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ABSTRACT

In the National Airspace System (NAS), safety is assured
through a set of rules, regulations, and procedures to respond
to unsafe events. However, safety stands to benefit immensely
from the introduction of tools and methodologies from Prog-
nostics and Health Management (PHM). PHM will enable the
NAS to stochastically predict unsafe states within the NAS,
enabling a proactive preventative response strategy, as op-
posed to a reactive mitigative one. However, current PHM
methods do not directly apply to the NAS for several reasons:
they typically apply only at the component level, are imple-
mented in a centralized manner, and are focused only on pre-
dicting remaining useful life. In this paper, we extend the
model-based prognostics approach to PHM in order to pro-
vide a framework that can be applied to the NAS. We offer a
system-level approach that supports a distributed implemen-
tation, and provide algorithms to predict the probability of an
unsafe state, either at a specific time or within a time inter-
val, and to predict the time of an unsafe state. Experimental
results in simulation demonstrate the new approach.

1. INTRODUCTION

In the National Airspace System (NAS), unsafe situations and
events are avoided through an established set of rules, regu-
lations, and procedures, as well as timely actions by pilots,
controllers, and other NAS operators (Wells, 2001). When
unsafe situations arise, decisions are made reactively in order
to mitigate the threat and return the system to safety. For ex-
ample, if two aircraft become too close (known as “loss of
separation”), controllers provide instructions to pilots to re-
solve the conflict. However, both safety and efficiency can be
improved significantly if predictive knowledge is used, so that
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unsafe situations can be avoided preemptively, before they
even arise.

Thus, the NAS stands to benefit significantly from the tools
and methodologies developed within the field of Prognostics
and Health Management (PHM). The current set of predic-
tive tools used by the NAS are often ad-hoc, and do not take
into account uncertainty, and, if they do, not in a mathemati-
cally systematic manner. Predictions are often deterministic,
and hence subject to errors and poor decisions based on unin-
formed confidence in predictions.

However, the methods within PHM cannot be directly applied
to prognostics problems in the NAS for two main reasons.
First, PHM methods, with some exceptions (Daigle, Bregon,
& Roychoudhury, 2012; Khorasgani, Biswas, & Sankarara-
man, 2016), are focused on component-level methods, and
not system-level methods. In the NAS, we want to predict
at both the component-level (aircraft, storm systems), and
the system-level (the airspace, at multiple levels). In such
a large-scale system-level prognostics problem, distributed
prognostics approaches become especially critical (Daigle,
Bregon, & Roychoudhury, 2014). Second, PHM methods are
focused on predicting failure. In the NAS, there are many
other kinds of unsafe situations and events that need to be
predicted (Roychoudhury et al., 2016). We need to be able
to specify many classes of such situations and predict them
simultaneously. Further, we are interested in computing not
only the time to/of some unsafe situation, but also the proba-
bility of such a situation occurring, both at a specific time and
within a time interval of interest.

So, in order to apply prognostics to the NAS, we require an
extended, more general mathematical formulation of prog-
nostics. Initial work has been presented in (Roychoudhury
et al., 2015, 2016; Daigle, Roychoudhury, & Bregon, 2015),
in which a centralized system-level prognostics approach fo-
cused on the computation of safety metrics was developed.
In this paper, we further generalize and extend the prognos-
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tics approach, so that it is applicable to other domains within
PHM. Using this new framework, we define several prognos-
tics problems, and develop approximate algorithms to solve
them in a distributed framework. These algorithms are then
applied to the NAS in a simulated scenario to demonstrate the
new framework.

The paper is organized as follows. Section 2 extends and
generalizes the standard model-based prognostics framework,
and defines several prognostics problems within this new
framework. Section 3 discusses the prediction algorithms
and the treatment of uncertainty. Section 4 presents the dis-
tributed approach. Section 5 applies the new framework to
the prediction of loss of separation and low fuel events to the
NAS in simulation. Section 6 concludes the paper.

2. PROBLEM FORMULATION

In prognostics, given a system, we are interested in how the
state of the system, x, will evolve in time. Specifically, we
are interested in determining whether some subset of the state
space, X , will be reached in some finite time, and, if so, when
it will be reached. Often, in PHM, X specifically represents
failure states, and the earliest time at which a failure state is
reached is the end of life (EOL). The distinction between non-
failure and failure states is captured using a threshold func-
tion, e.g., a battery is at EOL when its capacity reaches some
prescribed minimum value.

