
Finding Mutual Exclusion Invariants in Temporal Planning Domains

Sara Bernardini
London Knowledge Lab

23-29 Emerald Street, London WC1N 3QS
s.bernardini@lkl.ac.uk

David E. Smith
NASA Ames Research Center
Moffet Field, CA 94035–1000

david.smith@nasa.gov

Abstract

We present a technique for automatically extracting
temporal mutual exclusion invariants from PDDL2.2
planning instances. We first identify a set of invariant
candidates by inspecting the domain and then check
these candidates against properties that assure invari-
ance. If these properties are violated, we show that it
is sometimes possible to refine a candidate by adding
additional propositions and turn it into a real invariant.
Our technique builds on other approaches to invariant
synthesis presented in the literature, but departs from
their limited focus on instantaneous discrete actions by
addressing temporal and numeric domains. To deal with
time, we formulate invariance conditions that account
for both the entire structure of the operators (including
the conditions, rather than just the effects) and the possi-
ble interactions between operators. As a result, we con-
struct a technique that is not only capable of identifying
invariants for temporal domains, but is also able to find a
broader set of invariants for non-temporal domains than
the previous techniques.

Introduction
A number of planning domain specification languages de-
signed and used to describe complex real-world planning
problems adopt a constraint-based representation centered
on multi-valued state variables. Examples of large temporal
systems based on such languages are: EUROPA2 (Frank and
Jónsson, 2003), ASPEN (Chien et al., 2000), IxTeT (Ghallab
and Laruelle, 1994), HSTS (Muscettola, 1994) and OMPS
(Fratini, Pecora, and Cesta, 2008).

In contrast, the majority of the benchmark domains cur-
rently used by the planning community were developed
for the International Planning Competitions (IPCs) and are
therefore encoded in the PDDL language, which is proposi-
tional in nature. Tools designed for translating propositional
representations into variable/value representations would fa-
cilitate the testing of application-oriented planners on these
benchmarks. Designing such tools is primarily concerned
with the generation of multi-valued state variables from
propositions and operators, but does not depend on the target
language of the translation.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This paper presents a technique for generating tempo-
ral multi-valued state variables from a PDDL2.2 instance
(Edelkamp and Hoffmann, 2004; Fox and Long, 2003).
More specifically, we describe a technique for identifying
temporal mutual exclusion invariants, which state that cer-
tain atoms can never be true at the same time, as a prelimi-
nary step to synthesizing state variables. In fact, each iden-
tified group of mutually exclusive atoms constitutes the do-
main of a single state variable.

Our technique builds on the invariant synthesis pre-
sented in Helmert (2009) which is used to translate a sub-
set of PDDL2.2 into FDR (Finite Domain Representation),
a multi-valued planning task formalism used within the
planner Fast Downward (Helmert, 2006). Helmert’s invari-
ant synthesis is limited to non-temporal and non-numeric
PDDL2.2 domains (the so called, PDDL “Level 1”). In con-
trast, our technique addresses temporal and numeric do-
mains (PDDL – “Level 3”). Developing invariants for such
tasks is more complex than handling tasks with instanta-
neous discrete actions, because interference between con-
current operators complicates the identification of state vari-
ables. For this reason, a simple generalization of Helmert’s
approach does not work in temporal settings. In extending
the theory to capture the temporal case, we have had to for-
mulate invariance conditions that take into account the entire
structure of the operators (including the conditions, as op-
posed to the effects only) as well as the possible interactions
between them. As a result, we have constructed a signifi-
cantly more comprehensive technique that is able to find not
only invariants for temporal domains, but also a broader set
of invariants for non-temporal domains.

Other approaches to invariant synthesis are available in
the literature (Gerevini and Schubert, 2000; Rintanen, 2000;
Fox and Long, 1998). Although similarities with our ap-
proach can be found, they are more limited in scope be-
cause they deal only with STRIPS domains. These tech-
niques have usually been used in combination with SAT-
based planners (Kautz and Selman, 1999) or Graphplan-
based planners (Blum and Furst, 1997) for improving their
performance.

This paper is organized as follows. In the next section, we
identify an initial set of invariant candidates by inspecting
the domain. We then explain how to check the candidates
against a set of properties that assure invariance in order to



verify that our initial candidates are actual invariants. If a
candidate turns out not to be an invariant at first, we show
that in some cases it is possible to refine the candidate so as
to make it a real invariant. An experimental evaluation of our
approach and a presentation of conclusions and future work
close the paper.

Invariant Candidates
An invariant is a property of world states such that when
it is satisfied by a state s, it is satisfied by all states that
are reachable from s. Usually, we are interested in invari-
ants that are satisfied in the initial state. If an invariant holds
in the initial state, it holds in all the reachable states. Here,
we focus on mutual exclusion invariants, which state that
certain atoms can never be true at the same time. For ex-
ample, if we take the Logistics domain, a mutual exclusion
invariant for this domain states that two atoms indicating the
position of a truck trk0, such as at(trk0, loc0) and
at(trk0, loc1), can never be true at the same time. In-
tuitively, this means that the truck cannot be at two different
positions simultaneously.

