
Chapter 6

Basic Principles

George Vachtsevanos, School of Electrical and Computer

Engineering, Georgia Institute of Technology

Kai Goebel, National Aeronautics and Space

Administration

“Ibis Redibis Non Morieris In Bello”— Pythia

6.1 Introduction

Integrated Vehicle Health Management (IVHM) must rely on accurate and robust

detection of incipient failures (faults) for critical components / systems and estimation of

the Remaining Useful Life (RUL) of such failing components. Recently, stringent

diagnostic, prognostic, and health management capability requirements are being placed

on many new aircraft and spacecraft applications to enable the benefits of logistic support

concepts, but also to assist in avoiding catastrophic events. While effective diagnostics

with low false alarm rates continue to improve on these new applications, prognostic

requirements are even more ambitious and present very significant challenges to both the

system design and program management teams.

The “reasoning” performed by the diagnostics and prognostics tasks is done using

sophisticated algorithms that process sensor information, historic use, design and

materials data, alarm thresholds, real-time usage information, future load, and

environmental conditions. (These algorithms, called “reasoners,” are discussed in more

detail in Chapter 7.) Before any of the reasoning can be carried out, a host of algorithmic

steps has to be completed to ensure that the algorithms receive the correct information.

In particular, there are checks that the sensor information, upon which much of the

reasoning hinges, are working properly; that noise is removed to the largest degree

possible; that the information is brought into focus through various transformations; etc.

All this has to be done in an architectural framework that supports these tasks in the

optimal fashion. This chapter reviews the fundamental principles that form the

foundation for Prognostics Health Management (PHM) and Condition-Based

Maintenance (CBM) technologies.

6.2 The OSA-CBM Framework

 This chapter presents the general outline of a systems engineering approach that

facilitates the integration and interchangeability of computational components from a

variety of sources. An open systems standard should consist of publicly available

descriptions of component interfaces, functions, and behaviors. The Open Systems

Architecture for Condition-Based Maintenance (OSA-CBM) has been developed

specifically to meet these requirements [Lianghua et al. 2010].

Figure 6.1 is a schematic representation of the major modules of the OSA-CBM

architecture. The figure suggests the progression of components from data acquisition,

data manipulation (processing), condition monitoring (state detection), health assessment,

prognostics, and decision support (advisory generation). The components are not

application specific; they are scalable and upgradeable.

Figure 6.1 The OSA-CBM components.

Uncertain

Healthy

Faulty

Decision

Support

Prognostics

Health

Assessment

Presentation
Condition

Monitor

Data

Acquisition

Envelope Detector

Band-Pass

Filter

Half-wave

or

Full-wave

Rectifier

Peak-Hold

Smoothing

Accelerometer

Data

Band-Pass

Filtered

Signal

Rectified

Signal

Envelope

Detected

Signal

 

 
2

1 1

2

1

4

1
4























 



 



m

j

N

i

jij

N

i

i

rr
m

rrN

NA

Data

Manipulation

Traditional

Sensor

Smart Sensor

Distributed

Computing

Technology

MIMOSA is a standard for data exchange between asset management systems, whereas

OSA-CBM is a specification for transactions between components within a Condition-

Based Maintenance system [www.mimosa.org]. The core of the OSA-CBM standard is

the Object Oriented data model, defined using Unified Modeling Language (UML)

syntax. It is a mapping of key concepts from the MIMOSA Common Relational

Information Schema (CRIS) with extensions for diagnostics, prognostics, and data

transactions. This common architecture has been demonstrated in a variety of application

domains. In reviewing fundamental IVHM technologies, we pursue the same basic

structure of the OSA-CBM architecture.

6.3 An Integrating IVHM Architecture

Figure 6.2 lists the major modules of a generic architecture in sequential order. The

modules include Sensor Validation, Data Pre-Processing, Feature Extraction, Data

Fusion, Anomaly Detection, Diagnostic Analysis, Prognostic Analysis, and Contingency

Management. This chapter covers Sensor Validation, Data Pre-Processing, Feature

Extraction, and Data Fusion. Anomaly Detection, Diagnostic Analysis, Prognostic

Analysis, and Contingency Management are covered in Chapter 7, “Algorithms and their

Impact on IVHM.”

Operational

Impact

Assessment

Diagnostic Analysis Subsystem Fault Modes

Anomaly Detection/Id

Feature Extraction
Time-stamped Features, Event Messages and/or

Parametric Data

Warnings & Alerts

Prognostic Analysis
Remaining Useful

Life Estimation

Contingency

Management
Corrective Action Identification/Fault Mitigation

Raw Sensor Data

Sensor Validation
Validated Data

(Faulted Sensors Flagged)

Figure 6.2 Integrated Vehicle Health Management functions.

Figure 6.3 depicts a more specific architecture for implementation of fault diagnosis and

failure prognosis algorithms [Vachtsevanos et al. 2006; Roemer et al. 2005] on board a

helicopter. In this example, some of the functions mentioned in Figure 6.2 are performed

on board, while others are performed off board (it should be noted that in other

applications, this separation is not being made). A further distinction is made in that

training of the models and algorithms is performed offline, while analysis of data from

the system is made online; i.e., while the system is operating. For the example case

considered in Figure 6.3, the online modules perform raw data pre-processing, feature

extraction, fault diagnosis, and failure prognosis that exploit available ground truth fault

data, noise models, experimental data, system models, and other tools offline to tune and

Figure 6.3 An architecture for development and implementation of

fault diagnosis and failure prognosis algorithms.

adapt online parameters and estimate suitable mappings. The architecture suggests a

hybrid and systematic approach to sensing, data processing, fault feature extraction, fault

diagnosis, and failure prognosis that may lead to a system hardware/software

configuration implementable online in real time. The integrated architecture, when

augmented with V&V (Verification and Validation) studies, may be optimized to

facilitate its eventual on-platform transition.

The online modules are designed to perform in sequence: data pre-processing, feature

extraction, diagnosis, and prognosis. The architecture suggests also the possibility of

closing the loop and providing corrective action to maintain a degree of acceptable

system performance for the duration of an emergency.

