequential Monte Carlo sampling method for
Bayesian filtering and approximates the belief state of
a system using a weighted set of samples, or particles.
Each sample, or particle, consists of an instantiation
of values of the state vector, and describes a possible
system state. As more observations are obtained, each
particle is moved stochastically to a new state using
the nominal state transition function, and the weight of
each particle is readjusted to reflect the likelihood of
that observation given the particle’s new state.

3.2 Fault Detection
A fault is detected when a residual, r(k) ∈ r(k),
i.e., the difference between the observed (faulty) and
estimated (nominal) values of a measurement is de-
termined to be statistically significant (Daigle et al.,
2010). In our work, we use a Z-test coupled with a
sliding window technique to determine this statistical
significance. Our fault detection scheme is described
in detail in (Daigle et al., 2010).

3.3 Fault Isolation
Once a fault is detected, at each subsequent time step,
every measurement residual is qualitatively abstracted
into a tuple of qualitative symbols, (σ1, σ2), where
σ1 ∈ {0,+,−} represents the qualitative magnitude
change, and σ2 ∈ {0,+,−} represents the qualita-
tive slope change. The symbols, 0, +, or −, denote
whether the magnitude or slope of this measurement
is at, above, or below nominal, respectively. The sym-
bols are generated using a sliding window technique as
described in detail in (Mosterman and Biswas, 1999).

Based on the first observed statistically significant
measurement deviation, we first generate a set of pos-
sible fault candidates. Then, for each fault candi-
date, we determine a fault signature for each measure-
ment. A fault signature of a fault for a measurement
is a prediction of how the measurement will deviate
from nominal under the effect of the particular fault.
Fault signatures are also of the form (s1, s2), where
s1 ∈ {0,+,−} and s2 ∈ {0,+,−} capture quali-
tatively the direction of change to be expected in the

magnitude and slope of each measurement from nom-
inal if the fault occurs. The procedure for generating
fault signatures is presented in detail in (Mosterman
and Biswas, 1999).

Given the set of fault candidates and fault signa-
tures, as more measurements deviate from nominal,
the fault signatures are compared to the observed mea-
surement deviations (captured symbolically) and any
fault candidate whose fault signature is inconsistent
with the observed measurement deviation is removed
from consideration. As more and more measurements
are observed to deviate from nominal, the fault can-
didate set will reduce, ideally resulting in a singleton
(since we assume single faults).

However, in some cases, the qualitative fault sig-
natures alone are not sufficient in distinguishing all
faults, or fault effects may take too long to manifest,
and quantitative analysis is needed to correctly diag-
nose the true fault.

3.4 Fault Identification
We initiate the quantitative fault identification proce-
dure after the qualitative fault signature-based isola-
tion scheme is executed for p time steps or till the
number of fault candidates reduces to less than s,
whichever is achieved first. The design parameters
p and s are chosen empirically for each domain and
system on a case-by-case basis. If multiple fault can-
didates are valid when fault identification is initiated,
fault identification also helps in reduction of inconsis-
tent fault candidates, as described next.

Once fault identification is invoked, under the sin-
gle fault assumption, for each remaining fault candi-
date, f , we instantiate a particle filter-based observer
using its faulty system model, ff , generated, as de-
scribed in Section 2.1, by extending the nominal sys-
tem model with the fault progression model. Then
each fault observer tracks the observed system mea-
surements independently, and generates estimates of
ŷ(k) and p(xf (k),θf (k)|y(kd −∆kmax :k)), where
∆kmax ≥ kd − kf is the maximum delay assumed to
be possible between the time of fault occurrence, kf ,
and the time of fault detection, kd. Each fault observer
is initialized to known or estimated values of x and θ
in the nominal operating region, and φf is initialized
to a zero vector. If multiple fault candidates remain
when fault identification is invoked, for each fault ob-
server, a Z-test is used to determine if the deviation of
a measurement estimated by the particle filter from the
corresponding actual observation is statistically signif-
icant. Since we are considering only single faults, the
expectation is that eventually, the estimates of only the
correct fault observer will converge to the observed
measurements, while those of all others will deviate
from the observed measurements. Thus fault identifi-
cation also helps in fault isolation. Practically, even the
true fault model will take some time before tracking
the measurements correctly, since initially, the system
and damage parameter values are guesses. We assume
that the true fault observer will converge to the ob-
served measurements withing sd time steps of its invo-
cation. Thus, the Z-tests are monitored only after time
sd time steps are over. For details of our fault diagnosis
approach, please refer to (Roychoudhury, 2009).
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Algorithm 1 EOL Prediction
Inputs: {(xif (kP ),θif (kP )), wi(kP )}Ni=1

