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I. Introduction

It is well-known that the use of a large adaptive gain in model-reference adaptive control (MRAC) can result in

poor robustness.1 Two well-known robust modification methods, namely; the σ -modification2 and e-modification,3

have been used extensively. The last decade has seen a surge in many new adaptive control methods such as the L1

adaptive control,4 adaptive loop transfer recovery,5 Kalman filter adaptive control,32 derivative-free adaptive control,7

composite model-reference adaptive control,8 optimal control modification,9 and others.

The optimal control modification was developed in 2008 based on an optimal control framework.9, 10 For linear

uncertain plants, the optimal control modification can be shown to have a linear asymptotic property for fast adap-

tation.11–13 This allows stability properties of the optimal control modification to be analyzed for asymptotic linear

plants in the limit. Using this approach, the Rohrs counterexample has been successfully redesigned with the optimal

control modification to provide an analytical stability margin in the limit.11 Maintaining fast adaptation even after the
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adaptation has achieved its objective can result in persistent learning which would do little to further improve tracking

performance. Persistent learning may also reduce robustness. Therefore, the optimal control modification has been

developed to enable the adaptive gain to be adjusted by a covariance-like update law.14 The adjustment allows a large

initial adaptive gain to be used to reduce the initial transients. The covariance update law then adjusts the adaptive gain

toward a lower value as the adaptation continues, thereby achieving desired improved robustness while retaining track-

ing performance. While the covariance adjustment is used extensively in recursive least-squares (RLS) methods,15 it

is not typically used in the standard MRAC since the stability proof of this adjustment mechanism is generally more

difficult. Narendra proposes an output feedback control with time-varying gains based on a least squares method for

a time-dependent input function.16 In general, if the input function is an explicit function of time, then the estima-

tion error tends to zero exponentially if the persistent excitation (PE) condition is met. Unlike least-squares methods,

the complex dynamics from the covariance adjustment with a state-dependent input function in the standard MRAC

does not provide bounds on adaptive parameters. One way to avoid this difficulty is to use the projection method. In

this work, the stability proof of the covariance adjustment can easily be established with the optimal control modi-

fication in the context of MRAC based on the tracking error and can be shown to provide theoretical bounds on the

modification and adjustment parameters to guarantee stability for a given a priori uncertainty bound. In contrast, the

covariance update in RLS is usually defined without any adjustment parameter. This feature distinguishes this method

from the least-squares methods. Furthermore, it can be used without the projection method since the optimal control

modification ensures boundedness of adaptive parameters.

Stability of adaptive control is known to be sensitive to the amplitude of an input function. This effect can be

reduced by the normalization to improve robustness. Normalized MRAC has been studied by a number of researchers.

Ioannu develops extensive normalization methods for least-squares methods.15 For simple first-order systems, Ioannu

proposes a least-squares adaptive control which employs a modified estimation error signal with a normalized term

in order to avoid the complication of system dynamics.15 This results in a modified tracking error equation but the

tracking error is not available for the adaptive law.15 Another modified error signal is studied by Ioannu whereby

the output error is divided by the normalization factor for output feedback control using an input function which is a

first-order filter of the state variable.15 Similarly, Narendra also studies the normalization for output feedback control

based on a least-squares method using a modified output error signal that includes an auxiliary error signal.16 Boskovic

proposes normalized least-squares adaptive laws17 that include a static observer and alternatively a dynamic observer

using the state and control information passed through a first-order filter. The normalized adaptive laws are then used

with the projection in least-squares adaptive control. Åström and Wittenmark propose normalized σ -modification and

e-modification that explicitly include a priori bounds on adaptive parameters.18 In this work, a new stability proof for

the normalized optimal control modification in the context of MRAC based on the tracking error is presented that does

not rely on the projection or any modification of the error signals. The stability proof provides a new way of finding
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an ultimate bound to handle the complex normalization factor.

Flight control simulations demonstrate that both covariance adjustment and normalization for the optimal control

modification improve performance and robustness. NASA Armstrong Flight Research Center conducted a series of

flight experiments onboard a NASA F/A-18 aircraft to evaluate three adaptive control methods with varying complex-

ity.19 The normalized optimal control modification was implemented as two of the adaptive controllers along with a

simple MRAC. The flight experiments were designed to investigate the effectiveness of a simple MRAC design and

the potential performance benefits with a more complex MRAC design. The flight test results show that the adaptive

controllers can effectively restore the aircraft performance in the presence of failures. The normalized optimal control

modification was shown to be able to provide improved performance under a number of failures. The flight test results

indicate the potential benefit of the normalized optimal control modification.

II. Optimal Control Modification with Covariance Adjustment

Let a nonlinear plant with a matched uncertainty and an unmatched disturbance be given as

ẋ = Ax+B
[
u+Θ

∗>
Φ(x)

]
+w (1)

where x(t) : [0,∞)→ Rn is a state vector, u(t) : [0,∞)→ Rp is a control vector, A ∈ Rn×n and B ∈ Rn×p are known

such that the pair (A,B) is controllable, Θ∗ ∈ Rm×p is an unknown constant ideal weight matrix that represents a

parametric uncertainty, Φ(x) : Rn→ Rm is a vector of known input functions that are continuous and at least in C 1,

and w(t) : [0,∞)→ Rn is a bounded disturbance with an upper bound w0 such that sup∀t ‖w‖ ≤ w0.

A feedback adaptive control u(t), to achieve a command-following objective, is designed as

u =−Kxx+Krr−uad (2)

where r (t) : [0,∞)→ Rp ∈L∞ is a bounded command vector, Kx ∈ Rp×n is a stable feedback gain matrix such that

A−BKx is Hurwitz, Kr ∈ Rp×p is a feedforward gain matrix, and uad (t) : [0,∞)→ Rp is an adaptive signal given by

uad = Θ
>

Φ(x) (3)

where Θ(t) : [0,∞)→ Rm×p is an estimate of the parametric uncertainty Θ∗.