6.4 Sensing and Data Processing

Much of the reasoning in IVHM hinges on data obtained from sensors. Therefore,

sensors and sensing strategies constitute the foundational basis for fault diagnosis and

prognosis. Strategic issues arising with sensor suites employed to collect data that

eventually will lead to online realization of diagnostic and prognostic algorithms are

associated with the type, number, and location of sensors (see Chapter 8 for more

information on this topic); their size, weight, cost, dynamic range, and other characteristic

properties; whether they are of the wired or wireless variety; etc. Data collected by

transducing devices rarely are useful in their raw form. Such data must be processed

appropriately to enable extraction of useful information that is a reduced version of the

original data but preserves, as much as possible, those characteristic features or fault

indicators that are indicative of the fault events we are seeking to detect, isolate, and

predict the time evolution of. Thus, such data must be preprocessed, that is, filtered,

compressed, correlated, etc., in order to remove artifacts, and reduce noise levels and the

volume of data to be processed subsequently. Furthermore, the sensors providing the

data must be validated; that is, the sensors themselves might be subjected to fault

conditions. Once the preprocessing module confirms that the sensor data are “clean” and

formatted appropriately, features or signatures of normal or faulty conditions must be

extracted. This is the most significant step in the Condition-Based

Maintenance/Prognostics Health Management (CBM/PHM) architecture whose output

will set the stage for accurate and timely diagnosis of fault modes. The extracted-feature

vector will serve as one of the essential inputs to fault diagnostic algorithms.

6.4.1 Sensor Validation

Raw sensor data are a measurement of operational and environmental quantities. Before

they are further processed, the sensor itself must be assessed to determine its integrity in a

step called “sensor validation.” Here, data are acquired from sensors (and possibly from

other sources) to be validated. Next, the output of each sensor is estimated using

analytical relationships with other sensors. For example, the pressure at a particular

location in the flow of a system is related to the pressure at a different reading via laws of

physics that can be expressed as mathematical equations. One can then build entire

networks of relationships (“Analytical Redundancy Relationship Network” [Maul et al.

2009]) between sensors for which the readings are all related in some way via

mathematical equations.

Flow

P1

P2

W2

P3

P1

W1

P2

P3
R2 R3

R5R4

R1

Figure 6.2 Analytical Redundancy Relationship Network Error! Reference source not found. et

al. 2009].

As an illustrative example, consider a medium flowing in a pipe (Figure 6.2). One can

then describe physical relationships between the sensor measurements. Next, one would

determine whether any of these relationships are violated. That can be done by checking

whether the difference between the measurement and the estimate is larger than some

predefined threshold [Maul et al. 2009]. For example, if the difference between the

estimate of the measurement (as established through the physical relation) and the actual

measurement is less than the threshold, then the relation is declared qualified; otherwise,

it is declared failed. As a safeguard, and to contain the number of false positives (i.e., the

number of cases where a sensor is declared failed although it is still operational), one can

require more than one of these relationships to fail or one can wait for repetitions of

condition violation to declare the sensor failed. In addition, one can employ health

management principles on the sensors themselves and when a sensor fault is suspected,

have the system call for maintenance on itself before it fails.

6.4.2 Data Pre-Processing

Raw sensor data (vibration, temperature, etc.) must be pre-processed to reduce the data

dimensionality and to improve the (fault) Signal to Noise Ratio (SNR). Typical pre-

processing routines include data compression and filtering, Time Synchronous Averaging

(TSA) of vibration data, Fast Fourier Transforms (FFTs), etc. Pre-processing methods,

which improve the SNR (de-noising), are particularly valuable in aircraft situations where

significant noise levels tend to mask the real information. As an example, a de-noising

methodology, based on blind deconvolution, for a helicopter application is outlined

below.

The process of blind deconvolution attempts to restore the unknown vibration signal by

estimating an inverse filter, which is related to partially known system characteristics.

This is an active field of current research in image processing, speech signal processing

[Kundur and Hatzinakos 1996], but rarely applied in mechanical vibration signals [Peled

et al. 2000]. Vibration and other high-bandwidth signals are typically corrupted by

multiple noise sources. An iterative de-noising scheme may be constructed starting with

an initial estimate of the inverse of the modulating signal, which demodulates the

observed signal to give a rough noise-free estimate in the time-domain. Its Fourier

transform is passed next through a nonlinear projection, yielding the ideal characteristics

of the vibration signal. The estimate is iteratively refined via an optimization scheme.

Figure 6.5 shows the blind deconvolution de-noising scheme. Note that the proposed

scheme is implemented in the frequency domain, and the nonlinear projection, which is

derived from a nonlinear dynamic model, is also given in the same frequency domain

[Zhang et al. 2010].

0 0 . 5 1 1 . 5 2 2 . 5

x 1 0
4

- 1

- 0 . 8

- 0 . 6

- 0 . 4

- 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

0 5 0 0 1 0 0 0 1 5 0 0
0

0 . 5

1

1 . 5

2

2 . 5

0 5 0 0 1 0 0 0 1 5 0 0
0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

1 . 4

0 0 . 5 1 1 . 5 2 2 . 5

x 1 0
4

- 0 .6

- 0 .4

- 0 .2

0

0 . 2

0 . 4

0 . 6

0 . 80 0 . 5 1 1 . 5 2 2 . 5

x 1 0
4

- 4

- 3

- 2

- 1

0

1

2

3

4
x 1 0

9

100%

80%

40%

20%

0 5 0 0 1 0 0 0 1 5 0 0
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
- 0 .2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

FFT
Blind

Deconvolution

Feature Extraction/

Fusion

Diagnosis/

Prognosis

Vibration

Model

TSA data

s(t) S(f)

estimated cracklength

load profile

Weighting

Factor

IFFT

B(f)

b(t)

0 5

0
0 1

0
0
0 1

5
0
0 0 0.2 0.4 0.6

0
.
8 1 1.2
1
.
4

0 5

0
0 1

0
0
0 1

5
0
0 0 0.5 1

1
.
5 2
2
.
5

 Convolution with Z (f)
Weighting

Facto
r

Nonlinear
Projectio
n

 O
k

?

Cost Function
Minimizatio
n

Y

N

S (f)

B (f)

B nl (f)

E (f)

+

-

Figure 6.3 A blind deconvolution data de-noising scheme.