In order to find invariants, we use a guess, check and re-
pair approach sorting through hypothetical invariants, which
we call invariant candidates. We generate invariant candi-
dates as described below and then check them against a set
of conditions that ensure invariance. If a hypothetical invari-
ant is not found to be valid, we apply a set of refinements to
try to make it a real invariant before rejecting it.

Let us now introduce invariants and invariant candidates
more formally.

Let I = (D,P) be a PDDL instance, where D is a plan-
ning domain and P a planning problem. An invariant can-
didate is a tuple C = 〈Φ,F,V〉, where Φ is a non-empty
subset of the atoms in the domain D, and F and V are
two disjoint sets of variables. The atoms in Φ are called
the candidate’s components, while the two sets F and V
are respectively called fixed and counted variables. They
are both subsets of Var[Φ], which collects the variables in
Φ. For example, if we take the Logistics domain and the
predicate at(truck,loc), the following is a candidate:
Cat = 〈{at(truck,loc)}, {truck}, {loc}〉, where
at(truck,loc) is the only component of this candidate,
truck is the fixed variable and loc the counted variable.

An instance γ of the candidate C is a function that maps
the fixed variables in F to objects of the problem P . Assum-
ing we have a problem with two trucks trk1 and trk2, we
have two possible instances of Cat: γtrk1 : truck→ trk1
and γtrk2 : truck→ trk2.

The weight of an instance γ in a state s is the number of
ground instantiations of the variables in V that make some
φ ∈ Φ true under γ in s.1 Thus, considering the Logistics
domain and the instance γtrk1, if we have a state s where
the atom at(trk1,loc1) holds, then the weight of Cat is
one. Intuitively, the weight of γ in a state s is the number of
the candidate’s components that are true in s when the fixed
variables have been instantiated according to γ.

1The weight of γ is equal to the cardinality of the set of all
ground atoms that unify with some φ ∈ Φ under γ in s.

Given a cardinality set S = {x | x ∈ N}, the semantics of
a candidate C is: for all the possible instances γ of C, if the
weight of γ is within S in a state s, then it is within S in any
successor state s′ of s. Thus, if we prove that the candidate
C holds (i.e. C is an invariant) and is satisfied in the initial
state, we have that at most k = max(S) atoms in Φ are true
in any reachable state. Since we focus on finding mutually
exclusive sets of propositions, we are interested in cases in
which at most one atom in Φ is true in any reachable state.
Considering the Logistics domain again, the candidate Cat
means that, for each truck trk in the domain, if the number
of locations loc where at(trk,loc) is true is at most
one in a state s, then it is at most one in any successor state
s′ of s. If we prove that what is stated by the candidate is true
and each truck is at a maximum of one location in the initial
state, then each truck cannot be at multiple locations at the
same time in any reachable state. Hence, for each truck, we
can create a state variable that corresponds to the predicate
at and represents the position of the truck. The values of
this variable represent the presence of the truck in the vari-
ous locations that it can occupy.

In Helmert’s work, he considers only the cardinality set
S = {1}. However, we consider the set S = {0, 1} because,
with durative actions, it is common for a proposition to be
deleted at the beginning of an action (e.g. the location of
an object being moved), and replaced by a new proposition
at the end of the action (e.g. the new location of the ob-
ject). This corresponds to a decrease in the weight of γ to
zero at the beginning of the action, and an increase back
to one at the end. Allowing S = {0, 1} could be useful
in non-temporal domains as well, since it allows operators
bringing the weight from zero to one to be classified as non-
threatening for invariance conditions. This approach there-
fore allows us to find more invariants than the techniques us-
ing only S = {1}. We will present relevant examples in the
following section. Although we focus here on S = {0, 1},
our technique for finding invariants can be generalized to
larger cardinality sets.

Invariance Conditions
In order to show that a candidate C is an actual invariant, we
need to guarantee that, for any instance γ of C, the weight
of γ is within the cardinality set S = {0, 1} in the initial
state and all the operators in the domain D keep the weight
within this set. When an operator satisfies this condition, we
say that it is safe and so it does not threaten the candidate C.

More formally, given an instance γ of a candidate C, an
operator op is safe if, for any situation where: i) the weight
of γ is less than or equal to one prior to executing op and
ii) it is legal to execute op, the weight of γ is guaranteed to
remain less than or equal to one through the execution of op
and immediately following op.

A domain D is safe for C if and only if all operators in D
are safe for any instance γ of C.

A sufficient condition for C to be an actual invariant is that
the domain is safe for C. Given a candidate C and an instance
γ, when can we ensure that an operator op is safe, i.e. main-
tains the weight of γ within the cardinality set S = {0, 1}?
Clearly, if the operator does not change the weight of γ, then



it is safe. On the other hand, if an operator increases the
weight of γ by two or more at any time-point, it is definitely
not safe. If the operator increases the weight of γ by one,
there might be circumstances in which it is safe, depending
on the structure of the conditions and the effects of the oper-
ator itself and on its interactions with other operators.