Outputs: {EOLif (kP ), w
i(kP )}Ni=1

for i = 1 to N do
k ← tP
xif (k)← xif (kP )

θif (k)← θif (kP )

while TEOLf (x
i
f (k),θ

i
f (k)) = 0 do

Predict û(k)
θif (k + 1) ∼ p(θf (k + 1)|θif (k))
xif (k + 1) ∼ p(xf (k + 1)|xif (k),θif (k), û(k))
k ← k + 1
xif (k)← xif (k + 1)

θif (k)← θif (k + 1)

EOLif (kP )← k

3.5 Prediction
The prediction module is invoked at time kP
to predict the EOL and/or RUL of the compo-
nent for each hypothesized fault, f . Specifi-
cally, using the current joint state-parameter esti-
mate, p(xf (kP ),θf (kP )|y(0 :kP )), which represents
the most up-to-date knowledge of the system at time
kP , the goal is to compute p(EOLf (kP )|y(0 :kP ))
and p(RULf (kP )|y(0 :kP ). We assume the state-
parameter distribution is represented as a discrete set
of weighted samples, i.e.,

p(xf (kP ),θf (kP )|y(0 :kP )) ≈
N∑
i=1

wi(kP )δ(xif (kP ),θif (kP ))(dxf (kP )dθf (kP )),

where i denotes the index of a single sample, wi is the
weight of this sample, and δ represents the Dirac delta
function.

Similarly, we can approximate the EOL as

p(EOLf (kP )|y(0 :kP ) ≈
N∑
i=1

wi(kP )δEOLif (kP )(dEOLf (kP )).

To compute EOL, then, we propagate each sample in
state-parameter distribution forward to its own EOL
and use that sample’s weight at kP for the weight of
its EOL prediction.

The general approach to solving the prediction prob-
lem is through simulation. Each sample is simu-
lated forward to EOL to obtain the complete EOL
distribution. The pseudocode for the prediction pro-
cedure is given as Algorithm 1 (Daigle and Goebel,
2010). Each sample i is propagated forward until
TEOLf (xi

f (k),θi
f (k)) evaluates to 1; at this point EOL

has been reached for this particle. In this work, we
adopt particle filter-based approach for prediction.

Note that we need to hypothesize future inputs of the
system, û(k), for prediction, since fault progression is
dependent on the operational conditions of the system.
The choice of expected future inputs depends on the
knowledge of operational settings.

Storage Tank

Vehicle 
Tank

V1
V2

Pump

V3

qp

ps pd

h1

h2

Transfer Line

Recirculation Line

Figure 2: Fueling system schematic.

4 CASE STUDY
We apply the approach to a simulation of a fueling sys-
tem. The system schematic is shown in Fig. 2 and is
based on a subset of the system presented in (Goodrich
et al., 2009). Liquid is drained from a storage tank
through a transfer line via a pump, into a vehicle tank.
In normal operation, both valves V1 and V2 on the
transfer line are fully open, and the valve V3 on the
recirculation line is fully closed.

Measurements include the tank heights, h1 and h2,
the suction and discharge pressures of the pump, ps
and pd, the rotational velocity of the pump, ωp, the
discharge flow of the pump, qp, and the thrust bearing,
radial bearing, and oil temperatures of the pump, Tt,
Tr, and To, respectively (the location of temperature
sensors are not shown in Fig. 2).

In the remainder of this section, we first describe the
system model. We then provide an example scenario
to demonstrate the approach, followed by a summary
of diagnosis and prognosis results.