In general, however, there may be many different subsets of
the state space that are of interest, and may refer to failure
and nonfailure states, safe and unsafe states, different types of
unsafe states, etc. Further, the function that classifies a state
as belonging to a specific subset is not necessarily a thresh-
old. That is, it may not be as simple as comparing to a single
value, but can be any arbitrary function. As such, the name
“threshold function” can be misleading.

Generalizing these concepts, given a system with state x ∈
Rnx , we define a set of labels L that apply to the state space.
For example, we may have L = {nonfailure, failure}, or
L = {safe, unsafe}. Note that the labeling set can have any
number of elements. For each label l ∈ L, we then introduce
a Boolean labeling function, ll : Rnx → {true, false}, that
maps a given state to true if the label l applies to a given
state x, and false otherwise. Using the labeling functions, we
can define corresponding subsets of the state space, i.e., for a
label l, we define Xl = {x : ll(x) = true}. These labels do
not need to be defined such that they partition the state space;
many labels may apply to the same state.

For prediction, we are fundamentally interested in when, for
some label l, the current state of the system will evolve into
some other state that belongs to Xl. Following the model-

based prognostics paradigm, we require a state equation:

x(k + 1) = f(x(k),u(k),v(k)), (1)

where k ∈ N is the discrete time variable, x(k) ∈ Rnx is the
state vector, u(k) ∈ Rnu is the input vector, v(k) ∈ Rnv is
the process noise vector, and f is the state update function.

The inputs to the prediction problem are the follow-
ing (Sankararaman, Daigle, & Goebel, 2014):

1. a time of prediction, ko;

2. a time horizon of prediction, [ko, kh];

3. the initial state probability distribution, p(xo(ko));

4. the future input trajectory distribution, p(Uko,kh), where
Ukh
ko

= [u(ko),u(ko + 1), . . . ,u(kh)]; and

5. the future process noise trajectory distribution,
p(Vko,kh), where Vkh

ko
= [v(ko),v(ko+1), . . . ,v(kh)].

These inputs may change for every new time of prediction.

Note that the following notation is adopted. For a vector a, a
trajectory of that vector over a time interval [ko, kh] is denoted
by Ako,kh , and Ako,kh(k) = a(k), for k ∈ [ko, kh].

The core problem of prognostics is to predict the future states
of the system within a time interval:

Problem 1. Given a time interval [ko, kh], an initial state
p(x(ko)), process noise p(Vko,kh), and future inputs
p(Uko,kh), determine p(Xko,kh).

A more specific problem is to compute which of these states
belong to Xl for a given label l, and determine the associated
probability of reaching such a state at a particular time:

Problem 2. Given a label l, a time interval [ko, kh], an ini-
tial state p(x(ko)), process noise p(Vko,kh), and future inputs
p(Uko,kh), determine the probability that some state x ∈ Xl
will be reached at a given time k ∈ [ko, kh].

For example, if l = failure, then we would be computing the
probability of failure occurring at a particular time.

A related problem is to compute the probability of reaching a
state with a given label at any time within a given time inter-
val:

Problem 3. Given a label l, a time interval [ko, kh], an ini-
tial state p(x(ko)), process noise p(Vko,kh), and future inputs
p(Uko,kh), determine the probability of reaching some state
x ∈ Xl for any time k ∈ [ko, kh].

For example, if l = failure and kh − ko is one hour, then we
would be computing the probability that the system will fail
within the next hour.

The final problem is to compute when a state with a given
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Algorithm 1 Simulate
1: Inputs: ko, kh,x(ko),Uko,kh ,Vko,kh

2: Outputs: Xko,kh

3: Xko,kh(ko)← x(ko)
4: for k = ko to kh − 1 do
5: Xko,kh(k + 1)← f(Xko,kh(k),Uko,kh(k),Vko,kh(k))
6: end for

label will be reached. For a label l, we define kl as follows:

kl(k) = min{k′ : k′ ≥ k and x(k) ∈ Xl}, (2)

i.e., kl is the earliest time point at which the system state
is assigned the label l. This is a generalization of EOL; if
l = failure, then kl is EOL, and kl − ko is remaining useful
life (RUL). The problem of computing kl is then defined as
follows:

Problem 4. Given a label l, a time interval [ko, kh], an ini-
tial state p(x(ko)), process noise p(Vko,kh), and future inputs
p(Uko,kh), determine p(kl).