Given an instance γ of a candidate C, we consider safe an
operator op if and only if it falls in one of the following six
categories:

1. Type N - Inert. The operator op does not affect the
weight of γ. Clearly, an inert operator is safe because
it preserves the weight of γ. Considering a simple
Logistics domain, the figure below shows an example
of such an operator with respect to the candidate C =
〈{at(truck,loc)}, {truck}, {loc}〉.

wash-truck(?truck)

(at ?truck ?loc)

(clean ?truck))

w=k

w=k

(not (clean ?truck)))

Type N

2. Type D: Decreasing. The operator op decreases the
weight of γ at some time-point, and does not increase it
at any time point. A decreasing operator may or may not
have a condition on γ, and the decrease may even be uni-
versally quantified.

Like an inert operator, a decreasing operator is safe be-
cause it does not cause an increase in the weight at any
time-point, and therefore maintains the weight within the
cardinality set S = {0, 1}.
The figure below shows one of several possible de-
creasing operators with respect to the candidate C =
〈{at(truck,loc)}, {truck}, {loc}〉.

crash-truck(?truck)

(at ?truck ?loc)
w=1

w=0
(not (at ?truck ?loc))

Type Dx

3. Type I: Increasing. The operator op increases the weight
of γ from zero to one. We identify three possible sub-
cases:

• Type Is - Type Ie: The operator op increases the weight
of γ by one at some time-point (start/end) and its con-
ditions require that the weight of γ be zero at the same
time-point (start/end). Increasing operators of type Is
and Ie are safe because they bring the weight from
zero to one at just one time-point. The figure below
shows an increasing operator at start and an increas-
ing operator at end with respect to the candidate C =
〈{at(truck,loc)}, {truck}, {loc}〉.

build-truck(?truck ?yard)

w=0

w=1

build-truck(?truck ?yard)

forall (?loc) (not (at ?truck ?loc)))
w=0

w=1
(at ?truck ?yard)

forall (?loc) (not (at ?truck ?loc)))

(at ?truck ?yard)

Type Is

Type Ie

• Type Ix: a condition at start guarantees that the weight
of γ is zero and an add effect at end increases the
weight by one. The figure below shows an example
of such an operator with respect to the candidate C =
〈{at(truck,loc)}, {truck}, {loc}〉.

build-truck(?truck ?yard)

forall (?loc) (not (at ?truck ?loc)))
w=0

(at ?truck ?yard)

Type Ix

w=1

An operator of type Ix is safe if it is mutex with all those
operators that may increase the weight of γ over its du-
ration. The following picture shows a simple example
of when this might happen.

build-truck(?truck ?yard)

forall (?loc) (not (at ?truck ?loc)))
w=0

(at ?truck ?yard)

Type Ix

drive(?truck ?loc1 ?loc2)

(at ?truck ?loc1)
w=1

w=0

(not ( at ?truck ?loc1)) (at ?truck ?loc2)

w=1

w=2

4. Type B: Balanced. The operator op preserves the weight
of γ by checking that the weight is one at some time-
point (start/end), decreasing the weight by one at that
time-point and then bringing back the weight to one at
that same time-point. Balanced operators are always safe
because they act at only one time-point (start/end) and
do not change the overall weight of γ. The figure below
shows a balanced operator at start (Type Bs) and a bal-
anced operator at end (Type Be) with respect to the can-
didate C = 〈{at(truck,loc)}, {truck}, {loc}〉.

w=1

instant-drive(?truck ?loc1 ?loc2)

(at ?truck ?loc1)
w=1

w=0 (not ( at ?truck ?loc1))

Type Bs

Type Be
instant-drive(?truck ?loc1 ?loc2)

(at ?truck ?loc2)w=1

(at ?truck ?loc1)

w=0 (not ( at ?truck ?loc1))
(at ?truck ?loc2)w=1

5. Type U: Temporarily Unbalanced. The operator op en-
sures that the weight of γ is one at start, brings the weight
from one to zero at start or at end and then restores the
weight to one at end.



We have two different configurations for a temporarily un-
balanced operator:

• Type Us: a condition at start guarantees that the weight
is one, a delete effect at start decreases the weight
from one to zero, and an add effect at end restores
the weight to one. The figure below shows an exam-
ple of such an operator with respect to the candidate
C = 〈{at(truck,loc)}, {truck}, {loc}〉.

drive(?truck ?loc1 ?loc2)

(at ?truck ?loc1)
w=1

w=0

(not ( at ?truck ?loc1))

Type Us

(at ?truck ?loc2)

w=1

An unbalanced operator of type Us is safe if it is mutex
with all those operators that may increase the weight
of γ over its duration. The following picture shows a
simple example of when this might happen.

drive(?truck ?loc1 ?loc2)

(at ?truck ?loc1)
w=1

w=0

(not ( at ?truck ?loc1)) (at ?truck ?loc2)

w=2

build-truck(?truck ?yard)

forall (?loc) (not (at ?truck ?loc)))
w=0

w=1
(at ?truck ?yard)

Type Us

Unbalanced operators of type Us are particularly com-
mon because they model the usage of renewable re-
sources. A renewable resource is needed during the ex-
ecution of the action, so the weight goes from one to
zero at start, but it is not consumed by the action, so the
weight returns to one at end.
• Type Ue: a condition at start guarantees that the weight

is one and a delete and an add effect at end bring the
weight from one to zero and then back to one. The fig-
ure below shows an example of such an operator with
respect to the candidate C = 〈{at(truck,loc)},
{truck}, {loc}〉.