4.1 System Modeling
The storage tank and vehicle tank masses are described
by

ṁ1(t) = qV 3 − qV 1 − ql1
ṁ2(t) = qV 2 − qV 3 − ql2,

respectively, where the flows are defined as

qV 1 = uV 1AV 1cV 1

√
|p1 − ps|sign(p1 − ps)

qV 2 = uV 2AV 2cV 2

√
|pd − p2|sign(pd − p2)

qV 3 = uV 3AV 3cV 3

√
|p2 − p1|sign(p2 − p1)

ql1 = Al1

√
|p1 − patm|sign(p1 − patm)

ql2 = Al2

√
|p2 − patm|sign(p2 − patm),

such that uV i ∈ [0, 1] denotes the commanded po-
sition of valve Vi with 0 denoting the valve is fully
closed, and 1 denoting the valve is fully open; cC de-
notes the capacitance of component C; and AC de-
notes the product of the cross-sectional area of compo-
nent C and the flow coefficient of component C, cC .
The tank pressures are given by

p1 = patm + ρgh1
p2 = patm + ρgh2,
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Figure 3: Centrifugal pump.

with hj = mj/(ρAj), where ρ is the liquid density
and Aj is the tank cross-sectional area (the tanks are
assumed to have a uniform cross-sectional area). The
suction and discharge pressures are given by

ṗs = 1/Cs(qV 1 − qp)

ṗd = 1/Cd(qp − qp2),

where Cs and Cd are pipe capacitances, and qp is the
pump flow.

The centrifugal pump takes in fluid through its inlet,
and the rotation of its impellar forces the fluid through
the outlet. Fig. 3 presents the schematic of a centrifu-
gal pump.

The rotational velocity of the pump is described us-
ing a torque balance,

ω̇p =
1

J
(τe(t)− rωp(t)− τL(t)) ,

where J is the lumped motor/pump inertia, τe is the
electromagnetic torque provided by the motor, r is the
lumped friction parameter, and τL is the load torque.
A torque is produced on the rotor only when there is
a difference (i.e., slip) between the synchronous speed
of the supply voltage, ωs and the mechanical rotation,
ωp, where slip s is defined as

s =
ωs − ωp

ωs
.

The expression for the torque τe for an alternating-
current induction motor is (Lyshevski, 1999):

τe =
npR2

sωs

V 2
rms

(R1 +R2/s)2 + (ωsL1 + ωsL2)2
,

where R1 is the stator resistance, L1 is the stator in-
ductance, R2 is the rotor resistance, L2 is the rotor in-
ductance, n is the number of phases (typically 3), and p
is the number of magnetic pole pairs. The rotor speed
may be controlled by changing the input frequency ωs.

The load torque τL is a polynomial function of the
flow rate through the pump and the impeller rotational
velocity (Wolfram et al., 2001; Kallesøe, 2005):

τL = a0ω
2
p + a1ωpqp − a2q2p,

where qp is the pump flow, and a0, a1, and a2 are co-
efficients derived from the pump geometry.

The rotation of the impeller creates a pressure dif-
ference from the inlet to the outlet of the pump, which

drives the pump flow, qp. The pump pressure is com-
puted as

pp = b0ω
2
p + b1ωpqp − b2q2p,

where b0, b1, and b2 are coefficients derived from the
pump geometry. The parameter b0 is proportional to
impeller area Ai. Flow through the impeller, qi, is
computed using the pressure differences:

qi = c
√
|ps + pp − pd|sign(ps + pp − pd),

where c is a flow coefficient, ps is the suction pressure,
and pd is the discharge pressure. The small (normal)
leakage flow from the discharge end to the suction end
due to the clearance between the wear rings and the
impeller is described by

ql = cl
√
|pd − ps|sign(pd − ps),

where cl is a flow coefficient. The discharge flow, qp,
is then

qp = qi − ql.
Pump temperatures are often monitored as indica-

tors of pump condition. The oil heats up due to the ra-
dial and thrust bearings and cools to the environment:

Ṫo =
1

Jo
(Ho,1(Tt − To) +Ho,2(Tr − To)−

Ho,3(To − Ta)),

where Jo is the thermal inertia of the oil, and the Ho,i
terms are heat transfer coefficients. The thrust bearings
heat up due to the friction between the pump shaft and
the bearings, and cool to the oil and the environment:

Ṫt =
1

Jt
(rtω

2 −Ht,1(Tt − To)−Ht,2(Tt − Ta)),

where Jt is the thermal inertia of the thrust bearings,
rt is the friction coefficient for the thrust bearings, and
the Ht,i terms are heat transfer coefficients. The radial
bearings behave similarly:

Ṫr =
1

Jr
(rrω

2 −Hr,1(Tr − To)−Hr,2(Tr − Ta))

where Jr is the thermal inertia of the radial bearings,
rr is the friction coefficient for the radial bearings, and
the Hr,i terms are heat transfer coefficients. Note that
rt and rr contribute to the overall friction coefficient
r.