6.4.3 Feature Extraction and Selection

Feature or Condition Indicator (CI) selection and extraction constitute the cornerstone for

accurate and reliable fault diagnosis. The classical image recognition and signal

processing paradigm of data → information → knowledge becomes most relevant and

takes central stage in the fault diagnosis case, particularly since such operations must

often be performed in a real-time environment. Irrespective of whether the function has

to be performed online or offline, the objective is to transform high-dimensional raw data

into a tractable lower-dimensional form without loss of useful information.

Fault diagnosis depends mainly on extracting a set of features from sensor data that can

distinguish between fault classes of interest, and can detect and isolate to a particular

fault at its early initiation stages [Wu et al. 2005; Patrick et al. 2007]. These features

should be fairly insensitive to noise and within fault class variations. “Good” features

must have the following attributes. They must be:

• Computationally inexpensive to measure

• Mathematically definable

• Explainable in physical terms

• Characterized by large interclass mean distance and small interclass variance

• Insensitive to extraneous variables

• Uncorrelated with other features

Researchers have relied on ad hoc or empirical methods to define a feature vector for a

particular application domain. Knowledge of the system structure and function,

modeling, and heuristics is called upon to arrive at the “best” features or CIs.

Past research has focused on feature extraction, whereas feature selection has relied

primarily on expertise, observations, past historical evidence, and understanding of fault

signature characteristics. In selecting an “optimum” feature set, the following questions

need to be addressed: Where is the information? How do fault (failure) mechanisms

relate to the fundamental “physics” of complex dynamic systems? How do fault modes

induce changes in the energy, entropy, power spectrum, signal magnitude, etc.? Is the

feature selection application-dependent?

When seeking those features for a particular class of fault modes from a large candidate

set that possesses properties of fault distinguishability and detectability, a reliable fault

classification must be determined in the minimum amount of time. Feature extraction, on

the other hand, is an algorithmic process where features are extracted in a

computationally efficient manner from sensor data, while preserving the maximum

information content. A hybrid methodology for feature selection and extraction may rely

on physics-based modeling of the fault modes in combination with sensor data as the

latter are streaming into the processor. The physics-based models employ a finite

element analysis technique jointly with a nonlinear dynamic model of the failing

component’s behavior to guide the selection process. Figure 6.6 depicts a typical scheme

for feature extraction from raw vibration data. The data in each Ground-Air-Ground

(GAG) cycle is reduced to one feature value [Brown et al. 2009].

FFT 0 500 1000 1500
0

1

2

3

4

GAG 251

0 500 1000 1500
0

0.5

1

1.5

2

GAG 1000

Feature
Extraction

0 0.5 1 1.5 2 2.5

x 10
4

-30

-20

-10

0

10

GAG 751

0 0.5 1 1.5 2 2.5

x 10
4

-30

-20

-10

0

10

20

GAG 1000

GAG 751

GAG 1000

Time domain
(25k data in 1

revolution)

Frequency domain
(12.5k data in 1 revolution)

1 251 501 751 1000
0.5

1

1.5

2

2.5

3

3.5

4

GAG cycle

F
e

a
tu

re
 V

a
lu

e

Feature domain
(1 data in 1 revolution)

Figure 6.4 A typical illustrative example of a feature extraction scheme.

Feature evaluation and selection metrics include the similarity (or linear correlation)

between the feature and the true fault (crack) size, based on the linear dependency

between them. A feature is desirable if it shows a similar growth pattern to that of the

ground truth data. A correlation coefficient, the covariance between the two signals

divided by their standard deviations, may be employed as a metric of similarity for

feature evaluation. When multiple features are extracted for a particular fault mode, it

might be desirable to combine or fuse uncorrelated features to enhance the fault

detectability. Genetic Programming algorithms may assist to define an appropriate

fitness function by using genetic operators to construct new feature populations from old

ones.

6.4.4 Sensor Data Fusion

Although significant achievements have been reported in the recent past, the processing

of sensor data intelligently still requires development, testing, and validation of new

techniques to manage and interpret the increasing volume of data, and to combine them

as they become available from multiple and diverse sources. Sensor data fusion describes

a set of techniques that can contribute significantly toward a better understanding and a

more efficient utility of raw data by reducing it to useful information. Information is

synthesized to higher informational levels. A typical sensor data fusion process

incorporates several levels of abstraction: fusion at the data level, feature (characteristic

signature of the collected data) level, sensor level, and knowledge level. At the data

level, a variety of filtering, data compression, and data validation algorithms are

employed to improve such indicators as signal to noise ratio, among others. The enabling

technologies at the feature level may borrow from Dempster-Shafer theory [Shafer 1976],

soft computing, and Bayesian estimation to fuse features while meeting specified

performance metrics. At the sensor level, we rely upon concepts from information theory

while multiple sensors are gated and coordinated spatially and temporally to minimize

their number while maximizing the probability of detection. Significant reduction of the

computational burden is always a desired objective. The top level of the fusion

hierarchy, i.e., the knowledge fusion module, is designed to reason about the evidence

provided by the lower echelons, aggregate the available information in an intelligent

manner, resolve conflicts, and report to the end-user the finding of the fusion architecture.

Artificial Intelligence (AI) tools and methods from Dempster-Shafer theory, Bayesian

estimation techniques, and soft computing may find utility as the reasoning enablers at

this level.

6.5 Diagnostics and Prognostics

Fault diagnostics and, more recently, prognostics have been the subject of in-depth study.

Researchers in such diverse disciplines as medicine, engineering, the sciences, business,

and finance have developed methodologies to detect fault (failure) or anomaly conditions,

to pinpoint or isolate which component in a system / process is faulty, to decide on the

potential impact of a failing or failed component on the health of the system, and to

determine a component’s remaining life. Diagnostics and Prognostics are covered in

more detail in Chapter 7.