Let Am = A−BKx and Bm = BKr. The reference model is established as

ẋm = Amxm +Bmr (4)
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Let Θ̃ = Θ−Θ∗ be an estimation error and e = xm− x be the tracking error. Then the tracking error dynamics are

described by

ė = Ame+BΘ̃
>

Φ(x)−w (5)

The optimal control modification adaptive law is established by9, 10

Θ̇ =−ΓΦ(x)
[
e>P−νΦ

> (x)ΘB>PA−1
m

]
B (6)

This adaptive law seeks bounded tracking by minimizing the L2 tracking error norm ‖e‖2 bounded away from

some unknown lower bound ∆(t) with the following cost function

J = lim
t f→∞

1
2

ˆ t f

0
(e−∆)>Q(e−∆)dt (7)

subject to the tracking error dynamics in Eq. (5), where Q = Q> > 0 ∈ Rn×n is a positive-definite weighting matrix.

The modification parameter ν provides improved robustness when its value is increased. On the other hand,

reducing the value of ν provides improved tracking performance. In the limit when ν = 0, the standard MRAC is

recovered and asymptotic tracking performance is achieved but at the expense of robustness, as well-demonstrated by

the Rohrs counterexample.1 By not requiring asymptotic tracking, the adaptation can be made more robust.

Robustness of the optimal control modification can be further improved by the use of a time-varying adaptive gain

with a covariance adjustment as follows:

Γ̇ =−ηΓΦ(x)Φ
> (x)Γ (8)

where 0≤ η < νλmin
(
B>A−>m QA−1

m B
)

is an adjustment parameter.

It is important to note that the standard covariance resetting in least-squares methods is defined without the ad-

justment parameter η . Furthermore, in least-squares methods, the input function is normally a function of time which

greatly simplifies the stability proof. In the present method, the adjustment parameter η cannot be arbitrarily chosen

and has an upper limit to guarantee stability. Moreover, the input function Φ(x) depends on the overall stability of the

adaptive control system. This makes the stability proof more difficult. Thus, the covariance adjustment for the optimal

control modification is different from the standard covariance resetting in least-squares methods.

The covariance adjustment allows for an arbitrary initial adaptive gain to be used. The method then adjusts the

adaptive gain toward a lower value to achieve improved robustness while retaining performance. For the standard

MRAC, the covariance adjustment generally must be used with the projection method or error modification in order

to achieve Lyapunov stability. For systems with matched uncertainty, the optimal control modification eliminates

the need for the projection method or error modification and uses the tracking error directly, as can be shown in the
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following theorem.

Theorem 1: The optimal control modification with the covariance adjustment is stable and results in ultimate

bounds as defined by

‖e‖ ≤

√
λmax (P)δ 2 +λmax (Γ−1)κ2

λmin (P)
(9)

∥∥Θ̃
∥∥≤√λmax (P)δ 2 +λmax (Γ−1)κ2

λmin (Γ−1)
(10)

with δ = c2 +

√
c2

2 +
νc5c2

6
c1

and κ = c6 +

√
c2

6 +
c1c2

2
νc5

for 0 ≤ ν < νmax where c1 = λmin (Q), c2 = λmax(P)w0
λmin(Q) , c5 =[

λmin
(
B>A−>m QA−1

m B
)
− η

ν

]
Φ2

0, and c6 =
‖B>PA−1

m B‖Θ0

λmin(B>A−>m QA−1
m B)− η

ν

where ‖Φ(x)‖ ≤Φ0 and Θ0 = ‖Θ∗‖.

Proof: Using the Lyapunov candidate function

V
(
e,Θ̃
)
= e>Pe+ trace

(
Θ̃
>

Γ
−1

Θ̃

)
(11)

and utilizing
dΓ−1

dt
=−Γ

−1
Γ̇Γ
−1 = ηΦ(x)Φ

> (x) (12)

then it can be shown that V̇
(
e,Θ̃
)

is bounded by

V̇
(
e,Θ̃
)
=−e>Qe−2e>Pw−νΦ

> (x)Θ̃B>A−>m QA−1
m BΘ̃

>
Φ(x)+2νΦ

> (x)Θ
∗B>PA−1

m BΘ̃
>

Φ(x)

+ηΦ
> (x)Θ̃Θ̃

>
Φ(x)≤−c1 (‖e(t)‖− c2)

2−νc5
(∥∥Θ̃

∥∥− c6
)2

+ c1c2
2 +νc5c2

6 (13)

for 0≤ ν < νmax, which implies 0≤ η < νλmin
(
B>A−>m QA−1

m B
)
.

Thus, V̇
(
e,Θ̃
)
≤ 0 outside a compact set

Bδ =
{(

e,Θ̃
)
∈ Rn×Rm×p : c1 (‖e‖− c2)

2 +νc5
(∥∥Θ̃

∥∥− c6
)2 ≤ c1c2

2 +νc5c2
6

}
(14)

Therefore, the solution is uniformly ultimately bounded with the ultimate bounds given in Theorem 1.