drive(?truck ?loc1 ?loc2)

(at ?truck ?loc1)
w=1

w=0(not ( at ?truck ?loc1))

Type Ue

(at ?truck ?loc2) w=1

An unbalanced operator of type Ue is safe if it is mu-
tex with all operators that may alter the weight during
its execution. Although this operator does not cause an
overall change in the weight of γ when executed in iso-
lation, it might give rise to problematic situations when
another operator opi capable of changing the weight is
allowed to take place over its duration. This is because
the application of opi may have the side effect of mak-
ing the delete effect of op no longer applicable, which
would in turn provoke an overall increase of the weight
by two instead of one. The figure below exemplifies this
situation.

drive(?truck ?loc1 ?loc2)

(at ?truck ?loc1)
w=1

(not ( at ?truck ?loc1))
(at ?truck ?loc2) w=2

tow(?truck ?loc1 ?loc3)

(at ?truck ?loc1)
w=1

w=0

(not ( at ?truck ?loc1)) (at ?truck ?loc3)

w=1

Type Ue

One could argue that unbalanced operators of type Ue
originate from a faulty description of renewable re-
sources and so they should in reality be operators of
type Us. We have not found examples of operators of
type Ue in the domains of the IPC-2008, but we have
included this case for completeness.

6. Type Q: Quantified Delete. The operator op sets the
weight of γ to zero at some time-point (start/end) through
a universally quantified delete effect and then bring back
the weight to one at the same time-point (start/end) or af-
ter that. We distinguish three possible sub-cases:

• Type Qs - Type Qe: a universally quantified effect
sets the weight to zero at some time-point (start/end)
and an add effect increases the weight by one at the
same time-point (start/end). Operators of type Qs and
Qe are safe because they ensure that only the single
add effect will be true. The figure below shows an
example of such operators with respect to the candi-
date C = 〈{in(package,truck)}, {package},
{truck}〉.

unload-all-load-one(?package ?truck )

forall (?tr) (when (not (= ?tr ?truck))) 
(not (in ?package ?truck))) w=0

w=1(in ?package ?truck)

Type Qs

unload-all-load-one(?package ?truck )

w=0

w=1 (in ?package ?truck)

Type Qe

forall (?tr) (when (not (= ?tr ?truck))) 
(not (in ?package ?truck)))

• Type Qx: a universally quantified effect at start sets
the weight to zero and an add effect at end increases
the weight by one. The figure below shows an ex-
ample of such an operator with respect to the candi-
date C = 〈{in(package,truck)}, {package},
{truck}〉.

unload-all-load-one(?package ?truck )

w=0 w=1

(in ?package ?truck)

Type Qx

forall (?tr) (when (not (= ?tr ?truck))) 
(not (in ?package ?truck)))

An unbalanced operator of type Qx is safe if it is mutex
with all those operators that may alter the weight during
its execution. The following picture shows an example
of when this might happen.



unload-all-load-one(?package ?truck )

w=0

(in ?package ?truck)

Type Qx

load(?package ?truck )

(at ?package ?loc)
w=1

w=0

(not ( at ?package ?loc)) (in ?package ?truck)

w=1

w=2
forall (?tr) (when (not (= ?tr ?truck))) 

(not (in ?package ?truck)))

Inert and balanced safe operators represent the tempo-
ral generalization of the non-threatening operators used in
Helmert’s invariant synthesis (Helmert, 2009). The criteria
for identifying increasing, decreasing and quantified delete
operators can be readapted for use in non-temporal planning
domains. They correspond to the use of the cardinality set
S = {0, 1} instead of S = {1}, which allows us to capture
a broader set of invariants than Helmert’s approach. In con-
trast, unbalanced operators are specific to temporal planning
and correspond to cases where the effects of an action are
not fully realized until the end. Such operators can still be
safe, as long as no other operator can disrupt the candidate
during the execution of the operator.

Temporal Mutex Conditions
We now clarify the exact nature of the temporal mutex con-
ditions that must hold in order to ensure the safeness of un-
balanced operators and operators whose effects are split over
time, such as operators of type Dx, Ix, and Qx.

In order to assess if an operator op is safe, we first need
to establish what kinds of operators may disrupt the weight
during the execution of op and then specify the exact mu-
tex relationships that must hold between op and the possibly
disrupting operators.

Let us consider the second issue first. In general, how can
we establish whether two durative PDDL operators are mu-
tex or not? Since in PDDL2.2, effects can only happen at the
start and end of the operators, and conditions can only be
specified at the start, end, and over all, there are nine types
of mutex. We refer the reader to (Smith and Jónsson, 2002)
for a discussion of mutex between actions with general con-
ditions and effects.