6.6 Performance Metrics

Generally, metrics to measure the performance and effectiveness of the CBM/IVHM

system are laid out during the requirements phase as part of the systems engineering

process. Low-level performance metrics are used to verify that algorithms meet stated

performance goals. For fault detection, typical metrics include detection rates. Fault

isolation is the ability to determine the exact fault root cause from a set of possible root

causes. Here, false negatives (the inability to detect a fault), false positives (incorrectly

determining the presence of a fault), and false classified (identifying the wrong root

cause) are important metrics. An exhaustive set of metrics for diagnostics is presented by

Kurtoglu et al. [Kurtoglu et al. 2009]. In the context of prognostics, the prognostic

horizon (the first prediction of remaining life within acceptable uncertainty bounds) is an

important metric. Similarly,  performance quantifies prediction quality by

determining whether the prediction falls within specified limits at particular times with

respect to an accuracy or precision performance measure. The topic is discussed in more

detail by Saxena et al. [Saxena et al. 2010].

6.7 Database Management

Central to a successful and efficient health management architecture that enables some of

the functionality outlined above is a well-designed database and a flexible database

management schema. There are OSA-CBM and MIMOSA efforts to establish database

standards for IVHM. The purpose of the database is to store and facilitate exchange of

the different types of information that come from the sensors, the feature extraction, and

the reasoning module (abnormal condition detection, diagnostics, prognostics, and

contingency management) as well as static information. Demands on such a database can

be quite high since it must collect dynamic information that arrives at various, possibly

non-synchronous, instances. Thus, the database management system must be able to

provide the ability to organize large amounts of data in linked tables to facilitate ease of

understanding. It also needs to provide a complete language for data definition, retrieval,

and update.

6.8 Closing Thoughts

This chapter described at a very high level some of the considerations that need to be

made when designing algorithms for a vehicle health management application. The

choices made here affect the quality of the diagnosis and prognosis (covered in Chapter

7). Therefore, the algorithmic design choices are made in conjunction with the design

choices for diagnostics and prognostics to optimally support these tasks. Furthermore,

additional considerations imposed by computational constraints, resource availability,

algorithm maintenance, need for algorithm re-tuning, etc. will impact the solutions.

It should also be noted that technological advances, both in hardware and software,

impose the need for new solutions. For example, as new materials and new sensors are

being developed, the algorithmic solutions will need to follow suit.

In general, there seems to be a trend to have more sensor data available. While this is

potentially a good thing, sensor data provides value only when it is being processed and

interpreted properly, in part by the techniques described here. Testing of the methods,

however, requires the “right” kind of data. Generally, there is a lack of seeded fault data

which are required to train and validate algorithms. It is also important to migrate

information from the component to the subsystem to the system levels so that health

management technologies can be applied effectively and efficiently at the vehicle level.

It may be required to perform elements described in this chapter between different levels

of the vehicle architecture.

References

Brown, D., G. Georgoulas, B. Bole, H. L. Pei, M. Orchard, L. Tang, B. Saha, A. Saxena,

K. Goebel, and G. Vachtsevanos. 2009. “Prognostics enhanced reconfigurable control of

electromechanical actuators.” In Proceedings of 2nd International Conference on

Prognostics and Health Management (PHM), San Diego, CA, USA, September 27 –

October 1, 2009.

Kundur, D. and D. Hatzinakos. 1996. “Blind Image Deconvolution.” IEEE Signal

Processing Magazine. 13 (3), 1996, pp. 43-46.

Kurtoglu, T., S. Narasimhan, S. Poll, D. Garcia, L. Kuhn, J. de Kleer, A. van Gemund,

and A. Feldman. 2009. “A Framework for Evaluating and Comparing Diagnosis

Algorithms.” 20th International Workshop on Principles of Diagnosis (DX ’09).

Stockholm, Sweden. 373-381.

Lianghua, X., R. Liqing, Z. Mei, W. LiXin, M. Qiang. 2010. “Intelligent Computing

and Intelligent Systems (ICIS), ” 2010 IEEE International Conference. Issue Date 29-

31, Oct. 2010.

Maul, W., R. Bickford, and K. Melcher. 2009. Use of Analytical Redundancy

Relationship Networks for Sensor Data Qualification. ” NASA Technical Memorandum

2009-216067.

Mimosa. 2011. Website: www.mimosa.org.

Patrick, R., A. Ferri, and G. Vachtsevanos. 2007. “Detection Of Carrier-Plate Cracks

Using Vibration Spectra,” ASME 2007 International Design Engineering Technical

Conferences & Computers and Information in Engineering Conference, IDETC/CIE

2007. Las Vegas, Nevada, USA, September 4-7, 2007.

Peled, R., S. Braun, and M. Zacksenhouse. 2000. “A Blind Deconvolution Separation of

Multiple Sources, with Application to Bearing Diagnostics.” Mechanical Systems and

Signal Processing, 14 (3), 2000, pp. 427-442.

Roemer, M., C. Belington, G. Kacprzynski, and G. Vachtsevanos. 2005. “An Overview

of Selected Prognostic Technologies with Reference to an Integrated PHM Architecture.”

Proceedings of NASA Integrated Vehicle Health Management workshop (Invited), Napa,

CA, November 7-10, 2005.

Saxena, A., J. Celaya, B. Saha, S. Saha, and K. Goebel. 2010. “Metrics for Offline

Evaluation of Prognostic Performance,” International Journal of Prognostics and Health

Management, 001, 2010.

Shafer, G. 1976. A Mathematical Theory of Evidence. Princeton University Press.

Vachtsevanos, G., F. Lewis, M. Roemer, A. Hess, and B. Wu. 2006. Intelligent Fault

Diagnosis and Prognosis for Engineering Systems. John Wiley & Sons, Inc.

Wu, B., A. Saxena, R. Patrick, and G. Vachtsevanos. 2005. “Vibration Monitoring for

Fault Diagnosis of Helicopter Planetary Gears.” Proceedings of the 16
th

 IFAC World

Congress, July 2005.

Zhang, B., T. Khawaja, R. Patrick, G. Vachtsevanos, M. Orchard, and A. Saxena. 2010.

“A novel blind deconvolution de-noising scheme in failure prognosis.” Transactions of

the Institute of Measurement and Control 32, 1, pp. 3-30, 2010.