Faulty System Modeling
For our experiments, we consider the eights faults
shown in Table 1. Either tank can have a leak fault,
represented as abrupt increase in parameterAl1 orAl2.
The abrupt increase inAl1 is characterized by the fault
progression function,

Ȧl1 =

{
δ(tf )∆Al1, t = tf

0, otherwise

where δ represents a Dirac delta function, tf denotes
the time of fault occurrence, and ∆Al1 is the fault pa-
rameter. The fault progression function for leak fault
A+

l2 also takes a similar form.

5
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Valves V1 and V2 are nominally open and valve V3
is nominally closed. Hence, stuck faults in these three
valves are denoted by x−1 , x−2 , and x+3 m where ∆x1,
∆x2, or ∆x3 denote the values at which these valves
get abruptly stuck at, respectively. Therefore, the fault
progression function for valve V1 is

ẋ1 =

{
δ(tf )∆x1, t = tf

0, otherwise .

Faults x−2 and x+3 have similar fault progression func-
tions. For abrupt faults, the component is assumed to
have reached its EOL, i.e., TEOLf = 1, as soon as the
fault occurs, i.e., as soon as a leak is present in a tank,
or a valve becomes stuck. As a result, RUL predic-
tions associated with these components are trivially 0
whenever they are diagnosed.

However, faults in the pump are not abrupt, but in-
cipient, i.e., they progress slowly. These pump faults
include impeller wear, represented as a progressive
change in impeller area Ai; bearing wear, represented
as progressive changes in the thrust bearing friction co-
efficient rt or the radial bearing friction coefficient rr.

The impeller wear, A−i , is represented by a grad-
ual decrease in impeller area Ai (Biswas and Mahade-
van, 2007; Tu et al., 2007). Since the impeller area is
proportional to b0, a decrease causes a decrease in the
pump pressure, and, hence, the pump efficiency. The
erosive wear equation (Hutchings, 1992) is used to de-
scribe the how the impeller area changes over time.
The erosive wear rate is proportional to fluid veloc-
ity times friction force. Fluid velocity is proportional
to volumetric flow rate, and friction force is propor-
tional to fluid velocity. We lump the proportionality
constants into the wear coefficient wA to obtain the
fault progression function for A−i as follows:

Ȧi(t) = −wAiqi(t)
2.

We represent the bearing wear faults, r+r or r+t , as
gradual increases in the friction coefficients of slid-
ing and rolling friction, rt and rr, respectively, due
to wear of materials (Hutchings, 1992; Daigle and
Goebel, 2010), and modeled as:

ṙt(t) = wtrtω
2

ṙr(t) = wrrrω
2,

where wt and wr are the wear coefficients. The slip
compensation provided by the electromagnetic torque
generation masks small changes in friction, so it is
only with very large increases that a change in ω will
be observed, but small changes produce easily observ-
able changes in temperature.

The pump is still functional, i.e., it is still delivering
fluid, in the presence the three wear faults. Hence, its
EOL is defined by the effective impeller area deceasing
to a certain levelA↓i , and by its temperatures exceeding
given thresholds at which irreversible damage occurs,
T ↑t , T ↑r , or T ↑o , where abnormal temperature increases
are related to increases in bearing friction. So for a
pump fault f ∈ F , TEOLf = 1 if Ai(t) ≤ A↓i , Tt(t) ≥
T ↑t , Tr(t) ≥ T ↑r , or To(t) ≥ T ↑o .