Corollary 1: If the input function Φ(x) belongs to a class of functions such that ‖Φ(x)‖ ≤ ‖x‖, then

νmax =
λmin (P)λmin (Q)λmin

(
B>A−>m QA−1

m B
)

2λmax (P)
∥∥B>PA−1

m B
∥∥2

Θ2
0

1+

√√√√√1−
4ηλmax (P)

∥∥B>PA−1
m B

∥∥2
Θ2

0

λmin (P)λmin (Q)λ 2
min

(
B>A−>m QA−1

m B
)
 (15)

Proof: νmax is established from the tracking error ultimate bound by letting ‖x‖→∞ in the limit. Then the ultimate
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bound can be expressed as

‖xm− x‖2 ≤ λmax (P)
λmin (P)

c2
2 +

ν
∥∥B>PA−1

m B
∥∥2

Θ2
0 ‖x‖

2

c1

[
λmin

(
B>A−>m QA−1

m B
)
− η

ν

]


Therefore, νmax is obtained from

1−
λmax (P)νmax

∥∥B>PA−1
m B

∥∥2
Θ2

0

λmin (P)λmin (Q)
[
λmin

(
B>A−>m QA−1

m B
)
− η

νmax

] = 0 (16)

III. Normalized Optimal Control Modification

Normalization is a technique that can be used to achieve more robust adaptation for MRAC. The objective of the

normalization is to reduce the effect of the large amplitude of an input function. Normalized adaptation can achieve

a significant increase in the time delay margin of a closed-loop adaptive system which indicates robustness. The

normalized optimal control modification is expressed as

Θ̇ =− Γ

1+Φ> (x)RΦ(x)
Φ(x)

[
e>P−νΦ

> (x)ΘB>PA−1
m

]
B (17)

where R = R> > 0 ∈ Rm×m is a normalization weighting matrix.

For the standard MRAC, the normalization generally must be used with the projection method or error modifica-

tion in order to satisfy the Lyapunov stability. Otherwise, proving stability of the normalized standard MRAC can be

challenging. To address this difficulty, a number of error modification schemes have been proposed for least-squares

adaptive control which uses the estimation error instead of the tracking error. The normalized optimal control mod-

ification eliminates the need for the projection method or error modification and uses the tracking error directly for

systems with matched uncertainty, as can be shown by the following theorem.

Theorem 2: The normalized optimal control modification (17) is stable and results in a uniform ultimate bounded-

ness of the tracking error for 0≤ ν < νmax and normalization weighting matrix 0≤R<Rmax such that νc1c3c7−c2
8 > 0

where c7 = 1+λmin (R)Φ2
0 and c8 = ‖PB‖λmax (R)Φ3

0.

Proof: Using the same Lyapunov candidate function from Theorem 1, then V̇
(
e,Θ̃
)

yields

V̇
(
e,Θ̃
)
=−e>Qe−2e>Pw+

−νΦ> (x)Θ̃B>A−>m QA−1
m BΘ̃>Φ(x)+2νΦ> (x)Θ∗B>PA−1

m BΘ̃>Φ(x)
1+Φ> (x)RΦ(x)

+
2e>PBΘ̃>Φ(x)Φ> (x)RΦ(x)

1+Φ> (x)RΦ(x)

≤−c1 (‖e‖− c2)
2 + c1c2

2 +
−νc3

(∥∥Θ̃
∥∥− c4

)2
+νc3c2

4 +2‖PB‖‖e‖
∥∥Θ̃
∥∥λmax (R)‖Φ(x)‖3

1+λmin (R)‖Φ(x)‖2 (18)
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The values of ‖e‖ and
∥∥Θ̃
∥∥ that maximize V̇

(
e,Θ̃
)

are evaluated by taking the partial derivatives of V̇
(
e,Θ̃
)

∂V̇
(
e,Θ̃
)

∂ ‖e‖
≤ −2c1 (‖e‖− c2)+

2‖PB‖
∥∥Θ̃
∥∥λmax (R)‖Φ(x)‖3

1+λmin (R)‖Φ(x)‖2 = 0 (19)

∂V̇
(
e,Θ̃
)

∂
∥∥Θ̃
∥∥ ≤

−2νc3
(∥∥Θ̃

∥∥− c4
)
+2‖PB‖‖e‖λmax (R)‖Φ(x)‖3

1+λmin (R)‖Φ(x)‖2 = 0 (20)

Then V̇
(
e,Θ̃
)
≤ 0 implies

−c1 (‖e‖− c2)
2 + c1c2

2 +
c2

8 ‖e‖
2

νc3c7
+

2c4c8 ‖e‖+νc3c2
4

c7
≤ 0 (21)

−νc3
(∥∥Θ̃

∥∥− c4
)2

+νc3c2
4 +2c2c8

∥∥Θ̃
∥∥

c7
+ c1c2

2 +
c2

8

∥∥Θ̃
∥∥2

c1c2
7
≤ 0 (22)

Choose 0≤ R < Rmax and 0 < ν < νmax such that the inequality νc1c3c7− c2
8 > 0 is satisfied. This results in

νλmin (Q)λmin

(
B>A−>m QA−1

m B
)

Φ
2
0
[
1+λmin (R)Φ

2
0
]
−‖PB‖2

λ
2
max (R)Φ

6
0 > 0 (23)

which yields

Φ
2
0 <

νλmin (Q)λmin
(
B>A−>m QA−1

m B
)

λmin (R)

2‖PB‖2
λ 2

max (R)

1+

√√√√1+
4‖PB‖2

λ 2
max (R)

νλmin (Q)λmin

(
B>A−>m QA−1

m B
)

λ 2
min (R)

 (24)

Thus, the lower bounds of ‖e‖ and
∥∥Θ̃
∥∥ are established as

‖e‖ ≥ δ =
νc3 (c1c2c7 + c4c8)

νc1c3c7− c2
8

[
1+

√
1+

c2
4

(
νc1c3c7− c2

8

)
(c1c2c7 + c4c8)

2

]
(25)

∥∥Θ̃
∥∥≥ κ =

c1c7 (νc3c4 + c2c8)

νc1c3c7− c2
8

[
1+

√
1+

c2
2

(
νc1c3c7− c2

8

)
(νc3c4 + c2c8)

2

]
(26)