Chapter 7

Algorithms and their Impact on Integrated Vehicle

Health Management

Kai Goebel, National Aeronautics and Space Administration

George Vachtsevanos, School of Electrical and Computer

Engineering, Georgia Institute of Technology

 “Omnes scientiae sunt connexae...” — R. Bacon

7.1 Introduction

This chapter will discuss some of the algorithmic techniques commonly used in Integrated

Vehicle Health Management (IVHM) once sensor validation, pre-processing, and feature

extraction have been completed (see Chapter 6). Health management observes signals from the

system and then reasons (using automated thinking or rules application) over the signals to

determine the state of health, possible causes for faults, remaining life, and suitable mitigation

strategies. Input into such a health management system is information about the configuration of

the system under observation, stimuli from the system, usage history, and anticipated loads.

Configuration and past usage information can come from a database. Anticipated usage loads

may also come from a manual or automated input / output interface. Stimuli from the system are

usually data that have been obtained from sensor measurements. Raw sensor measurements

typically do not provide the fidelity of information needed to make health management

determinations. Depending on the underlying physics of the sensor used, the sensor data will

require some level of treatment to determine key useful information. Before interrogating the

data for health information, some pre-processing is usually necessary to remove noise and to

make the signals crisper, and to extract features that can be used by a reasoner, as discussed in

more detail in Chapter 6.

In a next step, the features are combined to determine whether the system is functioning normally

or whether there are abnormal conditions. Techniques used here combine signal processing and

classifiers. The former are used to transform the data into a readily used domain, while the latter

are meant to make a yes-no determination about system normality. If the system is in an

abnormal state, it is said to exhibit a fault; multi-class classifiers can be used to isolate such a

fault. Under certain conditions one can determine how long it will take until the system reaches

its end-of-life threshold. This step involves understanding of the damage propagation mode and

uses extrapolation techniques. Critical to all steps is an understanding and handling of the

inherent uncertainties in the data. An assortment of statistical techniques is available to

characterize the quality and potential limits for the available data. Finally, to mitigate the

suspected fault–and therefore actively manage the health of the system–one needs to convert the

health information into actionable decisions. This can be done by applying the proper

optimization method that trades off various objectives such as system safety, minimizing

operational cost, and maximizing system performance.

It should be noted that from an operator perspective, making the distinction into the different

elements outlined here may not always seem important because the fundamental objective of

IVHM is to perform the most efficient process that will support operator safety, mission goals,

and affordable operation / availability. Indeed, during the history of vehicle health management,

the term “diagnostics,” for example, was sometimes used less stringently to also embrace a

number of other activities related to health management, such as trending, abnormal condition

detection, or perhaps even fault mitigation. However, from an algorithm development

perspective, it is important to be able to distinguish between these elements because the developer

faces different issues and — based on the findings — he/she would possibly choose different

algorithmic solutions.

Additionally, some of the algorithmic elements discussed in the following paragraphs are

optional. Referring back to Figure 6.2 in the previous chapter, it is possible to skip some of the

elements if they are not needed to accomplish the particular health management objective (e.g.,

maybe it is not important to know the remaining life) or if the cost-benefit for deployment is not

favorable.

7.2 Algorithmic Tools and Techniques Used

The following sections describe in some detail the individual elements mentioned in the

introduction, in the order shown in Figure 6.2.

7.2.1 Abnormal Condition Detection

The first line of defense in IVHM is often a check whether the system under observation behaves

normally or whether there is any abnormal condition. An abnormal condition could be one where

the normal operating conditions are exceeded in one or several monitored parameters. Therefore,

one has to have an idea what constitutes “normal” and where to set the thresholds defining

“abnormal.”

Figure 7.1 Measured symptoms.

symptom 1

sy
m

p
to

m
 2

Consider the data represented by the circles and the triangle in Figure 7.1. These data can be seen

as some measured quantity in the system that varies during normal operation. The fundamental

question to answer in abnormal condition detection is whether the triangle should be considered

an indication for an abnormal condition. The two symptoms in this figure could represent the

exhaust gas temperature and the core speed in a jet engine, for example.

Abnormal condition detection is an important first step in system health management. Abnormal

conditions are the first signs of a potential equipment failure at some future time. Detecting

abnormal conditions implies, at the very least, detecting change through observations from one or

more sensors, ideally in a minimum number of samples after the change has occurred. Having

detected that there has been a change, one might then desire to determine the precise nature of the

change. This is accomplished using diagnostics (described in the next section). Numerous

algorithms can be used for change detection on time series, including statistical approaches

(cumulative [Morgenstern et al. 1988], sequential probability ratio test [Malladi 1999], and

generalized likelihood ratio test [Willsky and Jones 1976], etc.), signal processing techniques

(wavelet [Sharifzadeh et al. 2005]), regression (autoregressive process [Tsay 1988]), and

computational intelligence techniques (neural networks [Kozma et al. 1994] and fuzzy logic

[Kumar and Wu 2001], etc.). To achieve good performance, relatively large amounts of

accurately labeled data are necessary to train many algorithms (particularly computational

intelligence approaches, e.g., neural networks). Often this requirement is particularly difficult for

real-world problems–data are costly to collect, fault data are sparse, and the labeling is uncertain.

One example of a change detection algorithm is the rank permutation test. This technique

transforms features from the raw feature space to a so-called “rank permutation probability

space.” In this method, “n” sequential data points are assessed against another “n” points drawn

randomly from all the raw data. For example, in Figure 7.2, the ranked order of seven raw data

points (the red stars) will be tested against sets of seven ranked points, each drawn randomly from

the full population of blue points.

Figure 7.2 Example time series for rank permutation test.

The statistical assessment (here, the sum of ranks) is computed for each comparison as new sets

of seven blue dots are randomly redrawn from the set of all points. After the sampling tests have

been repeated many times, the results are assembled as a distribution and the test hypothesis is

either accepted or rejected. Based on this test for the data in Figure 7.2, there is a, say, 91.7%

chance that the red stars should be considered abnormal. The rank permutation method has the

advantage that it boosts the classification rate by making events that are statistically improbable

more pronounced. It also helps to diminish the effect of noise and outliers.

Other techniques used in abnormal condition detection include 1-class or 2-class classifiers.

These are covered in more detail in the section on diagnostics.

time

d
a

ta

7.2.2 Diagnostics

Generally, diagnostics is the process of reasoning over manifestations of effects to determine a

possible cause. In the context of IVHM (and noting the statements made in the introduction of

this chapter), this becomes the process of determining (or “isolating”) fault modes from

symptoms.

