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The next generation (NextGen) transport aircraft configurations being 
investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have 
more control surfaces, or control effectors, than existing transport aircraft 
configurations. Conventional flight control is achieved through two symmetric 
elevators, two antisymmetric ailerons, and a rudder. The five control surfaces, 
reduced to three command variables, produce moments along the three main axes of 
the aircraft and enable the pilot to control the attitude of the aircraft. Next 
generation aircraft will have additional redundant control effectors to control the 
three moments, creating a situation where the aircraft is over-actuated and where a 
simple relationship no longer exists between the required control surface deflections 
and the desired moments. NextGen flight controllers will incorporate control 
allocation algorithms to determine the optimal effector commands to attain the 
desired moments, taking into account the effector limits. Approaches to solving the 
problem using linear programming and quadratic programming algorithms have 
been proposed and tested. It is of great interest to understand their relative 
advantages and disadvantages and how design parameters may affect their 
properties. In this paper, we investigate the sensitivity of the effector commands 
with respect to the desired moments and show on some examples the sensitivity of 
the solutions provided by the linear programming and quadratic programming 
methods. 
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I. Introduction 
oncern for the environmental and operational impacts of civil aviation is prompting significant 
changes in civil aviation. The NASA Aeronautics Subsonic Fixed Wing Project, together with 

industry, universities, and other government organizations, is researching advanced technologies and 
exploring novel civil transport configurations to achieve the desired reduction in noise, emissions, fuel 
burn, and field length for Next Generation (NextGen) aircraft1-2. Potential NextGen civil transport 
aircraft include the Cruise Efficient Short Take-Off and Landing (CESTOL) aircraft and the Hybrid 
Wing-Body (HWB) aircraft. See ref. 2 for detailed information on these new NextGen architectures and 
their control challenges.  

The advanced configurations and associated technologies for next generation aircraft elevate the 
complexity of the vehicle and its operation. Flight control will be particularly challenging, in part 
because of the added demands on the control allocation schemes. Unlike conventional control allocation 
schemes that control three body-fixed rates primarily with three control variables, NextGen control 
allocation schemes will need to control the three body-fixed rates with a variety of redundant and multi-
objective control surfaces3. The control allocation of over-actuated aircraft has been formulated as a 
constrained optimization problem by some researchers4. For some NextGen configurations, a real-time 
solution to the control allocation problem is desirable to enable the system to run on the aircraft during 
flight. This has prompted the search for numerical optimization methods that have good convergence 
properties and acceptable computational requirements. Other NextGen aircraft configurations may 
require a predetermined mapping between desired accelerations and control surface deflections, which 
could be optimally determined using these same constrained optimization methods. 

Several methods to solve the control allocation problem have been evaluated, including direct 
allocation, linear programming, quadratic programming, weighted pseudo-inverse, cascaded generalized 
inverse, and a mixed optimization approach4,5. Control allocation research has also extended the control 
solution to include coupling or interaction effects between control effectors, creating a nonlinear 
optimization problem that can often be transformed into a linear problem6,7. While the interaction effects 
will be important to study for control allocation in next generation aircraft, this paper will focus on 
solutions that assume a linear relationship between the effectors and the moments they generate. 

Two optimization methods that have been shown to be effective and implementable in real-time are 
the linear programming (LP) and the quadratic programming (QP) methods4,5. Previous studies, 
however, have not addressed the issue of the sensitivity of the solution to the data. In particular, the 
sensitivity of the solution with respect to the desired moments determines how rapidly the control 
surfaces have to move if the moments are to match the desired moments and the moments change 
rapidly. The sensitivity of two control allocation algorithms, one using an LP method and the other using 
a QP method, are evaluated in this paper by examining their application to an example of an over-
actuated aircraft. 

II. Control Allocation in Flight Control Systems 
Control allocation is the stage in the stability and control augmentation process that is responsible for 

achieving a commanded moment vector by allocating commands to individual control effectors. Flight 
control algorithms for next generation aircraft will control q body-fixed angular accelerations or 
moments of the aircraft with n control effectors, where .  