Therefore, V̇
(
e,Θ̃
)
≤ 0 outside a compact set

Bδ =

{(
e,Θ̃
)
∈ Rn×Rm×p : c1 (‖e‖− c2)

2 +
νc3
(∥∥Θ̃

∥∥− c4
)2−2c8 ‖e‖

∥∥Θ̃
∥∥

c7
≤ c1c2

2 +
νc3c2

4
c7

}
(27)

The closed-loop system is uniformly ultimately bounded for 0 < ν < νmax and 0≤ R < Rmax.
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IV. Flight Experiments

Flight experiments of three adaptive controllers was conducted from November 2010 to January 2011 onboard

the NASA Full-scale Advanced Systems Testbed (FAST), which is an F/A-18 aircraft, tail number 853.27, 28 The first

adaptive controller is a simple MRAC. The second and third adaptive controllers are based on the normalized optimal

control modification. The avionics include an ARTS (Airborne Research Test System) flight control computer system.

Failure emulations were introduced via parameter changes in the flight control software to intentionally degrade aircraft

stability and through hardware emulated faults by means of frozen stabilator and cross-coupled pilot stick inputs.27, 28

The flight test results indicate that the three adaptive controllers were able to restore performance of the F/A-18 aircraft

in most cases, and the optimal control modification was noted to perform quite well and adapt more quickly than the

simple MRAC for the reduced pitch damping failure.

In 2009, a request for information (RFI) was released by the NASA Integrated Resilient Aircraft Control (IRAC)

project seeking ideas for adaptive control flight experiments. One of the focus areas identified from the responses

that NASA received was to investigate simple yet effective adaptive control algorithms to help address the issue of

verification and validation (V&V) testing of adaptive control. Adaptive controllers, such as the standard MRAC,

face many difficulties with regards to certification for commercial or military aircraft. There are large gaps in the

certification process for dealing with adaptive controllers.20, 21 Adaptive controllers can become complex with many

adaptive parameters and complex update laws as well as nonlinearity. The required V&V testing can require extensive

and exhaustive Monte-Carlo testing. By simplifying an adaptive controller, the required testing could potentially be

greatly reduced. Simplification is often at the expense of performance and the controller’s ability to handle more

complex failure conditions. So, there exists a trade-off between complexity and performance.

Previous flight experiments of neural network adaptive control conducted by the NASA Intelligent Flight Control

System (IFCS) project on a NASA NF-15B aircraft, tail number 837 from 2002 to 2006 offer valuable lessons learned

regarding the complexity of adaptive control.22 The IFCS was based on the e-modification with sigma-pi neural

network originally developed by Calise.23 During the first phase, Gen-IIa, the sigma-pi network utilized a large input

set. The flight test in 2004 showed that the IFCS did not perform as well as it did in simulations. In some instances,

the IFCS generated large commands that caused load limit excursions. A subsequent modification in the second phase,

Gen-IIb, to simplify the sigma-pi network with a much simplified input set demonstrated an improvement of the IFCS

in simulations. However, during the flight test in 2006, mixed results were obtained. Lateral pilot-induced oscillations

(PIOs) were experienced for an in-flight simulated stabilator failure. A study was conducted at the end of the IFCS

project and showed that the normalization performed better than the Gen-IIb IFCS in simulations.
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A. Flight Simulator Pilot Study

Based on the RFI and the lessons learned from the IFCS flight experiment, a decision was made to conduct follow-on

flight experiments. The process of selecting which adaptive control should be flown involved reviewing the literature

and simulation results from high-fidelity flight simulations. During 2009, NASA Ames Research Center conducted an

extensive pilot evaluation of several adaptive controllers in a motion-based flight simulator, the Advanced Concepts

Flight Simulator (ACFS).24, 25 The ACFS employs an advanced digital fly-by-wire flight control system. A high-

fidelity flight dynamic model of a NASA GTM (Generic Transport Model) was implemented with failure and damage

emulations including asymmetric damage to the left horizontal tail and elevator, flight control faults emulated by

scaling the B-matrix, and combined failures. Eight different NASA test pilots participated in the study. Seven adaptive

controllers were evaluated, namely; e-modification (MRAC),3 optimal control modification (OCM),9 adaptive loop

transfer recovery (ALR),5 composite or predictor-based MRAC (PMRAC),8 L1 adaptive control,4 hybrid adaptive

control,26 and bounded linear stability metric-driven adaptive control (BLS).29, 30 Each pilot performed a series of

tasks and provided Cooper-Harper (CH) ratings for those tasks, which included large amplitude attitude capture and

cross-wind approach and landing.

Figure 1. Cooper-Harper Ratings Differentials (Positive Value Indicates Improved Performance)

Figure 1 shows the relative improvements in the CH ratings of the seven adaptive controllers over the baseline

controller for all different failure emulations.25 The study confirms that adaptive control can clearly provide significant

benefits by improving flight control performance in adverse conditions. The study also provides an insight into the role

of pilot interactions with adaptive control. It was observed that many favorable pilot ratings were associated with those

adaptive controllers that tended to be predictable. In general, the optimal control modification performed well over all

flight conditions as compared to the e-modification. In particular, the optimal control modification outperformed the
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e-modification in all cases but the dynamic inversion failure. Furthermore, the cross-coupling failure presented itself

as a particular challenge to several adaptive controllers, only two of which including the optimal control modification

were able to demonstrate improvement.

B. F/A-18 Flight Simulations

A further investigation of the optimal control modification was performed for a high-fidelity F/A-18 aircraft model.19

The flight condition is a test point of Mach 0.5 at 15,000 ft. All of the pilot inputs to the simulation time histories are

from “canned” piloted stick inputs and no attempts to correct for the aircraft attitudes are added to the piloted inputs.