To accomplish the goals of diagnostics, it is required that the operation of the system be observed

using appropriate instrumentation that senses thermal, electrical, mechanical, and fluid

characteristics such as temperature, pressure, voltage, displacement, strain, and vibration.

Selecting the best instrumentation suite for the systems is described in Chapter 8 (Design). One

of the most basic methods is to correlate the magnitude of a sensed sensor signal with a fault

condition. If a threshold is surpassed, a fault condition can be declared. Unfortunately, in most

situations, such a straightforward assessment does not work because the sensor signal is poorly

correlated with the fault, or it may be drowned in transients or operational and environmental

conditions. More advanced methods include neural networks, rule-based expert systems, case-

based reasoning systems, model-based reasoning systems, learning systems, and probabilistic

reasoning systems.

Neural net diagnosis algorithms are almost considered the baseline technique because of their

ease of use. Fundamentally, a set of labeled training data is used to “learn” the model of the

behavior of the system. A neural net is composed of a parametric interconnected representation

of nonlinear functions that allows adaptation of its parameters (“training”) such that the desired

result can be retrieved (within bounds) based on a particular input stimulus. The stimulus is the

observation from the system. The desired result is the diagnostic finding.

In rule-based systems, one would encapsulate quantitative and qualitative expert knowledge about

the component or systems. Through logical inferences and constraint analysis, one can arrive at a

set of potential failure candidates. In qualitative model-based methods, one relies on dependency

tracking, constraint analysis, and qualitative simulations of the dynamics of system behavior. In

model-based methods, abstracted forms of observed behavior are compared to behaviors

generated by the quantitative models, and differences are traced.

Case-based reasoning is another data-driven method that is fairly easy to deploy. What is

required is a number of validated “cases” that provide solutions to different problems. The

problems need to be characterized by a set of measurable observations (such as sensor

measurements). A new problem would then be evaluated with regard to its proximity to the

different solutions. Ultimately, the correctness of the answer will be confirmed and the

observation-solution pair can be added to the database of “cases.”

It has to be recognized that there is no one method that performs optimally for all possible

application domains (also called the “no-free-lunch theorem”). Challenges for applying

diagnostic reasoning technology include determining the best combination of methods for a given

system under the constraints of computational resources available, providing information with

enough time to act in time-critical situations, the cost of developing the automated system, and

the costs of maintaining the automated system over the lifetime of the application.

7.2.3 Prognostics

Prognostics is the science of determining the remaining useful life of a component or subsystem

given the current degree of wear or damage, the component’s load history, and anticipated load

and environmental conditions. A quantification of the degree of a component’s wear or damage

and the estimate of end-of-life gives decision makers additional knowledge about the health of a

system. It provides critical information for risk reduction in go / no-go decisions, cost reduction

through the scheduling of maintenance as needed, and improved asset availability. Prognostics

employs technologies that are often based on a detailed analysis of fault modes and modeling of

the physics of both the component at hand as well as the mechanisms underlying the fault. For

the latter, the idea is to model the damage progression and its dependency on certain accelerators

or stressors. Next, algorithms that estimate the remaining life use these physics-based models as

well as measurements from the system as input. They then use estimation techniques that

propagate the anticipated degradation into the future and provide, as output, the point where the

component no longer meets its desired functionality. The anticipated degradation is a function of

future load conditions and environmental conditions. For many systems, future load and

environmental conditions are very similar to the load and environmental variations seen in the

past, but in applications where the future loads and environmental conditions may vary

significantly from those of the past, it is desirable to formulate an anticipated load profile, based

on knowledge of how conditions may vary, to improve prediction accuracy and precision.

The task of tracking a state variable and predicting future values is often cast as a filtering

problem. Generally, quantification and management of different sources of uncertainty —

stemming from state assessment, model, measurements, future load, and environmental

conditions–provides critical information necessary for users to assess the risk of failure of a

component and determine when action needs to be taken. Therefore, algorithms need to be able

to receive, process, and output information about uncertainty in the system. Where detailed

modeling of the component’s physics is not feasible (or to augment the less-important fault

modes that are not modeled with detailed physics-based models), the remaining life estimation

can also be accomplished through an evaluation of run-to-failure data using machine learning

techniques.

Prognostics can be developed for almost any critical component as long as one has either some

knowledge about the underlying physics or a sufficient amount of run-to-failure data exist. In the

following, the basic elements that are required to perform remaining life estimation will be

explored in more detail. These are knowledge about the system behavior, damage threshold(s),

damage propagation model, data, and a propagation algorithm.

Model

Models are meant to encode one’s knowledge of the domain into a form that replicates the

system’s behavior under nominal conditions as well during degraded conditions. Typically, a

model is composed of a structure and its parameters. Physics-based models capture the

underlying physical properties of a system or component. An example of a physics-based model

is one based on first principles, such as conservation of energy. Sometimes, these physics-based

models require the use of simplifying assumptions to keep the problem tractable, e.g.,

linearization, hierarchy of local models, or the use of default values. Theoretically derived

knowledge may then be inconsistent with the real system’s behavior. Models can be

supplemented with experiential knowledge.

Data-driven models, in contrast, attempt to derive models from any information available from

(or usually buried in) historical data that may have been collected. Information is then

represented by a collection of instances of relationships among the system variables, which

ideally points to causality, but more often just highlights correlation. Purely data-driven methods

have other drawbacks, because data tend to be high-dimensional, noisy, incomplete (e.g.,

databases with empty fields in their records), or wrong (e.g., outliers due to malfunctioning or

failing sensors, transmission problems, or erroneous manual data entries). Some techniques,

which attempt to address these problems, include feature extraction, filtering and validation gates,

imputation models, and virtual sensors that model the recorded data as a function of other

variables.

Models can be built to encapsulate the system behavior as well as the propagation of damage.

Damage Threshold

The need for a damage threshold seems straightforward. Of course, one needs to know what

condition should terminate the end-of-life prediction. There are numerous cases where the end-

of-life condition is difficult to establish or to determine. It would be convenient if the system (or

subsystem or component) fails at the end-of-life condition. But a requirement for an end-of-life

threshold also needs to be a measurable condition. This is not always the same condition as a

catastrophic event. It is also possible that the system may continue to operate beyond the limits

of the end-of-life conditions.