Given two durative operators op1 and op2, these nine
types of mutex operators are the following:

1. Start-Start: op1 and op2 cannot start at the same time if:
∃p ∈ (Condstart(op1)∪Condall(op1)∪Effstart(op1)) :

¬p ∈ (Condstart(op2) ∪ Condall(op2) ∪ Effstart(op2))

2. End-End: op1 and op2 cannot end at the same time if:
∃p ∈ (Condend(op1) ∪ Condall(op1) ∪ Effend(op1)) :

¬p ∈ (Condend(op2) ∪ Condall(op2) ∪ Effend(op2))

3. Start-End: op1 cannot start at the time that op2 ends if:
∃p ∈ (Condstart(op1)∪Condall(op1)∪Effstart(op1)) :

¬p ∈ (Condend(op2) ∪ Effend(op2))

4. Invariant-Start: op2 cannot start during op1 if:
∃p ∈ Condall(op1) :

¬p ∈ (Condstart(op2) ∪ Condall(op2) ∪ Effstart(op2))

5. Invariant-End: op2 cannot end during op1 if:
∃p ∈ Condall(op1) :

¬p ∈ (Condend(op2) ∪ Condall(op2) ∪ Effend(op2))

6. Invariant-Invariant: op1 and op2 cannot overlap if:
∃p ∈ Condall(op1) : ¬p ∈ Condall(op2)

In addition, we have: 7. mutex End-Start (dual to case 3),
8. mutex Start-Invariant (dual to case 4) and 9. mutex End-
Invariant (dual to case 5). For brevity, we refer to the mutex
operators as mutex-SS, mutex-EE, and so on.

As for identifying possibly disrupting operators, we need
to reason about the operators in the domain according to two
criteria: i) what type of legal weight change they produce
(from zero to one, from one to zero or from one to zero to
one); and ii) at what time-points the changes happen.

Following this reasoning, for each type of unbalanced op-
erator op, we identify a set of mutex constraints that involve
op and those operators that can possibly disrupt its weight.
If these constraints are satisfied, then op is safe.

• An increasing operator of type Ix is safe if it is:
1. mutex IS with any operator of type (I,Q)s
2. mutex IE with any operator of type Us, (I,Q)x, and

(I,Q)e
• An unbalanced operator of type Us is safe if it is:

1. mutex IS with any operator of type (I,Q)s
2. mutex IE with any operator of type Us, (I,Q)x, (I,Q)e
• An unbalanced operator of type Ue is safe if it is:

1. mutex IS with any operator of type (I,Q,B)s
2. mutex IE with any operator of type Us, (I,Q)x, and

(I,Q,B,U)e
• A quantified delete operator of type Qx is safe if it is:

1. mutex IS with any operator of type (I,Q)s
2. mutex IE with any operator of type Us, (I,Q)x, and

(I,Q,U)e

In Figure 1, we show a binary decision tree T that can
be used to determine whether an operator op is safe w.r.t an
instance γ of a candidate C or not. The internal nodes of
the tree test the structure of the conditions and effects of the
operator. The abbreviations stand for: Add-s → add effect
at start, Del-s → delete effect at start, W=0-s → weight is
zero at start, UQ del-s→ universally quantified delete effect
at start. Abbreviations for conditions and effects at end are
analogous. On the basis of the configuration of the condi-
tions and effects of the operator op, the leaf nodes assign a
classification: either op is safe or it is unsafe (respectively,
“OK” and “X” in the tree). The leaves of the tree marked
with “OK” represent all the possible cases in which we ac-
cept an operator as safe. Green labels in the figure link these
cases with the five categories of safe operators described
above. Close to the corresponding branches of the tree, we
also give a graphical representation of the configuration of
the operator’s conditions and effects. It is worth noting that
a few of the operators in the tree are quite bizarre and un-
likely to appear in practice. For example, operators of Type
1 (such as IsIe) could not even be executed without required



concurrency – some other operator would have to reduce the
weight back to zero in the middle. Nevertheless, we have
included these operators in the tree for completeness.

Guess, Check and Repair Algorithm
As with other related techniques (Gerevini and Schubert,
2000; Helmert, 2009), our algorithm for finding invariants
implements a guess, check and repair approach. We start
from a simple set of initial candidates and use the decision
tree in Figure 1 to evaluate if each candidate C is an invariant.
If we reach a failure leaf for any operator op in the domain,
before discarding C, we identify what features of op threaten
C and exploit this knowledge for creating new candidates
that are guaranteed not to be threatened by the same opera-
tor op. These new candidates need to be checked against the
invariance conditions and might fail due to different threat-
ening operators. The tree in Figure 1 associates, whenever
possible, a set of fixes to dead leaves.

When we create the set of initial candidates, we ig-
nore constant predicates (Edelkamp and Helmert, 1999), i.e.
predicates whose atoms have the same truth value in all the
states (for example, type predicates). In fact, they are triv-
ially invariants and so typically not interesting. Among the
modifiable atoms, we use initial predicates with the follow-
ing characteristics: the set Φ contains only one atom φ and
the set V contains only one counted variable. The candi-
date Cat = 〈{at(truck,loc)}, {truck}, {loc}〉 is
an example of an initial candidate. This choice comes from
experience and is the same as for other related techniques
(Helmert, 2009).