This “canned pilot input” method is used only for comparison purposes. For instance, when a failure is imparted on

the aircraft and the resulting attitude changes minimally, the control system is said to have good restoring properties.

All the test cases have a one-frame delay (1/100 sec) at the actuators for added realistic implementation purposes.

The first case is an A-matrix failure with a destabilizing center of gravity (CG) shift or a Cmα
change. Figure 2

shows a 40-sec time history in which three longitudinal pilot stick inputs are presented and the failure is imposed at 13

sec. In the first 13 sec, a normal health response shows how the pitch rate follows the commanded pitch rate (green).

After the failure is inserted, the response without adaptation shows that the aircraft is stable but with low damping and

two overshoots (blue). With adaptation on (red), the response is much better and follows the commanded pitch rate.

Figure 2 also shows the angle of attack and normal acceleration responses and that the system behaves better with

adaptation than without. Figure 3 shows the tracking errors in the roll, pitch and yaw axes along with the adaptation

weights. The results show that the adaptation helps the pitch tracking task and increases the damping.

Figure 2. Longitudinal Response due to an A−Matrix Failure (Cmα
Shift at 13 sec)
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Figure 3. Tracking Errors and Weights due to an A−Matrix Failure (Cmα
Shift at 13 sec)

Figure 4. Longitudinal Response due to a B-Matrix Failure (Stabilator Jammed at 2.5oat 13 sec)

The second case is a B-matrix failure imposed on the left stabilator at 13 sec. The left stabilator is jammed at

+2.5◦ from trim. Figure 4 shows a 40-sec time history of the longitudinal responses. During the first 13 sec, the

pitch rate follows the commanded pitch rate, but after the failure insertion there is a large downward motion and the

system cannot track well without adaptation. Pitch rate follows the reference signal better with adaptation on. The

lateral-directional responses from the same longitudinal command also show better aircraft response with adaptation,

as shown in Fig. 5. The roll rate with adaptation is smaller than without adaptation. The bank angle and sideslip angle

both decrease with adaptation but stay at 10◦ and 8◦, respectively, without adaptation. Figure 6 shows smaller tracking
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errors and converging adaptation weights.

Figure 5. Lateral-Directional Response due to a B-Matrix Failure (Stabilator Jammed at 2.5o at 13 sec)

Figure 6. Tracking Errors and Weights due to a B-Matrix Failure (Stabilator Jammed at 2.5o at 13 sec)

Simulations are also conducted to show that the adaptive gain can be increased and the aircraft will remain stable.

The test case changes the adaptation rate from 0.5 to 50 while keeping the modification parameter ν constant at 1.

Figure 7 shows the same A-matrix failure occurring at 2 sec instead of at 13 sec and is followed by a pitch input. As

Fig. 7 shows, the pitch rate tracking error is large with an adaptive gain Γ of 0.5 compared to 50. The weights are

also shown, and the larger adaptive gain increases the size of the weights. The weights are convergent and the tracking

error is better with the larger adaptive gain. Figure 8 shows the response when ν is changed from 0.25 to 1 while
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keeping the adaptive gain constant at Γ = 5. The tracking error has low damping with the lower value of ν = 0.25 as

expected. In both cases the weights converge to reasonable values. The results show that larger adaptive gains can be

tolerated with the optimal control modification.

Figure 7. Pitch Rate Error and Weights due to an A-Matrix Failure (Cmα
Shift at 2 sec) for Γ = 0.5 and Γ = 50 with Fixed ν = 1

Figure 8. Pitch Rate Error and Weights due to an A-Matrix Failure (Cmα
Shift at 2 sec) for Fixed Γ = 5 with ν = 0.25 and ν = 1

C. Adaptive Flight Control Architecture for FAST

Figure 9 shows the nonlinear dynamic inversion (NDI) control architecture implemented on the NASA FAST aircraft.27

The NDI controller is augmented by an adaptive controller that includes a simple MRAC, and the normalized optimal
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control modification with and without adaptive disturbance estimation. The optimal control modification is considered

as a more complex MRAC for evaluating the trade-off between complexity and performance in the flight experiments.

Figure 9. Nonlinear Dynamic Inversion Adaptive Flight Control System

The control input vector δ has ten control surface commands and is computed by the NDI controller as

δ = B−1
δ

[
Iẋcmd +Ω× IΩ− f̂A (y)

]
+δ0 (28)

where the vector of estimated aerodynamic moments f̂A (y) is calculated from onboard aerodynamic lookup tables,

while the angular rates Ω are measured using aircraft sensors, I is the inertia matrix of the aircraft, δ0 are pre-

determined trim surface commands, and B−1
δ

is a weighted pseudo-inverse of the control sensitivity matrix weighted

by a control allocation matrix computed as

B−1
δ

=W−1B>
δ

(
BδW−1B>

δ

)−1
(29)

The angular acceleration commands ẋcmd (t) contain the sum of the desired reference dynamics ẋre f (t) produced

by the NDI reference model, the output ẋc (t) of the error compensator, and the adaptive augmentation ẋa (t) computed

by the adaptive controller, which only provides the augmentation in the pitch and roll axes.

ẋcmd = ẋre f + ẋc + ẋa =


ṗre f + ṗc + ṗa

q̇re f + q̇c + q̇a

ṙre f + ṙc

 (30)

The NDI reference model is specified by the pilot command r (t) in the pitch and roll axes and generally represents

the same desired dynamics as the adaptive control reference model. It may also be modified to emulate a failure

or damaged plant dynamics. The state feedback vector y(t) contains measurements of the inputs required for the

aerodynamic lookup tables, such as angle of attack and velocity, as well as the angular rates.