Algorithms

The task of the prognostic algorithm is to perform state assessment and to determine the

remaining life with the aid of the models. The algorithms must take into consideration future

load and environmental conditions, and express the fidelity of the solution using appropriate

uncertainty representation. Algorithms that can take advantage of physics-based models include

Kalman filters and particle filters. Data-driven algorithms, in contrast, retrieve information from

an internal mapping of expected load and environmental conditions. They can also extrapolate on

the current trend. Data-driven algorithms include various types of regression algorithms that can

come from statistics or the machine-learning domain. They include auto-regressive algorithms,

neural nets, relevance vector machines, and others.

7.2.4 Contingency Management

Contingency management is meant to close the loop of integrated vehicle health management by

providing the appropriate mitigating action to resolve the issue stemming from the degraded state

of health. Depending on the prognostic horizon, different technologies need to be employed for

contingency management. This has to do with the inertia of the system and lead-time for certain

mitigation actions (see Figure 4.2). If the time-to-failure is in the range of milliseconds, one

needs to generally react fast using adaptive control mechanisms at the machine controller level.

If the prognostic horizon is in the second range, appropriate contingencies may involve control

reallocation, i.e., the use of other components or subsystems. If the prognostic horizon is longer,

one can consider mission re-planning. Finally, if the prognostic horizon is considerably longer,

perhaps even extending beyond the duration of the mission at hand, one can integrate the logistics

operations and consider various optimal maintenance actions. The latter would typically involve

multi-objective optimization.

In the following, we give an example for controller adaptation, and the different individual

contingency management actions will be discussed briefly.

Adaptive Controls

The optimization of the controller can be divided into several complementary subtasks. These

subtasks include (1) optimization of the actuator gains, (2) optimization of the control modifiers

(adjustables), and (3) design and optimization of the control schedules. This task decomposition

is necessitated by the fact that local gain modifications often do not result in any significant

variation at the global performance level. In addition, the potential for crosstalk, i.e., the

difficulty to track correlations of several simultaneously manipulated variables on the overall

controller, supports the strategy of dividing the optimization endeavor into smaller optimization

tasks. Depending on the impact that the particular control variable under consideration has on the

overall and local performance criteria, we maximize the observability from an optimization

standpoint. This means that for some control variables, only local performance criteria (local

tracking errors) are considered while other control variables are considered from a global level

(critical margins, tracking of vital parameters, and global tracking error). Figure 7.3 gives an

overview of this strategy.

Figure 7.3 Architecture for engine controller reconfiguration [Subbu et al. 2005]

The optimization can take advantage of simulators that encapsulate the dynamic behavior of a

system (e.g., a jet engine) and its controller with a high degree of fidelity. The user may specify

control settings and flight scenarios, and execute the simulator to obtain the engine response

given a high-level pilot command, such as demanded fan speed, which is a good measure of

thrust.

Optimization of parameters in engine controllers is reported by Chipperfield and Fleming [1996,

1998] and Fonseca and Fleming [1998]. Gremling and Passino [1997] report the design of an

online adaptive state estimator for a jet engine compressor whose model is evolved by a genetic

algorithm. Subbu et al. [2005] use genetic algorithms for controller design.

Multi-Objective Optimization

When the prognostic horizon is sufficiently large, one can consider various long-term actions that

might include considerations of the logistics chain. Challenges arise from the large amount of

different information pieces upon which a decision-maker has to act. Consider, as an example, a

decision support system (DSS) for use in operational decision-making in the context of running

missions and performing maintenance. The DSS enables the user to make optimal decisions

based on his / her expression of rigorous trade-offs through guided evaluation of different optimal

decision alternatives under operational boundary conditions using user-specific and interactive

System model
with controller

Performance
metrics

Evolutionary
Optimization
Algorithm

Gains
Adjustables
Schedules

Optimization
Objectives

Desired
Performance

collaboration. An Evolutionary Multi-Objective Optimization (EMOO) can perform the search in

this space and generates a set of optimal solutions (the “Pareto frontier”). This will result in the

identification of alternative mission allocations and maintenance plans that are non-dominated

(i.e., optimal) along IVHM-specific objectives (e.g., overall mission success, safety, and

maintenance cost) [Iyer et al. 2006].

Having generated the non-dominated alternatives, and depending upon present and future

requirements, the end-user can potentially employ constraint-based approaches or interactive

tools [Josephson et al. 1998] to select the operational plan that best meets the field requirements

to iteratively select a small subset of alternatives. An interactive method would also allow users

to employ what-if situations, permitting them to manually test the robustness of the solution.

Figure 7.4 Interactive decision-making for selection of best repair and mission allocation

[Adapted from Iyer, et al. 2006].

Figure 7.4 shows an instance of the decision problem, where the decision space is composed of

actions or allocations. In the figure, each point represents a potential plan that prescribes the

repair actions for an asset in the repair shop as well as the asset to be allocated to a mission.

Predicted success for mission i

Pr
ed

ic
te

d
 s

u
cc

es
s

fo
r

m
is

si
o

n
 j

0 1
0

1

The plot shows the intrinsic trade-offs present in the real world when trying to satisfy multiple

missions (Mission i and Mission j, in this case) which compete for the same resources (parts,

time, and manpower). Figure 7.4 shows that repair plans with very high values of predicted

reliability for a mission i are also plans that result in low predicted reliability values for

competing mission j in the deck of missions to be satisfied (and vice-versa). Presenting actors in

the logistics platforms with such plots confronts them with the need to understand the competing /

conflicting nature of the metrics they are trying to simultaneously maximize, and thereby presents

them also with the opportunity to locate feasible plans that can potentially optimize along all such

metrics simultaneously.

7.3 Closing Thoughts

This chapter discussed some of the algorithmic choices one encounters when designing an IVHM

system. While it would be generally desirable to be able to pick a particular set of algorithms for

a particular problem, the reality is a bit more complex. Depending on the budget, the performance

requirements, the computational constraints, sensor availability, access to historical data,

operational and environmental conditions, robustness to changing system configurations,

algorithm maintenance needs, etc., no one algorithm will perform best in all situations. Indeed, it

is necessary to evaluate these constraints during the algorithm design process and determine the

best choice on a case-by-case analysis. The trade-offs between different choices are very real,

and sometimes no solution can be found, which means that some of the constraints have to be

relaxed. The simplest solution is generally preferred over a more complex one, but it is also

important to consider that there is no free lunch. Finally, any health management solution also

has to undergo verification and validation (V&V) and, in some cases, certification. Some of these

issues are topics of other chapters in this book.

