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Abstract

This paper presents a new algorithm for autonomous on-line exploration in unknown
environments. The objective of the algorithm is to free robot scientists from exten-
sive preliminary site investigation while still being able to collect meaningful data.
We simulate a common form of exploration task for an autonomous robot involv-
ing sampling the environment at various locations and compare performance with a
simpler existing algorithm that is also denied global information. The result of the
experiment shows that the new algorithm has a statistically significant improvement
in performance with a significant effect size for a range of costs for taking sampling
actions.

1 Introduction

Human scientists have become accustomed to luxuries such as breathing, eating
and drinking, and atmospheric and gravitational forces that do not vary signifi-
cantly from “1.” Consequently, robots have become our scientific surrogates as we
peer into the depths of the ocean or into our solar neighbourhood. High-latency and
low-bandwidth communication to these regions limits the situational awareness and
reaction times of the scientists controlling such robots. For this reason it is impor-
tant to increase the ability of robotic explorers to independently make in-mission
decisions.

A common exploration activity is remote sensing, in which a robot is tasked
with collecting sensor data by sampling the environment at various locations. The
nature of many specialized sensors employed for activities such as biological col-
lection and spectral mapping requires long energy-intensive sampling durations or
the activation of single-use collection canisters. Constraints on mission length and
payload capacity, coupled with limited remote operator awareness, necessitate some
autonomy in sampling location selection for mission productivity and success.

Currently fielded robots either depend highly on operators for objectives or plan
with considerable global knowledge. Operating in such conditions constrains them
to rely on either remote human decision-making (requiring often impractical levels
of situational awareness) or significant amounts of prior scouting, obviating the need
to send a robotic agent. These limitations are mirrored in existing literature, which
fails to provide principled reasoning about what to investigate in situ without such
reliances.

This paper proposes an algorithm that addresses one common instance of such
missions, in which objects or areas found in the environment lie within some re-
spective class that is readily sensed, and each class possesses some underlying data
distribution (e.g. spectral response or biochemical composition) that can only be
sensed by activating the expensive specialized sensor. The overall goal is to estimate
the underlying distribution of each class with maximal accuracy.

For scientific realism and general applicability, no global information such as a
prior map of sampling opportunities is available, sensing opportunities are assumed
to arise nondeterministically (e.g. from classes present along a pre-determined tra-
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jectory or as currents draw objects past the robot), and the robot cannot return
to objects it did not choose to sample. Thus, the problem can be thought of as
a stream of sensing opportunities providing varying reward (information about the
underlying distribution of a class), each requiring a decision to sample or move on.

The proposed algorithm draws on techniques from optimal foraging theory and
sequential experiment selection. Its use is motivated by observations of human
and animal behavior, exemplified by geologists making decisions about investigating
local phenomena without prior access to detailed maps, in which they are able
to effectively choose between sampling from materials in front of them or moving
on to potentially more profitable sampling locations. While these decisions may
not be globally optimal, they do demonstrate an ability that is lacking in current
exploration robots: to make decisions to stop and engage with the environment or
to continue traveling in the hope of finding more informative sampling locations.

The remainder of this document begins with a brief survey of the relevant liter-
ature. This is followed by a detailed comparison of the proposed foraging algorithm
and one based upon existing principles from the so-called optimal design of ex-
periments literature. Finally, discussion of experimental results from a simulated
exploration scenario indicates that under limitations on sample collection and over-
all mission time, the foraging algorithm presents a significant improvement for a
realistic range of sampling costs.

2 Background

Automating experiment design is not without precedent. Kristine Smith started the
field of optimal experiment design in 1918. [1] It is only recently that robots have
been employed to conduct scientific exploration autonomously. [2, 3] Current robot
scientists’ reliance on global information prevents them from operating in truly
unknown environments. Additionally, previous approaches in sequential decision
making from statistics do not necessarily reflect the settings that autonomous robots
encounter in the real world.

2.1 The Secretary Problem

The secretary problem asks a decision maker to select the best candidate from
sequentially presented candidates where it is not possible to return to rejected can-
didates. In the original setting, there is only one position for the candidate to fill, [4]
and the optimal strategy is to reject the first N

e candidates and then accept the first
candidate who is ranked better than any of the previously seen candidates. Further,
the decision maker was able to objectively score the candidates without cost. In
our setting, we do not know the value until sampling, and sampling a class incurs a
sampling cost.