The adaptive control reference model is specified as a stable, linear time-invariant system as

14 of 25

American Institute of Aeronautics and Astronautics



ẋm =


ṗm

qm

q̇m

=


−ωp 1 0

0 0 1

0 −ω2
q −2ζqωq




pm

´ t
0 qm (τ)dτ

qm

+


1 0

0 0

0 1


 rp

rq

 (31)

The pitch axis reference model is second-order, representing the desired short-period dynamics specified by the

reference model frequency ωq and damping ratio ζq. The roll axis reference model is first-order specified by the

eigenvalue ωp. There is no yaw axis reference model, but a second-order model could be used to represent the desired

dutch-roll dynamics, if needed.

The pilot commands rp (t) and rq (t) are computed from the pilot stick inputs δlat (t) and δlon (t) according to

 rp

rq

=

 ( rmax
α

)
kpωpδlat

kqω2
q

[
δlon +La

´ t
0 δlon (τ)dτ

]
 (32)

The error compensator is necessary to improve tracking of the reference model in the presence of model uncertainty

and disturbances by the NDI controller without adaptive augmentation. The NDI controller contains a proportional-

integral error compensator in the pitch axis and a proportional error compensator in the roll axis. The gains of the error

compensator are tuned to match the reference model. Thus

 ṗc

q̇c

=

 ωp
(

pre f − p
)

2ζqωq
(
qre f −q

)
+ω2

q
´ t

0

[
qre f (τ)−q(τ)

]
dτ

 (33)

The aircraft true, unknown dynamics are written as

ẋ =


ṗ

q

q̇

=


−(ωp +θp) 1 0

0 0 1

0 −
(
ω2

p +θq1

)
−(2ζpωp +θq2)




p

´ t
0 q(τ)dτ

q

+


1 0

0 0

0 1


 up−σp

uq−σq

 (34)

where θp, θq1 , and θq2 are unknown but constant parameters, and σp (t) and σq (t) are scalar, time-varying uncertain

disturbances.

The NDI adaptive controller is designed to cancel out the effects of the uncertain parameters θ p, θq1 , θq2 , σp (t),

and σq (t) by the adaptive augmentation. This is expressed as

 up

uq

=

 rp + ṗa

rq + q̇a

=

 rp + θ̂p p+ σ̂p

rq + θ̂q1

´ t
0 q(τ)dτ + θ̂q2q+ σ̂q

 (35)
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Three adaptive controllers were implemented. They are: 1) simple MRAC, 2) normalized optimal control modifica-

tion, and 3) normalized optimal control modification plus adaptive disturbance estimation. These adaptive controllers

vary in complexity from the simplest to a more complex design.

1. The simple MRAC controller, designated as “sMRAC”, employs only a single-axis input in either the roll or

pitch axis. The sMRAC laws are used to estimate the uncertain parameters θ p, θq1 and θq2 as

˙̂
θp = Γθp pp̃PpBmp (36)

˙̂
θq = Γθqxqx̃>q PqBmq (37)

where θ̂q =

[
θ̂q1 θ̂q2

]>
, p̃= pm− p, xq =

[ ´ t
0 q(τ)dτ q

]>
, and x̃p =

[ ´ t
0 [qm (τ)−q(τ)]dτ qm−q

]>
.

2. The normalized optimal control modification, designated as “onMRAC”, represents a more complex design.

The onMRAC laws are described by

˙̂
θp =

Γθp

1+Nθp p2

(
pp̃PpBmp +νθp p2

θ̂pB>mpPpA−1
mp Bmp

)
(38)

˙̂
θq =

Γθq

1+ x>q Nθqxp

(
xqx̃>q PqBmq +νθqxqx>q θ̂qB>mqPqA−1

mq Bmq

)
(39)

where Nθp and Nθq are the weighting parameters for the normalization factors and νθp and νθq are the modifica-

tion parameters.

3. The effect of disturbances can also be accounted for in the adaptive controller by employing adaptive laws for

disturbance estimation to cancel out the effects of the disturbances σ (t). This adaptive controller is referred to

as “onMRAC+” which includes the following adaptive laws in addition to the onMRAC:

˙̂σp =
Γσp

1+Nσp p2

(
p̃PpBmp +νσp σ̂pB>mpPpA−1

mp Bmp

)
(40)

˙̂σq =
Γσq

1+ x>q Nσpxp

(
x̃>q PqBmq +νσq σ̂qB>mqPqA−1

mq Bmq

)
(41)

The onMRAC+ is the most complex design in the flight experiments. The disturbance estimation adaptive law

in the pitch axis was implemented without the optimal control modification term by setting νσq = 0 to aid in

the investigation of the usefulness of the optimal control modification term. The inclusion of the normalization

without the optimal control modification term in the pitch axis contrasts with the inclusion of both terms in

the roll axis and provides insight into whether the normalization alone is sufficient to ensure desirable adaptive
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parameter characteristics. During the post-flight test data analysis, it appeared that this term would have been

able to further improve the performance in the pitch axis.

D. Flight Test Results

The failures were emulated during the flight experiments as changes in the pitch and roll damping derivatives to

intentionally degrade the pitch and roll handling qualities. Undesired pitch-roll coupling was also emulated in the

flight experiments by a roll-to-pitch input coupling and a frozen left stabilator. The flight controllers were tuned for a

single flight condition of Mach 0.58 and 25,000 ft. This airspeed-altitude combination falls within the envelope cleared

for the FAST aircraft in which any unexpected control surface deflection combination will not exceed structural load

limits and ensures that there is adequate altitude for recovery in the case of a departure from controlled flight.

Initial evaluations of the baseline NDI controller and the three adaptive controllers were completed for a healthy

aircraft as well as for an 80% reduction in the pitch damping derivative Cmq and a 117% reduction in the roll damping

derivative Clp , resulting in a sign reversal. The reduced pitch and roll damping failures were implemented by altering

the values of Cmqand Clp in the aerodynamic lookup tables.