Given an initial candidate, we test the safety of each op-
erator in the domain by traversing the decision tree in Fig-
ure 1. The main difficulty associated with traversing the tree
is that we can check the mutex constraints associated with
some branches of the tree only when we know what is the
type of each operator. The simplest way to handle this is to
make two iterations: the first to classify operators according
to types and the second to check the operators. However, we
follow a more efficient approach by checking most of the
operators during the first iteration, and just returning to do
the mutex checks for those operators that require them, af-
ter all of the operators have been classified. We apply the
following procedure:
1. Select a candidate invariant C and traverse the decision

tree T for each operator in the domain D.
2. If a node requiring a mutex check is reached for an op-

erator op, save op in a bucket for that mutex check and
proceed as if the mutex check succeeded.

3. Run the corresponding mutex checks for the operators in
the buckets.

4. At any point in the process, if a failure leaf node is
reached, discard the candidate C.

5. At any point in the process, if a fix leaf node is reached,
generate a new candidate for each possible fix, and start
the process over.
Step 2 in the above procedure classifies the operators ac-

cording to the six types described in the previous section.

Refining Candidates
The choice of how to fix a failed candidate depends on
the features of the operators that threaten it. More specif-
ically, given a candidate C = 〈Φ,F,V〉 that has been re-
jected because it is threatened by an operator op, we refine
C by picking a new atom φ, which is chosen on the basis of
the structure of op as explained below, and adding it to the
components’ set Φ of C. So, we obtain the new candidate
C′ = 〈{Φ∪ φ},F′,V′〉, which will not fail for the same rea-
sons as C, but might fail for different reasons. The new atom
φ must involve only the variables in F and at most one other
variable and must satisfy one of the following three criteria:

1. Fix SS: the atom φ unifies with a positive condition at
start and a delete effect at start of op.

2. Fix EE: the atom φ unifies with a positive condition at
end (or over all) and a delete effect at end of op.

3. Fix SE: the atom φ unifies with a positive condition at
start and a delete effect at end of op.

Given a candidate C and an instance γ, we apply fixes SS,
EE and SE in the following cases:

1. Fix SS when C is threatened by an operator op such that:
• op has an add effect at start or at end increasing the

weight of γ, but no delete effects or conditions involv-
ing γ either at start or at end (respectively, Leaf 8 and
Leaf 22 in the decision tree in Figure 1);
• op has the same configuration as safe operators of type

Ix or Qx, but it is actually unsafe because it does not
satisfy the mutex conditions that ensure the weight re-
mains within the cardinality set S = {0, 1} during its
execution (respectively, Leaf 14 and Leaf 21).

2. Fix EE when C is threatened by an operator op such that:
• op is of type 14, 21 and 22 just described above;
• op has the same configuration as safe operators of type

Us, but it is actually unsafe because it does not satisfy
the mutex conditions that ensure the weight remains
within the cardinality set S = {0, 1} during its exe-
cution (Leaf 16);

3. Fix SE when C is threatened by an operator op of type
14, 21 and 22 just described above.

As an example, let us take the Logistics domain and the
operator unload-truck, shown in the figure below.

unload-truck(?package ?truck ?loc)

(in ?package ?truck)
w=1

w=0

(not (in ?package ?truck)) (at ?truck ?loc)

w=1

Considering the candidate Cat =
〈{at(package,loc)}, {package}, {loc}〉, we
see that operator unload-truck threatens Cat be-
cause it increases the weight at end without decreasing
it or checking that the weight is zero. If we traverse the
tree in Figure 1 guided by the conditions and effects
of the operator unload-truck, we reach leaf 22.



Add-s
Add-e

ok

Y N

N, D
W=0-oe

Y N
ok

Ie UQ Del-e

ok
Qe

N

W=1-oe

Del-e

Y

N

Xok
Be

N

W=0-s
Y

mutex-IS (I,Q)s
mutex-IE Us-(I,Q)x-(I,Q)e

Y N

Fix SS, EE, SE
X

N

ok
W=1-s

Del-s

Y N

Y

N
Y N

ok N

Fix EE 
M-SS, M-EE

Y NDel-e

Y N

X

Y N

X

(19)

(20)

(17)
(18)

(21)

(22)

X

X

X

mutex-IS (I,Q)s

mutex-IS (I,Q,B)s
mutex-IE Us-(I,Q)x-(I,Q,B,U)e

mutex-IS (I,Q)s
mutex-IE Us-(I,Q)x-(I,Q,U)e

 ok
Ue

 Qx
ok

Y

Us

Ix

W=0-s

Y

UQ Del-s

Y N

NY

W=1-s
N

Fix SS
XDel-s

N

X

Y

Add-e

W=0-e ok

UQ Del-e

W=1-oe

Del-e

Y N

N

X

X

N

Y

ok

N

N

ok

Y

Y

Y

ok

Is

Qs

Bs

(I,Q,B)sIe

(1)

(I,Q,B)sQe

(2)

(I,Q,B)sBe
(3)

(4)

(I,Q,B)s

Y

(5)

(6)

(7)
(8)

(a)

(b)

(c)

N

(9)

(10)

(11)

(12)

(13)
(14)

(15)
(16)

(23)

Types:
N = Inert
D = Decreasing
I = Increasing
B = Balanced
U = Unbalanced
Q = Quantified

mutex-IE Us-(I,Q)x-(I,Q)e

w=0

add
.....