References

Arulampalam, S., S. Maskell, N. J. Gordon, and T. Clapp. 2002. “A Tutorial on Particle

Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking.” IEEE Trans. on Signal

Processing, 50(2): 174-188.

Boser, B. E., I. M. Guyon, and V. N. Vapnik. 1992. “A Training Algorithm for Optimal Margin

Classifiers. Haussler, D., editor, 5th Annual ACM Workshop on COLT. Pittsburgh, PA: ACM

Press, 144-152.

Box, G. E. P. and G. Jenkins. 1976. Time Series Analysis: Forecasting and Control. San

Francisco, CA. Holden Day.

Chipperfield, A. and P. Fleming. 1996. “Multiobjective Gas Turbine Engine Controller Design

Using Genetic Algorithms.” IEEE Transactions on Industrial Electronics, Vol. 43, No. 5.

Chipperfield, A. J. and P. J. Fleming. 1998. “Evolutionary Design of Gas Turbine Aero-Engine

Controllers.” In Proceedings of the IEEE International Conference on Systems, Man, and

Cybernetics.

Drucker, H., C. J. C. Burges, L. Kaufman, A. J. Smola, and V. Vapnik. 1997. “Support Vector

Regression Machines.” Mozer, M., M. Jordan, and T. Petsche, editors. Advances in Neural

Information Processing Systems. Cambridge, Mass. MIT Press, 9:155-161.

Eklund, N. and K. Goebel. 2005. “Using Neural Networks and the Rank Permutation

Transformation to Detect Abnormal Conditions in Aircraft Engines.” Proceedings of the 2005

IEEE Mid-Summer Workshop on Soft Computing in Industrial Applications, SMCia/05, pp. 1-5.

Fonseca, C. and P. J. Fleming. 1998. “Multiobjective Optimization and Multiple Constraint

Handling with Evolutionary Algorithms—Part II: Application Example.” IEEE Transactions on

Systems, Man, and Cybernetics—Part A: Systems and Humans, Vol. 28, No. 1.

Gordon, N. J., D. J. Salmond, and A. F. Smith. 1993. “Novel Approach to Nonlinear/Non-

Gaussian Bayesian State Estimation.” Radar and Signal Processing, IEE Proceedings F

140(2):107-113.

Gremling, J. R. and K. M. Passino. 1997. “Genetic Adaptive State Estimation for a Jet Engine

Compressor.” In Proceedings of the 12
th
 IEEE International Symposium on Intelligent Control.

Iyer, N., K. Goebel, and P. Bonissone. 2006. “Framework for Post-Prognostic Decision

Support.” IEEE Aerospace Conference, 11.0903.

Jazwinski, A. H. 1970. Stochastic Processes and Filtering Theory. New York, Academic Press.

Josephson, J. R., B. Chandrasekaran, M. Carroll, N. Iyer, B. Wasacz, G. Rizzoni, Q. Li, and D.

A. Erb. 1998. “An Architecture for Exploring Large Design Spaces.” Proc. of the 4
th
 Natl. Conf.

of the AAAI, Madison, Wisconsin, pp. 143-150.

Kozma, R., M. Kitamura, M. Sakuma, and Y. Yokoyam. 1994. “Anomaly Detection by Neural

Networks Models and Statistical Timeseries Analysis.” Proceedings of the International Joint

Conference on Neural Networks, Vol. 5, pp. 3207-3210, Orlando, FL.

Kumar, K. and B. Wu. 2001. “Detection of Change Points in time series analysis with fuzzy

statistics.” International Journal of System Science, Vol. 32(9), pp. 1185-1192, Taylor & Francis,

September 2001.

Malladi, D. P. 1999. “A Generalized Shiryayev Sequential Probability Ratio Test for Change

Detection and Isolation.” IEEE Trans. Automat. Control, Vol. 44, pp. 1522-1534.

Morgenstern, V. M., B. R. Upadhyaya, and M. Benedetti. 1988. “Signal Anomaly Detection

Using Modified Cusum Method.” Proceedings of the 27th IEEE Conference on Decision and

Control, Vol. 3, pp. 2340-2341.

Platt, J. C. 1999. "Fast training of support vector machines using sequential minimal

optimization." Advances in Kernel Methods - Support Vector Learning. (eds.) B. Scholkopf, C.

Burges, and A. J. Smola. MIT Press, Cambridge, Massachusetts, chapter 12, pp. 185-208.

Ramirez-Beltran, N. D. and J. A. Montes. 1997. “Neural Networks for On-line Parameter

Change Detection in Time Series Model.” Computer & Industrial Engineering, Vol. 33, pp. 337-

340.

Severs, G. C. and R. A. Fliess. 1899. "Cost/Ton Mile for Horses and for Electric Vehicles."

Scientific American, Vol. 81, No. 4, p. 50.

Sharifzadeh, M., F. Azmoodeh, and C. Shahabi. 2005. “Change Detection in Time Series Data

Using Wavelet Footprints.” Advances in Spatial and Temporal Databases, Vol. 3633, pp. 127-

144.

Subbu, R., K. Goebel, and D. Frederick. 2005. “Evolutionary Design and Optimization of

Aircraft Engine Controllers.” In IEEE Transactions on Systems, Man, and Cybernetics; Part C:

Applications and Reviews, Vol. 35, No. 4, Nov. 2005, pp. 554-565.

Tsay, R. S. 1988. “Outliers, Level Shifts, and Variance Changes in Time Series,” J. Forecasting

7, pp. 1-20.

Vapnik, V. N. 1995. The Nature of Statistical Learning Theory. Springer-Verlag, New York.

Willsky, A. S. and H. L. Jones. 1976. “A Generalized Likelihood Ratio Approach to Detection

and Estimation of Jumps in Linear Systems.” IEEE Trans. Automat. Control, Vol. 21(1), pp.

108-112.