3. PREDICTION

The solutions to Problems 2 to 4 can be derived given the so-
lution to Problem 1. It is well-known that in many cases, there
is no closed-form solution to Problem 1, and so, in general,
only approximate algorithms are available (Sankararaman &
Goebel, 2013). In this paper, we focus on algorithms based
on sampling (Daigle, Saxena, & Goebel, 2012; Robert &
Casella, 2004; Glynn & Iglehart, 1989). How the samples
are generated is not critical to the presentation of the algo-
rithms, and so we use a generic GenerateSamples algo-
rithm in the following presentation, which returns a set of
equally weighted samples. With minor modifications, the
algorithms can be extended to handle nonequally weighted
samples, however to simplify the presentation here we as-
sume equal sample weights.

For sampling-based prediction algorithms, approximate solu-
tions to the problems defined in Section 2 are quite straight-
forward. Algorithm 1 computes a single state trajectory,
Xko,kh , given realizations (samples) of the initial state,
x(ko), the future input trajectory, Ukh

ko
, and the future pro-

cess noise trajectory, Vkh
ko

, using the state equation.

Algorithm 2 solves Problem 1 using Algorithm 1. Using
GenerateSamples, realizations for the different inputs to
Algorithm 1 are generated, and Algorithm 1 is called for each.
The probability distribution p(Xko,kh) is defined by the set
of samples of state trajectories that are produced. Here, we
denote this set using {Xi

ko,kh
}Ni=1, where the i superscript

denotes sample i, and N is the total number of samples.

Algorithm 3 offers a solution to Problem 2 given the result
of Algorithm 2. It checks all trajectories in the given set of
trajectory samples, and counts how many of the trajectories

Algorithm 2 StatePrediction
1: Inputs: ko, kh, p(x(ko)), p(Uko,kh), p(Vko,kh)

2: Outputs: {Xi
ko,kh

}Ni=1

3: {(x(ko)i,Ui
ko,kh

,Vi
ko,kh

)}Ni=1 ← GenerateSamples
(N, p(x(ko)), p(Uko,kh), p(Vko,kh))

4: for i = 1 to N do
5: Xi

ko,kh
← Simulate(ko, kh,x(ko)

i,Ui
ko,kh

,Vi
ko,kh

)
6: end for

Algorithm 3 ProbabilityLAtK
1: Inputs: k, l, {Xi

ko,kh
}Ni=1

2: Outputs: p(x(k) ∈ Xl)
3: nl ← 0
4: for all Xi

ko,kh
∈ {Xi

ko,kh
}Ni=1 do

5: if Xi
ko,kh

(k) ∈ Xl then
6: nl ← nl + 1
7: end if
8: end for
9: p(x(k) ∈ Xl)← nl/N

have a state that belong to Xl for time k. The probability that
a state at time k will have that label is that number over the
total number of samples. Clearly, the higher the value of N ,
the more accurate the result will be.

Algorithm 4 offers a solution to Problem 3 given the result of
Algorithm 2. It is similar to Algorithm 3, but checks only that
there is at least one state in each trajectory that belongs to Xl.

Algorithm 5 offers a solution to Problem 4 given the result
of Algorithm 2. It is similar to Algorithm 4, but stores in-
stead the time value when the first state in each trajetory that
belongs to Xl is found. The probability distribution is repre-
sented by the set of samples of kl, {kil}Ni=1.

4. DISTRIBUTED PREDICTION

The larger the system, the larger the state vector, and the
higher the computational requirements of the algorithms pre-
sented in Section 3. For a large system consisting of many
components, the centralized approach does not scale well.
To address this issue, one may introduce a distributed ap-
proach (Daigle, Bregon, & Roychoudhury, 2012; Daigle et
al., 2014).