∀ del
.....

add

del
add

w=1.....

w=0

add

∀ del
add

deladd

w=1

w=0

add

del add
w=1

deladd

w=1

∀ del add

w=0

add
......

del
add

w=1
......

∀ del
add

......

Fix 
SS, EE, SE

Fix 
SS, EE, SE
M-SS, M-EE

UQ Del-s

Figure 1: Decision Tree T for checking whether an operator op is safe w.r.t an instance γ of a candidate C.

Although this is a failure leaf, it indicates that, before
discarding Cat, we can try to apply fixes SS, EE and
SE. Fix SS can be actually used in this case because
the atom φ =in(?package ?truck) appears both
in the positive conditions at start and in the delete ef-
fects at start. Therefore, we add the candidate Cat/in =
〈{at(package,loc), in(package,truck)},
{package}, {loc, truck}〉 to the list of candidates to
check. By evaluating the new candidate Cat/in against the
invariance conditions, we will conclude that Cat/in is in fact
an invariant.

If a candidate C is discarded because an operator op of
type Us or Qx does not satisfy the mutex checks as re-
quested, we have two additional options for fixing C. In par-
ticular, if op is of type Us and is not mutex-IS with an op-
erator opi of type Is or Qs, then we create new candidates
by picking an atom φ that must involve only the variables in
F and at most one other variable and satisfy the following
criterium:
4. Fix M-SS: φ unifies with a positive condition at start and

a delete effect at start of opi. In such a way, opi becomes

of type Bs.

If op is not mutex-IE with an operator opi of type (I,Q)e
or (I,Q)x, then we create new candidates by: i) applying Fix
M-SS so as to make opi of type Us and ii) picking an atom
φ that must involve only the variables in F and at most one
other variable and satisfy the following criterium:

5. Fix M-EE: the atom φ unifies with a positive condition
at end (or over all) and a delete effect at end of opi. In
such a way opi becomes of type Be.

Finally, if op is of type Qx and is not mutex-IS with an
operator opi of type Is or Qs, then we create new candidates
by applying Fix M-SS; if op is of type Qx and is not mutex-
IE with an operator opi of type (I,Q)e or (I,Q)x, then we
create new candidates by applying Fix M-EE.

Experimental Results
In this section, we present some experimental results for the
invariant synthesis technique just discussed. The current ver-
sion of the algorithm is implemented in the Python language.



The experiments were conducted by using a 2.53 GHz Intel
Core 2 Duo processor with a memory of 4 GB.

Figure 2 presents the invariants that the algorithm finds
for the temporal domains of the IPC-2008. Each invariant is
enclosed in curly brackets where the predicate names indi-
cate the components of the invariant, numbers not enclosed
in square brackets indicate the position of the fixed vari-
ables in the list of arguments of the corresponding predi-
cate and numbers enclosed in square brackets indicate the
counted variables. For example, {in 0 [1], at 0 [1]} indi-
cates the invariant having {at(package,location)
in(package,vehicle)} as components, package as
a fixed variable, and {location,vehicle} as counted
variables. Next to each invariant, we report how many oper-
ators of each type we found during the synthesis of that in-
variant. The most common cases are: Type 23, which means
that the operator does not even potentially threaten the in-
variant because it is inert or decreasing, and Type 15, which
corresponds to the usage of a renewable resource. We also
found a few operators of type 6c, which correspond to bal-
anced operators at start. If an invariant was obtained by ap-
plying a fix, then we report what type of fix was used. From
Figure 2, we can conclude that the temporal domains of the
IPC-2008 are fairly well constructed. There are no instances
of operators of type Ue, which would likely correspond to
malformed renewable resources, and there are not many do-
mains that include universally quantified conditions or ef-
fects. In examining additional domains from previous IPCs,
we have seen more variability in the types of operators. We
found operators of types 6c, 11, 15, and 23. Additional oper-
ators of types 8, 12, 16, 17, 18, and 22 were found while ex-
amining candidate invariants that were ultimately rejected.

Table 1 reports the number of invariants (# INV), num-
ber of invariants obtained by applying fixes (# FIX) and
run time (RT) for generating invariants for the temporal do-
mains of the IPC-6, IPC-5, IPC-4 and IPC-3 when the Tem-
poral Invariant Synthesis (TIS) just discussed is employed.
The table shows that the computational time is negligible,
as there is no significant delay associated with either check-
ing a broad set of configurations in the operators’ conditions
and effects or performing the mutex checks. On the other
hand, these features allow us to find a more comprehensive
set of invariants than related techniques, as evidenced by the
first two columns of Table 1, which compare the number
of invariants found by the TIS with those found by a Sim-
ple version of the Invariant Synthesis (SIS). The SIS rep-
resents a simple generalization of Helmert’s invariant syn-
thesis (Helmert, 2009) to the temporal case. In particular, it
uses the cardinality set S = {1} instead of cardinality set
S = {0, 1} and does not perform any mutex checks, which
means that it considers safe only balanced operators of type
Bs and Be. Table 1 shows how the number of invariants
found by TIS is significantly greater than those found by
SIS in many domains.