In its simplest practical form, the control allocation scheme will consider the rate and magnitude 
limits of the control effectors. The control allocation problem can be posed in state space form as 
follows: find the  control vector, , such that 

 

€ 

Bucmd = ˙ x cmd   (1) 

C 



3 
American Institute of Aeronautics and Astronautics 

subject to 

   (2) 

where  is the  linear control effectiveness matrix,  is the  commanded angular 
acceleration vector,  and  are the vectors of the control effectors’ minimum and maximum 
magnitude limits, respectively, and  is the vector of control effectors’ maximum rate limits. In this 
paper, we set aside the rate limits and focus on the accelerations or moments that are achievable, without 
considering the previous deflections that may have been applied. 

The control allocation algorithm should optimally allocate the available control effectors to solve eqs. 
(1-2), while limiting unachievable commands. The attainable moment set (AMS) for a given operating 
point of an aircraft is the set of moments, or accelerations, that can be achieved by the control effectors 
without violating their saturation limits. If the solution to eqs. (1-2) is not unique, additional objectives, 
such as control minimization, can be added to the optimization problem to yield a preferred solution.  

A. Mixed Optimization Approach to Control Allocation 
The mixed optimization approach, as proposed by Bodson5, combines the error minimization and the 

control minimization into one problem by minimizing the cost function: 

 

€ 

J = Bucmd − ˙ x cmd 1 + ε ucmd − upref 1 (3) 

subject to 

  (4) 

where  and  are the vectors of the control effectors’ minimum and maximum magnitude limits, 

€ 

0 ≤ ε <1 is a control minimization weight, and  is a preferred control vector. If the value of the 
parameter  is small, priority will be given to error minimization over control minimization, as desired. 
Note that the optimization criterion is based on the  norm, which is the sum of the absolute values of 
the components of the vector. 
 The mixed optimization approach expands upon work performed by Buffington9, who suggested that 
control allocation could be solved using a sequential optimization approach in which the error 
minimization problem is first solved followed by solution of the control minimization problem. The 
specific choice of  norm enabled Buffington to solve the control allocation problem with linear 
programming techniques, providing guaranteed convergence to a solution in an acceptable period of 
time.  

The mixed optimization approach, as implemented by Bodson5, combined the two optimization steps 
into one, and was shown to be the most effective LP optimization method in an evaluation of different 
approaches used in simulations of a C-17 aircraft model and a tailless aircraft model. The algorithm was 
based on the revised simplex method10 with additional refinements as described in detail in ref. 5, which 
enabled computations to be performed extremely fast, and well within the capabilities of modern 
computers. This paper uses the same code for the LP optimization method in the comparison studies that 
follow. 
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B. Active Set Methods for Solving Quadratic Control Allocation 
Quadratic programming or Least-Squares (LS) methods make use of the  norm and have been used 

extensively in the control allocation problem4,11-13. Härkegård11 suggested the use of active set methods8 
for quadratic solutions to the control allocation problem. Active set methods can be shown to find an 
optimal solution in a finite number of steps11. A comparison of constrained quadratic programming 
techniques for control allocation found that the weighted least-squares (WLS) form of the active set 
method performed favorably for control allocation of over-actuated aircraft that resemble next 
generation aircraft configurations12.  The active set algorithm is to quadratic programming what the 
simplex algorithm is to linear programming. The steps of the algorithm are very comparable, and the 
solutions can be computed very fast with both methods. 

The general problem formulation for the quadratic solution to the mixed optimization control 
allocation problem is to minimize the cost function: 

 

€ 

J = Bucmd − ˙ x cmd 2
2

+ ε2 ucmd − upref 2

2

 (5) 

subject to 

  (6) 

where   and  are the vectors of the control effectors’ minimum and maximum magnitude limits, 

€ 

0 ≤ ε <1 is a control minimization weight, and  is a preferred control vector. Note that the 
optimization criterion in eq. (5) is comparable to the criterion in eq. (3), with the  norm being used 
instead of l1 norm. This leaves open the question of whether the choice of norm makes any difference in 
the solutions obtained. The point of this paper is to show that it does. The WLS algorithm11,13 was used 
as the QP method for analysis in this paper. See ref. 13 for the source code and documentation on the 
WLS algorithm. 