2.2 Multi-armed bandits

Sequential experiment selection, a type of active learning, is addressed in the multi-
armed bandit (MAB) literature. This was introduced by Robbins [5] as a means
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of sequentially selecting which experiments to conduct with a limited budget. In
Robbins’ work, selecting experiments is modelled on determining the payouts of
one-armed bandit machines – each machine representing a different experiment.
The player has a fixed sampling budget and has to sequentially choose which ma-
chine to play, trading off exploiting expected rewards from well-studied arms against
exploring different arms, learning more accurately the payouts of those arms.

Lai et al. [6] use a value function that sums the mean and the standard devi-
ation of rewards for an arm, in which uncertainty makes an arm more interesting.
Other techniques addressing the exploration/exploitation problem use uncertainty
in a reward metric. [7–9] In our setting, because the agent only needs to learn the
distribution and not use it for anything, uncertainty is the only necessary reward.

There are a number of distinguishing factors between the MAB setting and the
problem explored in this paper. First, in MAB, the agent has access to any arm
it chooses at any given time. The arms in MAB are analogous to the classes in
our setting. The agent in our setting does not get to choose which of the classes
it can investigate. Any previously seen classes are no longer available, and new
classes arrive per a random model. Additionally, the standard MAB setting does
not have switching costs, although there are some formulations which do include
such costs. [10] In our setting, there is a cost incurred with every choice to continue
exploring, and it is a function of the arrival rates of the different classes.

2.3 Optimal Foraging

Foraging is the problem encountered by animals seeking to maximize the intake
of energy when operating in an unknown environment. The central question to
solving the problem is: Is it more valuable to continue extracting resources from the
current location or to seek out resources in new locations? Charnov [11] introduced a
technique for dealing with what he called “patchy” environments, in which there are
localized regions that contain different classes of resources. The forager can extract
value from these patches, with diminishing returns (modeling resources consumed),
or choose to continue to wander randomly through the environment in the hopes of
encountering a more valuable location.

The optimal time to leave the environment, according to Charnov’s Marignal
Value Theorem, is when the expected return from continuing to sample from a par-
ticular patch is less than the expected return from wandering in the environment.
In this formulation, the expected return from both the current patch and the envi-
ronment are offset by the cost of extracting resources in this patch as well as the
energy spent seeking a new patch.

Pirolli and Card [12] introduced a model of researchers attempting to acquire
information. They modelled the rate of information gain and had their agent decide
to leave a patch when the rate of information gain was lower than that of the
environment. What differentiates their setting from ours is that their decision maker
can choose from which reservoirs to sample. Our exploring agent does not have that
luxury.

Kolling et al. [13] studied how humans engage in a gambling task in which play-
ers have to consider the option they have before them and the opportunities the
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environment provides. In the described experiment, subjects were repeatedly pre-
sented with a choice of playing a gambling game or being randomly presented with
a different game. Each game was a Bernoulli trial with some unknown probability of
success. Kolling et al. identify possible neural substrates for foraging decision mak-
ing in humans. The behaviour was near optimal, with some skewing of probabilities
at the extreme ends of the scale, i.e. p ≈ 0 or p ≈ 1.

2.4 Science Autonomy

Thompson and Wettergreen [14] maximize diversity of collected samples by using
mutual information sampling. This approach ensures diversity in the collected sam-
ple set, an act that reduces uncertainty in the input space of a function. Neither
mutual information nor maximum entropy sampling methods, when used with sta-
tionary Gaussian processes, take into account the dependent variable (the underlying
class distribution in our setting) when selecting samples.

Bender et al. [15] make a modification to that work, instead using Gaussian pro-
cesses to identified hypothesized distributions of life across the sea floor to direct
exploratory actions. The prior maps were generated by vessels passing over the sea
floor prior to the robot’s exploration mission, not unlike Thompson and Wetter-
green’s use of satellite imagery. The advance of Bender et al. is the use of in situ
measurements to update the Gaussian process being learned. Their rover can thus
be said to be generating and testing hypotheses. However, they are severely limited
by a budgeting size of six “gulpers” – devices for collecting seawater samples.