Figure 10. Gross Acquisition Starting Point and Gross Acquisition Ending Point and Fine Tracking Reference Point

A set of tasks was developed for handling quality evaluation that incorporated coupling in both the pitch and roll

axes. The setup for the tasks involved having the test aircraft fly in-trail behind a target aircraft. A piece of tape was

placed on the canopy of the test aircraft and aligned with the tail hook of the target aircraft as a marker, as shown in

Fig. 10. The horizontal spacing was set at two ship lengths (one ship length is 56 ft).27 Once in this position, the pilot

selected the failure on the flight computer by pressing the nose wheel steering button. The pilot then began the first

task which is a gross acquisition task, where the pilot of the test aircraft maneuvered the plane to line up a reference

point on the heads-up display (HUD) with the wingtip of the target aircraft while maintaining the two-ship length

spacing, as shown in Fig. 10. The task was repeated by going to both sides because the failures were asymmetric so

an assessment in both directions was necessary. Following gross acquisition, the pilot initiated the fine tracking task

by holding the HUD reference point on to the wingtip for at least 10 to 15 sec.27

Two pilots flew the handling qualities tasks for the reduced pitch and roll damping. Handling qualities ratings

given by Pilot A and Pilot B during a 2-g air-to-air tracking task with the reduced pitch damping failure are shown
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in Fig. 11.28 Due to the high workload required to maintain pitch control in gross acquisition, Pilot B was unable

to maintain sufficient airspeed to complete the fine tracking portion of the task with the baseline NDI controller, and

consequently no rating was given for that case. An overall assessment of the ratings indicate that all the adaptive

controllers improved the handling qualities during the gross acquisition task, but that the varying levels of controller

complexity had some effect on the CH ratings for Pilot A but not Pilot B. The CH ratings for Pilot A show that the

onMRAC and onMRAC+ performed better than the sMRAC. In all cases, the baseline NDI controller performed worse

than the adaptive controllers. For the fine tracking task, both Pilot A and Pilot B reported little to no improvement in

the CH ratings for the sMRAC and onMRAC, while Pilot A noted some improvement with the onMRAC+.

Figure 11. Handling Qualities Ratings for 2-g Tracking Task with Reduced Pitch Damping Failure

Figure 12. Handling Qualities Ratings for Formation Tracking Task with Reduced Roll Damping Failure

The CH ratings of Pilot A and Pilot B for gross acquisition and fine tracking with the reduced roll damping failure

are shown in Fig. 12.28 Both pilots rated the baseline NDI controller with no failures (not shown) as Level 1 for this

task, with Pilot A giving it CH ratings of 2 and 3, and Pilot B giving it ratings of 3 for gross acquisition and 2 for fine

tracking. The failure degraded the gross acquisition handling qualities more than those for the fine tracking task. All
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the adaptive controllers improved the gross acquisition ratings, but the fine tracking results were less conclusive. The

onMRAC+ performed as well or better than the sMRAC and onMRAC, completely restoring the Level 1 fine tracking

handling qualities of the baseline NDI controller with no failures.

Three pilots flew the handling qualities tasks with the roll-to-pitch input coupling failure. Figure 13 shows both

the CH and PIO ratings for the gross acquisition task.27 For the CH ratings, every pilot gave Level 2 handling qualities

for the baseline NDI controller with the failure. With the adaptive controllers on, handling qualities either remained at

Level 2 or improved to Level 1 for all pilots. Pilot A and Pilot C showed similar trends. They both gave PIO ratings

of 1 for all the controllers, which indicate that no undesirable motion was noticed even though coupling between the

axes was present. Based on the CH ratings, the workload for the task was reduced with the sMRAC and onMRAC+,

and the onMRAC showed either equal or improved workload from that of the baseline NDI controller with the failure.

The ratings indicated that both pilots A and C were not too sensitive to the roll-to-pitch input coupling failure.

Figure 13. Handling Qualities Ratings for Gross Acquisition with Roll-to-Pitch Input Coupling Failure

On the other hand, pilot B was much more sensitive to the failure because he rated the failure as having undesirable

motion that affected his ability to perform the task and specifically mentioned that he felt coupling. Pilot B also gave the

worst CH rating of 6 for the baseline NDI controller. With the sMRAC, he was still getting just adequate performance

with the same level of workload. With the onMRAC, however, he saw improvement and was able to get desired

performance, but the undesirable motion was still a factor. With the onMRAC+, this was no longer the case and he

gave a PIO rating of 2, meaning the task performance was no longer compromised by the failure. For onMRAC+, his

CH and PIO ratings showed considerable improvement in reducing the effect of the failure.

Figure 14 shows the magnitude of coupling of pitch rate due to roll rate.27 The magnitude of coupling was

calculated based on the ADS-33E standard for cross-coupling handling qualities criteria for helicopters31 and similar

criteria for fixed-wing aircraft developed by the U.S. Air Force Test Pilot School using an F-16 aircraft for the project

Icarus.32 The value was averaged over this task as the adaptation occurred. For each pilot, the magnitude of coupling
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was seen to generally decrease as controller complexity was added to the adaptation, thereby illustrating the trade-off

between performance and complexity. Thus, the onMRAC+ was able to reduce the effect of the roll-to-pitch coupling

failure better than sMRAC even though it is the most complex adaptive controller.

Figure 14. Magnitude of Coupling for Gross Acquisition with Roll-to-Pitch Input Coupling Failure

Figure 15. Handling Qualities Ratings for Fine Tracking with Roll-to-Pitch Input Coupling Failure

Figure 15 shows the handling qualities ratings for the fine tracking task.27 The onMRAC+ with the failure received

the same CH and PIO ratings as the baseline NDI controller with no failures. Thus, the onMRAC+ had effectively

removed the failure. For all pilots, as controller complexity was added, the CH ratings either stayed the same or

improved. Based on the PIO scale, no pilot saw any PIOs; however, undesirable motions were observed. The most

undesirable motion was observed for the baseline NDI controller with the failure by both Pilot B and Pilot C.