III. Computational Results 
Computations were performed on a aircraft model based on Lockheed Martin’s ICE (innovative 

control effectors) tailless aircraft9,15. The aircraft has 11 control effectors: left elevon, right elevon, pitch 
flaps, left all-moving tip, right all-moving tip, pitch thrust vectoring, yaw thrust vectoring, left spoiler 
slots, right spoiler slots, left outboard leading-edge flaps, and right outboard leading-edge flaps. The 
control effectiveness matrix, or B matrix, corresponding to an output vector composed of pitch, roll, and 
yaw rates for a flight condition at Mach 0.4 and 15,000 ft altitude is given in table 1. The position limits 
of the control effectors are given in table 2. Note that the limits of the spoiler slot deflectors were 
lowered from 60 degrees to 10 degrees in ref. 15 to reduce nonlinear interactions between the spoiler 
slot deflectors and the elevons. The same limits were used here, although the nonlinear effects were not 
part of the evaluation. In the computations, the value of ε used was 

€ 

ε =10−3 and 

€ 

upref ≡ [0]11x1. 
In order to quantify the sensitivity of the algorithms to the data, a sensitivity metric was computed to 

assess how much the solution changes in a neighborhood of a given input, 

€ 

˙ x cmd . The sensitivity metric 
compares the computed effector deflections for a given desired moment vector and the computed 
deflections for the same desired moment vector with a small constant vector added to it. The sensitivity 
for an acceleration vector

€ 

˙ x cmd  is given by 
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€ 

sens( ˙ x cmd ) =
ucmd − udelta 2

Δ 2

 (7) 

where 

€ 

ucmd  is the vector of control surface deflections computed by the algorithm for 

€ 

˙ x cmd  and 

€ 

udelta  is 
the vector of control surface deflections for 

€ 

˙ x cmd + Δ , with 

€ 

Δ  a small acceleration vector.  
Figures 1-4 compare the results of simulations for the ICE with a pure pitch acceleration command 

given as the desired acceleration, e.g., the roll and yaw acceleration components were identically zero. 
The simulation input had the pitch acceleration start at zero and step up to 1.1 times the maximum 
attainable pitch acceleration of 249.23 deg/s2 for the ICE model. There were 110 points in the interval. 
For this simulation, ∆ always had the pitch acceleration equal to one and the roll and yaw accelerations 
equal to zero. This value of ∆ was added to the desired acceleration to test the sensitivity at each point. 
Figure 1 compares the sensitivity of the two algorithms, demonstrating that the sensitivity of the LP 
algorithm is slightly greater than the sensitivity of the QP algorithm for this simulation. 

Figure 2 shows the commanded control surface deflections for the ICE model using the LP and QP 
algorithms. Comparison of the plots in fig. 2 reveals that the allocation of the control surfaces was more 
distributed in the QP solution. The QP algorithm results in a type of load balancing, where the load is 
the desired command and the algorithm balances this load among various actuators. Examination of figs. 
1-2 shows that both algorithms seemed to have their sensitivities increase once one of the control 
surfaces became saturated. Also, the rate of change in the control surface deflections was generally 
smoother when using the QP algorithm, as can be seen in fig. 2. 

An acceleration error for each algorithm was computed as the  norm of the difference between the 
accelerations that result from the commanded deflections and the desired accelerations. The acceleration 
error is given by 

 

€ 

accelError( ˙ x cmd ) = Bucmd − ˙ x cmd 2 (8) 

where 

€ 

˙ x cmd  is the vector of desired accelerations and 

€ 

ucmd  is the vector of commanded deflections 
determined for 

€ 

˙ x cmd  by the algorithm. The term 

€ 

Bucmd  gives the accelerations resulting from the 
commanded deflections. Figures 3-4 show that the acceleration errors were larger for the QP method for 
this simulation. The LP errors were essentially zero and were within the numerical noise floor when the 
desired accelerations are achievable. This observation means that the LP solution is the same as a two-
step optimization procedure where error is minimized first and control is minimized within this solution 
as a secondary objective. The QP method does not result in the same zero errors. Interestingly, a 
difference between the LP and QP solutions is that, for 

€ 

ε small, the LP solution does not constitute a 
trade-off between performance (error) and cost (control), whereas the QP solution does. This feature 
may be part of the reason for the increased sensitivity of the LP algorithm. Nevertheless the QP error 
was small and could be made smaller by changing 

€ 

ε. 
Figures 5-8 compare the results of computations for the ICE with a pure roll acceleration command 

given as the desired acceleration, e.g., the pitch and yaw acceleration components were identically zero. 
The simulation input had the roll acceleration start at zero and step up to 1.1 times the maximum 
attainable roll acceleration of 351.94 deg/s2 for the ICE model. There were 110 points in the interval. To 
test the sensitivity at each point in this simulation, ∆ always had the roll acceleration equal to one and 
the pitch and yaw accelerations equal to zero. The results of the computation, as shown in figs. 5-8, tell a 
similar story as figs. 1-4. 