Ferri et al. [16] present an approach to prospecting where an autonomous under-
water vehicle (AUV) follows a predefined track and needs to decide when to deviate
to sample anomalies. The AUV in this work examines anomalies by engaging in
a spiral search pattern, collecting data and characterizing the environment in that
location. In this case, the rover is not limited in its sampling capacity. However
the decision to sample is based on a pre-programmed threshold. While this may be
an excellent way to encode subject matter experts’ beliefs on what is interesting, it
is fragile in the face of a changing environment and does not adapt to the actual
environment the rover encounters. This exploration problem is an ideal application
of the algorithm proposed in this paper.

Likewise, Girdhar et al. [17] present an approach to autonomous exploration
wherein a robot investigates a scene when it encounters phenomena that do not
reflect its current model of the world. Specifically, they use topic models to describe
scenes and sample when they encounter scenes that do not fit into the topic models
they have constructed. In these works, the vehicle has no limit on its sampling
capacity and is always collecting data. By slowing the vehicle down, more samples
are collected in anomalous scenes. In this fashion this is very similar to later work
by Thompson et al. [18]

Additionally, Girdhar et al. build upon their anomaly detection techniques to
develop a path planning method to maximize information gain of paths. [19] In
that respect, it belongs with the family of curiosity-driven algorithms pioneered by
Schmidhüber et al. [20] The fundamental concept behind these approaches is that
an explorer should spend its time investigating regions of the world (or hypothesis
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space) where its models are the least certain.
Previous work by the primary author with optimal foraging for science autonomy

has considered robots with limited sampling budgets [21] and assumed knowledge of
the number of sampling opportunities that would occur. While the limited sampling
budget is realistic, the foreknowledge of the transect is not necessarily so. This
paper improves upon the prior work by using productivity to reason about sampling
choices and gives a constraint of time instead of an unknowable number of sampling
opportunities.

As explained, real robots may not be able to predict the rewards they will earn
from their actions and have to deal with unreliable arrival rates for sampling oppor-
tunities. These are concerns that are not modelled in typical sequential experiment
selection algorithms such as the multi-armed bandit or secretary problems. This mo-
tivates the problem setting used in this paper, described in detail in the following
section.

3 Method

The decision-making agents in this paper are tested on several randomly generated
transects – one-dimensional paths representing a robot’s trajectory. They are re-
peatedly presented with an object to sample and have to make the choice to either
take a sample or continue travelling along the transect. As in Robbins’ secretary
problem, the agents are not permitted to backtrack to avail of a previous opportu-
nity. Figure 1 gives an example of a simulated transect. Sampling opportunities of
different types are scattered along the path that the robot travels.

The primary objective of the robot is to learn distributions behind different
classes of objects, for example, the probability distribution governing the density
of sub-surface microbial life in different classes of soil. Previous work has identified
that texture information can successfully classify different types of soil material. [22]
We imagine that the classes of objects in this research could correspond to those
soil classes.

3.1 Experiment

The experiment presented in this paper is a modification of the experiments pre-
sented by Furlong and Wettergreen. [21,23] In that prior work, agents were equipped
with limited sampling budgets. In this experiment, the agents have an unlimited
capacity to take samples, but the time to take the sample is non-zero, and there is
an overall limit on the duration of the mission. The sampling cost and the overall
mission time are given in units of arbitrary time.

As in the previous experiments, agents are not permitted to backtrack to pre-
viously seen objects. Disallowing backtracking drives the robot to the end of the
transect, as maximizing coverage is an important part of exploration. Additionally,
making decisions between a current opportunity, a hypothetical future, and any
number of previously seen but unsampled opportunities is considered a much more
complex problem and outside the scope of this paper.
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Figure 1. A cartoon illustrating a transect a robot might be encountering and how
sampling opportunities of different types may be distributed along it. In the field,
the robot would start at one end of the path and follow it to the other end. This
is one path that the rover may follow across the terrain resulting in it encountering
different types of sampling opportunities.