Table 1: Faults of Interest
Fault Description θ gf φf
Name

A+
l1

Leak in stor-
age tank

Al1 Ȧl1 =

{
δ(tf )∆Al1, t = tf

0, otherwise
∆Al1

A+
l2

Leak in vehi-
cle tank

Al2 Ȧl2 =

{
δ(tf )∆Al2, t = tf

0, otherwise
∆Al2

x−1 V1 stuck at
x1

x1 ẋ1 =

{
δ(tf )∆x1, t = tf

0, otherwise
∆x1

x−2 V2 stuck at
x2

x2 ẋ2 =

{
δ(tf )∆x2, t = tf

0, otherwise
∆x2

x+3 V3 stuck at
x3

x3 ẋ3 =

{
δ(tf )∆x3, t = tf

0, otherwise
∆x3

A−
i Impellar wear Ai Ȧi(t) = −wAiqi(t)

2 wAi
r+t Thrust bearing

wear
rt ṙt(t) = wtrtω

2 wt

r+r Radial bearing
wear

rr ṙr(t) = wrrrω
2 wr

Table 2: Fault signatures.
Faults h1 h2 ps pd ωp qp Tt Tr To

A+
l1

0− 0− 0− 0+ 0− 0− 0− 0− 0−
A+
l2

0− 0− 0− 0− 0+ 0+ 0+ 0+ 0+

x−1 0+ 0− 0− 0− 0− 0− 0− 0− 0−
x−2 0+ 0− 0+ 0+ 0− 0− 0− 0− 0−
x+3 0− 0+ 0− 0+ 0− 0− 0− 0− 0−
A−
i 0+ 0− 0+ 0− 0− 0− 0− 0− 0−

r+t 0+ 0− 0+ 0− 0− 0− 0+ 0+ 0+

r+r 0+ 0− 0+ 0− 0− 0− 0+ 0+ 0+

4.2 Demonstration of Approach
We now present a detailed integrated diagnosis and
prognosis scenario to illustrate the approach. In this
scenario, impeller wear begins at t = 0 s with
wear rate wA = 3 × 10−3. A fault is detected
at t = 1380 s, via a decrease in the pump flow
qp, shown in Fig. 4. The initial candidate list is
{A−i , r

+
t , r

+
r , A

+
l1, x

−
1 , x

−
2 , x

+
3 }. The fault signatures

are given in Table 2. At 3279 s, an increase in h1 and
a decrease in h2 are detected, eliminating a leak in the
storage tank and a stuck fault in V3. At 4568 s, an
decrease in pd is detected, which eliminates a stuck
fault of V2, and at 7117 s, an increase in ps is detected,
eliminating a stuck fault of V1.

For our experiments, we had set adopted a policy
to initiate fault identification once the number of fault
candidates reduces to three or less, or if the qualita-
tive fault isolation module has executed for 3000 s. We
used particle filters withN = 50 particles for the nom-
inal observer used for fault detection, and each faulty
observer used for fault identification. The results of
this experimental run is summarized in Table 3

Fig. 5 shows the (filtered) summed output errors for
two fault candidates, impeller wear and thrust bearing
wear. It is clear that by 7000 s impeller wear is the true
candidate. The remaining fault candidates at this time
have similar error to the error for thrust bearing wear,
and can be eliminated, so the true fault is identified.
Fig. 6 shows the estimated wear parameter estimate
for impeller wear. Because the fault progression is so
slow, by the end of the first fueling (at 10, 000 s) the
estimate is still converging. In further fuelings the es-
timate has converged with a small spread and remains
fairly steady, due to a variance control algorithm pre-
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Figure 4: Measured and predicted qp values.

sented in (Daigle and Goebel, 2011) that dynamically
modifies the random walk variance of the prediction
algorithm to maintain a user-specified relative spread
of the unknown fault parameters. The corresponding
RUL predictions, made at the halfway point and the
end of each fueling are shown in Fig. 7. By the third
prediction point, the algorithm has converged and pre-
dictions remain with in the desired accuracy window
of 10%. The predictions were made assuming known
future system inputs, so the uncertainty in the predic-
tions is due solely to that resulting from the identifica-
tion stage.
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Figure 5: Sum of output errors for identification of im-
peller wear and thrust bearing wear fault candidates.
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Figure 6: Estimated wAi values.