An interesting observation in the plots is that both methods show increased sensitivity when the 
commanded accelerations approach the achievable acceleration limits. Figures 1 and 5 provide good 
examples of this “terminal” sensitivity for the LP and the QP methods, as the commanded pitch and roll 
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approach the maximum attainable limits. The terminal sensitivity is a problematic feature for both 
methods. 

The sensitivity of the algorithms was analyzed for points randomly sampled from one of two sets: a 
cube containing the AMS or the boundary of the AMS. Computations using input from these two sets 
allow us to examine the overall sensitivity of the algorithms and the terminal sensitivity of the 
algorithms at the boundary of the AMS as a function of the parameter ε. A total sensitivity metric for a 
set of points was computed to assess the sensitivity of the algorithms to the data. The total sensitivity of 
a set, S, is given by 

 

€ 

senstot (S) =
1

size(S)
ucmd − udelta 2

Δ 2˙ x cmd ∈S
∑   (9) 

where 

€ 

ucmd  is the vector of deflections determined by the algorithm for 

€ 

˙ x cmd , 

€ 

udelta  is the vector of 
deflections for 

€ 

˙ x cmd + Δ , with 

€ 

Δ  a small random vector of fixed length, and size(S) is the number of 
elements in the set S. 

Figure 9 shows the total sensitivity for ten sets of 1000 desired accelerations randomly sampled from 
a cube with its boundary outside the attainable moment set, see table 3 for the cube position limits. The 
length of the vector 

€ 

Δ  that was used for the sensitivity calculation was 2. The total sensitivity for each of 
the ten sets of 1000 acceleration vectors was determined for various values of ε. Each marker in fig. 9 
represents the total sensitivity for a set of 1000 accelerations using the LP or QP algorithm with the 
specified value of ε. From fig. 9, it can be seen that the QP algorithm was less sensitive than the LP 
algorithm for points randomly sampled from a cube around the AMS. Additionally, fig. 9 shows that the 
sensitivity of the LP algorithm is quite similar when 

€ 

ε ≤10−4 , whereas, the sensitivity decreases when 

€ 

ε ≥10−3. The sensitivity of the QP algorithm is relatively similar for the values of ε used in the 
computations, as seen in fig. 9. 

A total acceleration error was computed to assess the acceleration errors for the algorithms over a set 
of points. The total acceleration error for a set, S, is given by 

 

€ 

accelErrortot (S) =
1

size(S)
Bucmd − ˙ x cmd 2

˙ x cmd ∈S
∑   (10) 

where 

€ 

˙ x cmd  is the vector of desired accelerations, 

€ 

ucmd  is the vector of deflections determined for 

€ 

˙ x cmd ,  
and size(S) is the number of elements in the set S. The term 

€ 

Bucmd  gives the accelerations resulting from 
the commanded deflections. When the desired accelerations were randomly sampled from the cube 
containing the AMS, the total acceleration error was 38.6 deg/s2 for the LP algorithm and 32.7 deg/s2 for 
the QP algorithm for each set of 1000 points. The values of the total errors were quite large because 
some of the points in each of the random sets were unattainable, resulting in large errors that dominated 
the smaller errors.  

Figure 10 shows the total sensitivity for different values of ε for points randomly sampled from the 
boundary of the AMS. Computations showed that for accelerations on the boundary of the AMS, the QP 
algorithm was less sensitive than the LP algorithm when 

€ 

ε ≤10−4 . When 

€ 

ε =10−3, the LP and QP have 
comparable sensitivities. When ε was equal to 10-2, the LP algorithm was generally less sensitive than 
the QP algorithm. The sensitivity metrics for both the LP and the QP algorithms was smaller for 
accelerations from the boundary of the AMS when 

€ 

ε =10−3 than when 

€ 

ε ≤10−4 . The acceleration errors 
for this simulation are given in Table 4. The total acceleration errors for both algorithms increased as ε 
increased, due to the increased priority given to the control minimization. These results confirm the 
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existence of a trade-off between performance (error) and cost (control) of both algorithms on the 
boundary of the AMS. Additionally, there is a trade-off between the sensitivity of the algorithms and the 
error when 

€ 

ε ≥10−4 . 