In this experiment, there are six different classes of objects the agent may en-
counter. They each have their own arrival rate, and their appearance along the
transect is generated with a Poisson process. In this paper, the arrival rates of the
different sampling opportunities do not change over the course of the experiment.
While this is almost certainly not the case for long range desert traversals targeted
by prior work, it is a reasonable approximation for shorter-range traverses. A total
transect length of 1000 units is used, and sampling cost is varied from 0.001 to 150.

It is the objective of the robot to learn the true underlying distributions given in
Table 1. The algorithms’ performance is scored as the L1 difference between the true
and learned distribution, pk and p̂k, respectively. Limits on the integral are placed
keep the integration time reasonably small. The integral of the L1 distance, summed
over the K known classes, was chosen instead of the more typical KL-divergence to
permit a finite error measure in the case of a class never being observed.

score =
K∑
k=1

∫ µk+4σk

µk−4σk
|pk(x)− p̂k(x)| dx (1)

3.2 Algorithms

Two algorithms are compared on the simulated transect described above.
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Class Mean Standard Deviation Arrival Rate
(arbitrary units ) (arbitrary units) (arbitrary time)

1 0 1 1
2 10 0.1 0.8
3 0 5 0.9
4 2 4 1.1
5 -2 4 0.05
6 0 0.1 1.1

Table 1. The classes the robot is investigating all have values derived from Gaussian
random variables with means and standard deviation given. Different instances of
those classes are encountered in accordance to a Poisson process with the rates
specified in the above table. All units are arbitrary, and all time quantities – arrival
rate, mission time, and sampling cost – can be scaled to the order of the mission at
hand.

3.2.1 Uniform Sampling

The Uniform Sampling algorithm attempts to distribute the number of samples
it can collect evenly between the different classes of objects present on the tran-
sect. This is chosen because it was a robustly successful algorithm, as seen in prior
work. [21,23]

The Uniform Sampling algorithm does not consider the time remaining in the
transect, nor the time to complete sampling. In this setting, the algorithm chooses
to sample a class either if it does not have the most samples of all the encountered
classes or if all classes have been sampled an equal number of times.

3.2.2 Foraging

The proposed foraging algorithm is an attempt to maximize the productivity of
the learning agent along the transect. We attempt to maximize the amount of
information learned per unit time.

The reward for sampling a class is an analog for surprise as defined by Koch et
al. [24] Koch looked at the change in the distribution that resulted in a Bayesian
update. Because this work uses an empirical non-parametric kernel density esti-

mation for each class’s distribution, we compare log
(
p̂(x|D∪{x})
p̂(x|D)

)
. To be compa-

tiable with optimal foraging algorithms, specifically the Marginal Value Theorem
of Charnov, [11] the reward function must have diminishing returns. In the case of
information update, the Bayes Factor will eventually converge to approximately 1,
likewise our estimated empirical Bayes factor. We take the log of this approximation
such that it converges to zero as more samples are collected. Figure 2 demonstrates
the diminishing rewards of sampling a distribution using our reward function.

The innovation in this work is valuing actions in terms of productivity. Previ-
ous work in foraging maintained the variables of interest in the same units, energy
consumed or spent in searching for and extracting resources. To enable the foraging
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Figure 2. The reward function plotted is the cumulative reward for sampling from
a uniform distribution over [0, 1]. The cumulative reward is averaged over five trials
of 4000 samples. Increasing the number of samples from a distribution decreases
the information gained per sample. The reward can be viewed as the reduction in
Shannon surprise of an instantiation of the random variable as a result of adding
that value to the learned distribution. The returns of the reward function diminish
with more samples from the random variable. The diminishing returns are necessary
to use the Marginal Value Theorem formulation from Charnov. [11]
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agent to compare actions, we measure productivity as the average surprise expe-
rienced from a sample per unit of time spent to acquire that sample. In keeping
with foraging work of Charnov [11] and Pirolli and Card, [12] the agent decides
to move on when the productivity of the current sample is less than the expected
productivity of exploring the environment. Namely, the decision rule is

ET [surpriset (k)]

tcost
≥ EK [ET [surpriset (k)]]

EK
[
tinterarrival(k)

]
+ tcost

, (2)

where ET [·] is the empirical expected value over the history of samples the
agent has taken, EK [·] is the empirical expected value over the different classes.
surpriset(k) is the surprise due to the t-th sampling of a class k. tcost is the sampling
cost in time, and tinterarrival(k) is the average inter-arrival time for a class as the
rover has encountered them.