Algorithm 4 ProbabilityL
1: Inputs: k, l, {Xi

ko,kh
}Ni=1

2: Outputs: p(∃k ∈ [ko, kh]Xko,kh(k) ∈ Xl)
3: nl ← 0
4: for all Xi

ko,kh
∈ {Xi

ko,kh
}Ni=1 do

5: for all k ∈ [ko, kh] do
6: if Xi

ko,kh
(k) ∈ Xl then

7: nl ← nl + 1
8: break
9: end if

10: end for
11: end for
12: p(∃k ∈ [ko, kh],Xko,kh(k) ∈ Xl)← nl/N
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Algorithm 5 ProbabilityKl
1: Inputs: k, l, {Xi

ko,kh
}Ni=1

2: Outputs: {ki
l}Ni=1

3: for all Xi
ko,kh

∈ {Xi
ko,kh

}Ni=1 do
4: for all k ∈ [ko, kh] do
5: if Xi

ko,kh
(k) ∈ Xl then

6: ki
l ← k

7: break
8: end if
9: end for

10: ki
l ←∞

11: end for

One way to distribute the prediction task for a model-based
approach is by distributing the underlying model, for exam-
ple, through structural model decomposition (Roychoudhury,
Daigle, Bregon, & Pulido, 2013). Structural model decom-
position transforms a given system model into a set of com-
putationally independent submodels, each with its own state
vector and input vector. Thus, we can execute Algorithm 2
for each local state vector, and the combination of all the pre-
dictions provides the predictions for the global state vector.

For the remaining algorithms, whether or not it can be dis-
tributed depends on the particular label. Some labels may ap-
ply only to local state vectors, in which case the distribution
is trivial, given the distributed state trajectory predictions. In
other cases, labels may apply to several local state-vectors,
i.e., the capture a system-level property. In this case, the state
predictions can be done independently, in a distributed fash-
ion, and then combined into a joint state vector to check the
labels.

5. CASE STUDY: THE NATIONAL AIRSPACE SYSTEM

In applying prognostics to the NAS, we want to ask the fol-
lowing questions (Roychoudhury et al., 2016):

1. What is the probability of an unsafe state being reached
at a given future time (Problem 2)?

2. What is the probability of an unsafe state being reached
within a given future time interval (Problem 3)?

3. What kind of unsafe state will be reached (Problem 1)?

4. When will an unsafe state be reached (Problem 4)?

In this section, we apply the prognostics framework and algo-
rithms developed in this paper to the problem of prognostics
in the NAS. We first describe how the system is modeled,
which includes definition of the state and input vectors, the
state equation, the set of labels, and the set of labeling func-
tions. We then demonstrate how the framework can be used
to answer the preceding questions using simulation-based ex-
periments.

5.1. Modeling the NAS

The NAS is made up of many interacting components: air-
craft, weather systems, pilots, controllers, etc. For the pur-
pose of predicting unsafe states, we consider only the open-
loop case, where aircraft are operating independently of each
other and controllers are not interfering with their flight paths.
If the prognostics algorithms predict an unsafe state with a
high probability, then this information would be provided to
pilots/controllers or automated systems for decision-making.
For the purposes of this paper, and in order to focus our
demonstration, we consider only aircraft as the set of com-
ponents that comprise the NAS.

Because the aircraft are dynamically independent, the predic-
tion problem distributes naturally. For each aircraft, we have
an individual model to predict its future trajectory. From a
system-level perspective, we can then check various safety
properties based on these independently computed trajecto-
ries. In practice, one would directly enable aircraft with this
predictive capability. Safety properties that apply only to a
single aircraft can be computed on that aircraft, and safety
properties that apply to sets of aircraft can be assigned to
different aircraft, computed at a regional level, or even in
the cloud. Such an approach then scales easily as most of
the computation is distributed to individual aircraft. Adding
an additional aircraft to the system does not significantly in-
crease the computation that must be done at a higher level.

We first describe the models we use for individual aircraft,
followed by a description of some salient safety properties,
and the labels and labeling functions that define them.

5.1.1. Aircraft Modeling

We use kinematic models of aircraft navigation with simpli-
fied dynamics and control, similar to the models developed
by others (Bilmoria, Banavar, Chatterji, Sheth, & Grabbe,
2000; Chatterji, Sridhar, & Bilimoria, 1996; Tandale, Wiraat-
madja, Menon, & Rios, 2011). In the following description,
we present differential equations in continuous time t; for im-
plementation purposes, they are converted to difference equa-
tions using a sampling time of 10 s. The aircraft state vector
is defined as

x(t) =



Va(t)
Vz(t)
χa(t)
h(t)
λ(t)
τ(t)

mfuel(t)


, (3)

where Va is the indicated airspeed, Vz is the climb rate, χa
is the aircraft heading, h is the mean sea level (MSL) alti-
tude, λ is the latitude, τ is the longitude, and mfuel is the
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fuel mass. Note that in aeronautics, the heading is defined
clockwise from the north.