4.3 Simulation Results
Table 3 summarizes the results of several simulation
experiments. The columns of the table represent the
true fault; true injected value of the fault parameter
φf ; ∆kd, the time in seconds to detect the fault; ∆ki,
the time in seconds to isolate the true fault; the set of
fault candidates after qualitative fault isolation; the es-
timated value of the fault parameter, φf , determined
by the fault identifier; and RA, the average relative ac-
curacy (RA) over every 5000 s, where RA is defined
as

RAkP = 100

(
1−
|RUL∗kP − R̂ULkP |

R̂ULkP

)
,

such that RUL∗kP is the true RUL at time kP , and
R̂ULkP is the mean of the prediction. For the abrupt
faults, EOL is reached as soon as the fault is de-
tected, and hence, RA is not applicable. For the pump
wear faults, however, the EOL is reached when cer-
tain thresholds are reached. The results indicate that
fault detection and isolation times are fairly slow, due
to slow progression of faults effects. However, we pre-
dict EOL with high RA, usually ranging above 95%.
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Figure 7: Predicted RUL of pump in the number of
loading cycles (1 cycle = 10000 s). The mean is indi-
cated with a dot and confidence intervals for 5% and
95% by lines. The gray cone depicts an accuracy re-
quirement of 10%.

5 CONCLUSIONS
This paper presented an integrated diagnostic and
prognostic framework. Our approach makes use of a
common modeling paradigm to model both the nom-
inal, as well as the fault progression models. We
demonstrated our approach on a representative fuel
transfer system. Our experimental results showed that
our integrated diagnostic and prognostic approach di-
agnosed faults and prognosed the EOL accurately.

In future work, we would like to apply this approach
to larger systems, to study the scalability of our diag-
nosis and prognosis scheme. Further, we would like to
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Table 3: Diagnosis Results
True Fault True φf ∆kd ∆ki Fault Candidates Estimated φf RA

Nominal N/A ∞ ∞ ∅ N/A N/A

A+
l1

1.00× 10−3 77 77 ∆Al1 = 1.00× 103, e = 2.36× 10−3 ∆Al1 = 1.00× 10−3 N/A
∆Al2 = 4.89× 10−4, e = 4.01× 101

∆x3 = 1.46, e = 1.08× 101

A+
l2

1.00× 10−3 236 236 wAi = 1.08× 10−3, e = 7.26 ∆Al2 = 1.01× 10−3 N/A

wt = 2.82× 10−11, e = 9.06

wr = 2.92× 10−11, e = 9.03

∆Al1 = 2.53× 10−4, e = 9.06

∆Al2 = 1.01× 10−3, e = 2.29× 10−3

∆x1 = 1.80, e = 9.02

∆x2 = 2.08, e = 9.02

x−1 −5.00× 10−1 0 1290 ∆x1 = −5.00× 10−1, e = 2.28× 10−3 ∆x1 = −5.00× 10−1 N/A

x−2 −5.00× 10−1 0 1204 ∆x2 = −5.00× 10−1, e = 2.31× 10−3 ∆x2 = −5.00× 10−1 N/A

x+3 5.00× 10−1 105 105 ∆x3 = 5.09× 10−1, e = 2.30× 10−3 ∆x3 = 5.09× 10−1 N/A

A−
i 3.00× 10−3 1379 7116 wAi = 3.00× 10−3, e = 2.50× 10−3 wAi = 3.00× 10−3 96.19

wt = 9.33× 10−13, e = 1.63× 101

wr = 2.27× 10−13, e = 1.63× 101

r+t 8.00× 10−11 614 614 wt = 7.88× 10−11, e = 2.63× 10−3 wt = 7.88× 10−11 96.75

wr = 3.96× 10−12, e = 1.58× 105

∆Al2 = 1.53× 10−6, e = 1.85× 105

r+r 9.00× 10−11 748 748 wt = 7.12× 10−13, e = 6.66× 104 wr = 8.71× 10−11 91.28

wr = 8.71× 10−11, e = 2.70× 10−3

∆Al2 = 1.47× 10−7, e = 7.16× 104

expand the capability of this approach to hybrid sys-
tems. We would also like to enhance this approach
to include multiple fault diagnosis and prognosis. Fi-
nally, we would like to investigate system level diag-
nosis and prognosis schemes.
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