4 Results

Figure 3 summarizes a comparison of the performance of the uniform and foraging
algorithms, measured as total error in estimating underlying class distributions as
specified in Equation 1, across a wide range of sampling cost. When the sampling
cost is small relative to the duration of the transect, the performance of the foraging
algorithm is significantly better. For a portion at the higher end of the spectrum,
the uniform algorithm outperforms the foraging algorithm. However, at the extreme
end, the algorithms’ performance converges.

At a sampling cost of 100 time units, at the far end of this plot, only ten sampling
actions can be taken during a transect that lasts for 1000 time units. In this case, one
would expect performance to be limited regardless of decision rule, as it is difficult
to learn much about six different random variables with only ten samples.

4.1 Analysis

For each of the twenty-one trials, the agents were scored on the data they collected
when given a fixed sampling cost. For each sampling cost the performance was tested
with a Bayesian paired t-test. [25] The paired t-test returns an average difference
between the paired trials as well as a 95% credible interval around that difference.
We accept that the difference is non-zero when the credible interval does not contain
0.

This test also gives an effect size. The effect size is the ratio of the mean to the
standard deviation of the difference between the paired trials. This is a variation
of Cohen’s d value. [26] With this number, we consider a value greater than 1.3 to
be very large, above 0.8 to be significant, and below 0.5 to be insignificant. Table 2
gives the results of the Bayesian paired t-test at different values of sampling cost.
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Figure 3. For sampling costs that are small, relative to the duration of the tran-
sect, the foraging algorithm presents a significant improvement over the uniform
algorithm. The shaded region covers 1.96× the standard error from the 21 trials,
approximating a frequentist 95% confidence interval, to indicate the variablility of
the algorithms’ performance across trials.

Cost Reduction in Error Credible Interval Effect Size

0.001 0.40 [0.34,0.46] 3.5
0.01 0.38 [0.32,0.45] 2.8
0.1 0.24 [0.17,0.31] 1.8
1.0 0.04 [-0.041,0.11] 0.24
10.0 -0.88 [-1.1,-0.62] 1.6
100.0 -0.27 [-0.53,-0.006] 0.48

Table 2. Selected datapoints along the graph in Figure 3 along with the associated
credible intervals of the difference and the effect size. Bold rows are cases where the
foraging algorithm provides a statistically signficant improvement over the uniform
sampling algorithm.

5 Conclusion

In this paper we present a new algorithm created by combining sequential experi-
ment selection and models of optimal foraging with an information theoretic reward
function. For certain regimes of operation, the new algorithm is significantly better
the control algorithm based on optimal experiment design alone. Additionally, this
work continues the process of introducing sequential selection to the field of science
autonomy.

From the experiment presented in this paper, we can conclude three things. First,
for small sampling costs relative to the mission duration, the foraging algorithm
produces about a 50% reduction in accumulated error. Further, the effect size is
substantial, and our Bayesian paired t-test gives us 95% confidence that the increase
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in performance is non-zero.
Second, when the sampling cost is large relative to the mission duration, uniform

sampling is as good as or better than foraging. This makes sense, as the first samples
one collects are the most informative about a distribution. Distributing samples
across the different classes of objects increases the overall rate of information gained,
ensuring the greatest short-term reduction in error.

Thirdly, for even larger sampling costs, foraging again becomes a competitive
algorithm. This convergence in performance is mainly due to the very limited ability
to sample and consequent poor performance of both algorithms.

This work does not address perception and requires some system to parse scenes
to identify the classes available to the robot. This is necessary for fielding this
algorithm on a robot. The algorithm does not account for variations in the problem
setting such as more than one type of sensor with differing sampling costs, class
arrival rates that change over time, and class distributions that change over time.
These need to be addressed in the future to make a more plausible robot scientist.
It is the desire of the authors to make the agent responsible not just for collecting
data, but to generate and test hypotheses about the environment.

Ongoing work includes evaluation of these algorithms in a real field setting using
terrain classification and with parameter changes such as varied arrival rates and
non-stationary class distributions.
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