The input vector is defined as

u(t) =


V ∗a (t)
V ∗z (t)
χ∗a(t)
Vw(t)
χw(t)

 , (4)

where V ∗a is the commanded airspeed, V ∗z is the commanded
climb rate, χ∗a is the commanded aircraft heading, Vw is the
wind speed, and χw is the wind heading. Here, the com-
manded inputs are those provided by the pilot (to reach a
known flight plan waypoint).

The latitude and longitude dynamics are given by

λ̇ =
Va sinχa +WN

Re + h
, (5)

τ̇ =
Va cosχa +WE

(Re + h) cosλ
, (6)

where Re is the MSL radius of the Earth, WN is the northern
component of the wind vector, and WE is the eastern compo-
nent of the wind vector:

WN = Vw cosχw, (7)
WE = Vw sinχw. (8)

For the speed and headings, we assume simple dynamics in
which the aircraft moves to its commanded values with some
inertia:

ḣ = Vz, (9)

V̇z =
1

Jz
(V ∗z − Vz), (10)

V̇a =
1

Ja
(V ∗a − Va), (11)

χ̇a =
1

Jχ
(χ∗a − χa), (12)

where the J terms are the inertia parameters, chosen to em-
pirically match available aircraft flight data.

For fuel, we assume that the loss rate is proportional to the
airspeed:

ṁfuel = −cfuelVa, (13)

where cfuel is the proportionality constant. Fuel loss should
be a function of engine output, for which airspeed is the main
indicator.

5.1.2. Safety Modeling

In the NAS, there are a number of safety-related condi-
tions and situations to consider, many of which are detailed
in (Roychoudhury et al., 2015). In this paper, we consider
two types of unsafe states, and define labeling functions for
each for a given region of airspace. The first type is loss of
separation, or conflict, for short. While in the airspace, air-
craft are required to maintain a certain minimum separation
(e.g., defined by a radius of 5 nautical miles and vertical sep-
aration of 1000 feet during the en-route portion of a flight),
and if two aircraft are closer than these minimum separation
both horizontally or vertically, it is considered unsafe. The
other type we consider is a low fuel situation for an aircraft,
which has obvious safety ramifications.

For a region of the airspace withN aircraft, there are then
(
N
2

)
conflict labels. We introduce also a label describing whether
any pair of aircraft in the airspace is in conflict. We have N
low fuel labels, and introduce also a label describing whether
any aircraft in the airspace is in a low fuel state. In addition,
we introduce a label describing whether the airspace is un-
safe, which is applied if there is a pair of aircraft in conflict
or an aircraft in a low fuel state.

5.2. Results

In order to demonstrate the approach, we present results from
a simulated scenario consisting of 5 aircraft. The prediction
horizon is 10 minutes, and there are 1000 samples generated
using Monte Carlo sampling within the prediction algorithm.
Initial states and future inputs (assumed to be constant) were
drawn from given distributions. Process noise was neglected.
All results shown are for a single prediction, from the current
time up through 10 minutes into the future.

Air traffic controllers are typically in charge of monitoring
a single region of airspace. From this perspective, they are
immediately interested in whether any unsafe state is going
to be reached at some point in the future. Fig. 1 shows the
predicted probability of reaching an unsafe state in the future,
for each future time point. At the initial time, there is already
a high probability that the NAS is unsafe; it then drops and
increases again, reaching 100%. Fig. 2 shows the distribution
of the time of the first unsafe state. The distribution is most
dense early on, i.e., the system is already unsafe or will be
very soon. The predicted probability of reaching an unsafe
state at any point in the future time interval is 100%, i.e., all
system trajectories will somehow become unsafe.

An operator may then ask, why is the system unsafe? Fig. 3
shows the predicted probability of reaching a conflict state,
and Fig. 4 shows the predicted probability of reaching a low
fuel state. Fig. 5 shows the distribution of the time of ei-
ther state. From these results, it is clear that the system is
initially unsafe due to a conflict, and then later due to two air-
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Figure 1. Probability of reaching an unsafe state for all future
times.