Figure 16 shows that the magnitude of coupling was reduced as controller complexity was added.27 There appears

to be a correlation between the amount of coupling the pilots experienced and the CH ratings given, with both showing
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improvement with added controller complexity.

Figure 16. Magnitude of Coupling for Fine Tracking with Roll-to-Pitch Input Coupling Failure

Figure 17. Handling Qualities Ratings for Fine Tracking with Frozen Left Stabilator Failure

Two pilots flew the handling qualities tasks with the left stabilator frozen at zero deflection, a slight offset from

trim. For the gross acquisition task, both pilots rated the failure with the NDI and the three adaptive controllers within

Level 2 showing no improvement, as shown in Fig. 17.27 Pilot D gave all the controllers the same CH and PIO ratings.

Pilot C observed some improvement with the sMRAC in both CH and PIO ratings, and no improvement with the

onMRAC and onMRAC+.

Figures 18 and 19 show the tracking error measure, which is computed as the square root of the integral of the

tracking error square, produced by Pilot C in the roll and pitch axes, respectively.27 The NDI controller produced the

largest roll tracking error. All three adaptive controllers were able to reduce the roll tracking error substantially, but

the onMRAC+ had a larger roll tracking error than either the sMRAC or onMRAC. In the pitch axis, the tracking error
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was greatest with the onMRAC. The sMRAC had a similar pitch tracking error as the NDI controller. The onMRAC+

performed the best with a substantially lower pitch tracking error than any other controllers. The pitch tracking error

issue with the onMRAC was traced back to the response of the θ̂q2 term, which was seen to increase more rapidly

than with the sMRAC or onMRAC+ and exhibited an oscillatory behavior. This was seen as a contributing factor to

the lower ratings by Pilot C. On the other hand, the onMRAC+ had similar ratings as the onMRAC even though the

onMRAC+ reduced the tracking error substantially in both axes. Simulation tests conducted after the flight experiments

showed that these issues can be greatly reduced by changing the normalization method and with further tuning.27

Figure 18. Roll Tracking Error for Fine Tracking with Frozen Left Stabilator Failure

Figure 19. Pitch Tracking Error for Fine Tracking with Frozen Left Stabilator Failure

It was found that the normalization suppresses adaptation during large dynamic maneuvers through attenuation of

the adaptive gain by the inverse of the weighted square of the input function. Squaring the input function ensures that

it is always positive, and weighting allows the designer to control the relative influence of each adaptive law term on
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the normalizing behavior. In the pitch axis implementation of the onMRAC, the relative influence of the
´ t

0 q(τ)dτ

term was kept low. The normalized optimal control modification allowed the adaptive gain to be increased from 1 to

50, thereby enabling faster adaptation.

As noted previously, the optimal control modification term was present in the onMRAC+ for σ̂p (t), but not for

σ̂q (t). In the initial design, it was not clear whether the optimal control modification term was necessary in the

adaptive disturbance estimation. In the interest of keeping the adaptive controller as simple as possible, the optimal

control modification term was not included in either. During the first research flight, a persistent 1 Hz, ±0.5 deg/sec

oscillation was present in the roll rate and was also observed in the value of σ̂p (t). Implementation of the optimal

control modification term in the σ̂p (t) law eliminated the oscillation on all of the remaining flights. Because a similar

oscillation was not observed in σ̂q (t), no optimal control modification term was added for that parameter. During

handling qualities maneuvers at the end of the flight experiments, interactions between the pilot and the adaptive

controller in the pitch axis with the onMRAC+ were observed that likely affected the pilot’s ratings. Subsequent post-

flight test simulation studies indicated that the addition of the optimal control modification term to the σ̂q (t) adaptive

law would have eliminated these interactions.

V. Conclusion

This study presents a development of the optimal control modification adaptive control that includes a time-varying

adaptive gain which is adjusted by a covariance-like update law and a normalization method. These methods generally

can pose difficulty to the Lyapunov stability proof for the standard model-reference adaptive control (MRAC) unless

they are used in conjunction with the projection method or other error modification schemes. This difficult can be

overcome with the optimal control modification. In particular, the covariance adjustment can be shown to provide

theoretical bounds on the modification parameter and the adjustment parameter to guarantee stability for a given a

priori uncertainty bound. A new Lyapunov stability proof for the optimal control modification has been developed

to overcome the general difficulty in the proof for the normalized MRAC. Increasing the normalization parameter

provides improved robustness, but at a reduced performance. By properly tuning the normalization factor, better

performance can be attained while still providing sufficient robustness.

The normalized optimal control modification had been validated in flight experiments on a NASA F/A-18 air-

craft. Three adaptive controllers with varying complexity were evaluated. The simplest adaptive controller is a simple

MRAC, called sMRAC. The other two adaptive controllers are based on the normalized optimal control modification;

one without a disturbance estimation adaptive law, called onMRAC, and the other with a disturbance estimation adap-

tive law only in the roll axis, called onMRAC+. In-flight failure emulations included reduced pitch and roll damping,

a roll-to-pitch input coupling, and a frozen left stabilator. All three adaptive controllers were seen to have significantly
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improved performance of the degraded aircraft in general. Both the onMRAC and particularly the onMRAC+ seem

to have performed well and better than sMRAC under certain failures. Some issues with the onMRAC were noted

in the frozen left stabilator failure but post-flight test simulations revealed that these issues can be greatly reduced by

further tuning the normalization factor and adding the optimal control modification term to the disturbance estimation

adaptive law in the pitch axis.
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