IV. Conclusion 
Comparisons were made between control allocation schemes using an LP algorithm and a QP 

algorithm for minimizing an l1 and an l2 cost function, respectively. It was observed that the allocation 
of the control effectors was more distributed in the QP control allocation computation. Both the LP and 
the QP control allocation algorithms show “terminal sensitivity” or increased sensitivity when the 
commanded accelerations approached the achievable acceleration limits. The QP algorithm was less 
sensitive than the LP algorithm for points randomly sampled from a cube around the AMS. On the 
boundary of the AMS, both algorithms had increased sensitivity. The results confirm the existence of a 
trade-off between performance (error) and cost (control) for both algorithms on the boundary of the 
AMS and for the QP algorithm inside the AMS. Additionally, for accelerations near the boundary of the 
AMS, both algorithms exhibit a trade-off between sensitivity and error when 

€ 

ε ≥10−4 . The results 
presented here suggest that designers, especially those working on next generation aircraft, would be 
wise to examine the sensitivity of the chosen control allocation algorithm for their application.  
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Figure 1. Sensitivity of LP versus QP algorithm for pure commanded pitch. 
 

 
Figure 2. a) Commanded control surface deflections for pure commanded pitch from LP 
algorithm and b) QP algorithm. 
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Figure 3. a) Acceleration errors for pure commanded pitch from LP algorithm and b) 
QP algorithm.  

 
Figure 4. a) Detail of acceleration errors for pure commanded pitch from LP algorithm 
and b) QP algorithm.  
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Figure 5. Sensitivity of l1 versus l2 algorithm for pure commanded roll.      

 
Figure 6. a) Commanded control surface deflections for pure commanded roll from 
LP algorithm and b) QP algorithm. 
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Figure 7. a) Acceleration errors for pure commanded roll from LP algorithm and b) 
QP algorithm. 

 
Figure 8. a) Detail of acceleration errors for pure commanded roll from LP algorithm and 
b) QP algorithm.  
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Figure 9. a) Total sensitivity for sets of 1000 random desired accelerations in cube 
around AMS for LP algorithm and b) QP algorithm. 

 
Figure 10. a) Total sensitivity for sets of 1000 random desired accelerations on 
boundary of AMS for LP algorithm and b) QP algorithm. 
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 left 
elevon 

right 
elevon 

pitch 
flaps 

left all-
moving 
tip 

right all-
moving 
tip 

pitch 
thrust 
vector-
ing 

yaw 
thrust 
vector-
ing 

left 
spoiler 
slots 

right 
spoiler 
slots 

left 
leading-
edge flaps 

right 
leading-
edge flaps 

pitch 
rate 

-2.5114 -2.5115 -1.9042 -0.9494 -0.9494 -1.1329 0 1.5046 1.5046 -0.0003 -0.0004 

roll 
rate 

3.7830 -3.7830 0 1.8255 -1.8255 0 -0.0790 -2.0956 2.0957 -0.3067 0.3067 

yaw 
rate 

0.0453 -0.0453 0 -0.2081 0.2081 0 -0.8038 -0.0283 0.0283 0.0937 -0.0937 

Table 1. B matrix entries.  

 left 
elevon 

right 
elevon 

pitch 
flaps 

left all-
moving 
tip 

right all-
moving 
tip 

pitch 
thrust 
vector-
ing 

yaw 
thrust 
vector-
ing 

left 
spoiler 
slots 

right 
spoiler 
slots 

left 
leading-
edge flaps 

right 
leading-
edge flaps 

umin  
(deg) 

-30 -30 -30 0 0 -10 -10 0 0 0 0 

umax 
(deg) 

30 30 30 60 60 10 10 10 10 40 40 

Table 2. Minimum and maximum control surface deflection limits (deg).  

 Pitch  Roll  Yaw  
Acceleration Limits (deg/s2) ±333.100 ±351.941 ±25.772 
Table 3. Limits (deg/s2) for cube around AMS. 

 Value of ε 

Algorithm 1e-2 1e-3 1e-4 1e-5 1e-6 1e-7 
       LP 9.64e-3 3.472e-4 1.794e-8 1.794e-8 6.362e-9 3.80e-13 

QP 5.162e-2 1.607e-3 9.082e-5 1.177e-6 2.560e-8 8.048e-10 
Table 4. Total acceleration errors (deg/s2) for simulations where input sets contain 
random desired accelerations from the boundary of the AMS.  