Figure 2. Histogram of time of first unsafe state.

craft entering low fuel states. The latter is the explanation of
the 100% probability of reaching an unsafe state within the
prediction interval. However, the probability of reaching a
conflict state within this interval is also high, at 99.80%.

An operator may then want to determine which aircraft enter
a conflict state, and which enter a low fuel state. Fig. 6 shows
the predicted probability of reaching a conflict state for each
aircraft pair, and Fig. 7 shows the time distribution of first
reaching a conflict state. Here, we see that a few pairs of
aircraft have a high probability of conflict early on, which
then diminishes. A1 and A2 have a 55.30% probability of a
conflict within the time interval, A3 and A4 have a 59.20%
probability, A1 and A5 a 90.00% probability, and A2 and A5
a 97.80% probability. All other aircraft pairs have a very low
probability (less than 2.00%).

Fig. 8 shows the predicted probability of reaching a low fuel
state for each aircraft, and Fig. 9 shows the time distribution
of first reaching a low fuel state. Here, we see that A1 and A2
will eventually reach a low fuel state; first A2 and then A1.

With this kind of information, it is easy to see how an opera-
tor of the NAS can benefit. At least at a high level, operators
want to know if something unsafe will happen with a signif-

0 100 200 300 400 500 600

Time (s)

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y
 o

f 
A

n
y
 C

o
n
fl

ic
t

Figure 3. Probability of reaching a conflict state for all future
times.
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Figure 4. Probability of reaching a low fuel state for all future
times.

icant probability, within a time horizon in which they have
time to act; if so, actions must be taken to prevent the un-
safe state from being reached. It is clear also how this kind
of information can be useful to an automated decision-maker.
These predictions are in the open-loop, i.e., it determines the
future safety states assuming no one will intervene when an
unsafe state is reached. If unsafe states are reached assuming
no invertention, then intervention will be needed to avoid the
unsafe states, and that is the problem a decision-making algo-
rithm must solve. A decision-making algorithm can then also
use these algorithms to evaluate the quality of different solu-
tions with respect to safety and risk. Each potential decision
would be associated with different p(Uko,kh), and thus result
in different p(Xko,kh) with different labels.

6. CONCLUSIONS

In this paper, we developed a new prognostics framework,
extending and generalizing the typical framework for model-
based prognostics. Within the new approach, multiple kinds
of states can be predicted, the probability of reaching that
state computed, and the time to such a state computed. It
shows how the main contributions of PHM extend easily to
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Figure 5. Histogram of time of first conflict and low fuel state.
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Conflict between A1 and A2

Conflict between A1 and A3

Conflict between A1 and A4

Conflict between A1 and A5

Conflict between A2 and A3

Conflict between A2 and A4

Conflict between A2 and A5

Conflict between A3 and A4

Conflict between A3 and A5

Conflict between A4 and A5

Figure 6. Probability of reaching a conflict state for all future
times for each aircraft pair.

other domains, and can go beyond simply probability of fail-
ure and EOL/RUL prediction. A methodology to distribute
the approach was also presented, increasing scalability. The
new approach was applied to the prediction of different kinds
of unsafe events in the NAS, demonstrating how various kinds
of questions about the future states can be addressed within a
single framework.

In the future, we will define additional labels for the state
space of the NAS and show how these can be predicted within
the same framework. For example, predicting a convective
weather encounter or a wake vortex encounter, among other
things. The investigation of different sampling algorithms is
also a topic of future research, as well as determining the ex-
tent to which approximate analytical algorithms can be ap-
plied. We will also investigate the sensitivity of the various
sources of uncertainty to the safety of the NAS.

Additional future work would also involve integrating this
prediction framework with a decision-making algorithm.
The decision-making algorithm could evaluate, for example,
changes to flight plans to meet local flight objectives while
maximizing system-level safety. Some initial work in this
area has been done in the context of unmanned aerial vehi-
cles (Balaban & Alonso, 2013).

Figure 7. Histogram of time of first conflict state for each
aircraft pair.
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Figure 8. Probability of reaching a low fuel state for all future
times for each aircraft.
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