Finally, Table 2 shows a comparison between the number
of state variables obtained by instantiating invariants for do-
mains of the IPC-6 coming from a Naive Invariant Synthesis
(NIS), which basically produces a state variable with two
truth values (true and false) for each atom in the domain,

Domains # INV SIS # INV TIS # FIX TIS RT TIS

Crew Planning-IPC-6 0 3 0 0.0054
Elevators-Num-IPC-6 0 2 1 0.0025
Elevators-Str-IPC-6 0 3 1 0.0037
Modeltrain-Num-IPC-6 3 7 1 0.0089
Openstacks-Adl-IPC-6 2 7 4 0.0043
Openstacks-Num-IPC-6 4 10 6 0.0054
Openstacks-Num-Adl-IPC-6 2 6 4 0.0030
Openstacks-Str-IPC-6 4 11 6 0.0073
Parcprinter-Str-IPC-6 5 7 2 0.0126
Pegsol-Str-IPC-6 0 2 1 0.0008
Sokoban-Str-IPC-6 0 3 1 0.0033
Transport-Num-IPC-6 0 3 1 0.0030
Woodworking-Num-IPC-6 2 7 3 0.0167
Openstacks-IPC-5 2 7 4 0.0048
Pathways-IPC-5 0 0 0 0.0003
Pipesworld-IPC-5 0 8 7 0.0266
Rovers-IPC-5 4 9 0 0.0142
Storage-IPC-5 0 3 2 0.0071
TPP-IPC-5 0 1 0 0.0006
Trucks-IPC-5 0 2 2 0.0055
Airport-IPC-4 2 2 0 0.0399
Pipesworld-NT-IPC-4 0 4 4 0.0162
Pipesworld-T-IPC-4 0 8 7 0.0270
Satellite-IPC-4 0 2 1 0.0027
UMTS-4 0 0 0 0.0079
Depots-IPC-3 0 6 5 0.0113
DriverLog-IPC-3 0 2 2 0.0051
ZenoTravel-IPC-3 0 1 1 0.0031
Rovers-IPC-3 4 9 0 0.0137
Satellite-IPC-3 0 2 1 0.0027

Table 1: Number of invariants (# INV), number of invariants com-
ing from fixes (# FIX) and run time (RT) for generating invariants
for the temporal domains of the IPC-6, IPC-5, IPC-4 and IPC-3
by using the Temporal Invariant Synthesis (TIS) and the Simple
Invariant Synthesis (SIS).

the Simple Invariant Synthesis (SIS) just described, and our
Temporal Invariant Synthesis (TIS). In many domains the
TIS produces a significant reduction in the number of state
variables in comparison with the other two techniques. In six
instances of Elevators-str, Sokoban-str, and Transport-Num
the reduction is greater than an order of magnitude.

Conclusions and Future Work
In this paper, we presented a technique for automatically
synthesizing invariants starting from temporal planning do-
mains expressed in PDDL2.2. Our technique builds on
Helmert’s invariant synthesis (Helmert, 2009), but extends
it to apply to temporal domains and also identifies a broader
set of invariants. This is achieved by considering the cardi-
nality set S = {0, 1} instead of S = {1} and by analyzing
the entire structure of an operator to assess its safety with
respect to an invariant. Finding a wider set of invariants al-
lows us to synthesize a smaller number of state variables to
represent a domain. All the temporal planners that use state
variables to represent the world greatly benefit from dealing
with a relatively small number of state variables.

Our technique can be incorporated in any translation
from PDDL2.2 to a language based on multi-valued state



crewplanning‐strips:
{unused  [0]}    t‐15: 1, t‐23: 22
{unused 0}   t‐15: 1, t‐23: 22
{currentday 0 [1]}   t‐15: 1, t‐23: 22

elevators‐strips:
{passengers 0 [1]}   t‐15: 2, t‐23: 478
{li?‐at 0 [1]}   t‐15: 4, t‐23: 476
{passenger‐at 0 [1], boarded 0 [1]}
t‐15: 2, t‐23: 478 Fix SS

modeltrain‐numeric:
{next‐train 1 [0], first‐train‐in‐head‐segment 0}
t‐6c: 2, t‐23: 384 Fix SS
{switch‐exit 0 [1]}   t‐15: 1, t‐23: 385  
{switch‐entrance 0 [1]}    t‐15: 1, t‐23: 385 
{tail‐segment 0 [1]}      t‐6c: 2, t‐23: 384
{head‐segment 0 [1]}   t‐6c: 2, t‐23: 384
{idle  [0]}   t‐15: 8, t‐23: 378
{idle 0}    t‐15: 8, t‐23: 378

openstacks‐adl:
{stacks‐avail  [0]}    t‐15: 2, t‐23: 43 
{waiLng  [0], started  [0], shipped  [0]}
t‐15: 2, t‐23: 43 Fix SS
{waiLng 0, started 0, shipped 0}  
t‐15: 2, t‐23: 43 Fix SS
{started  [0], waiLng  [0]}    t‐15: 4, t‐23: 44 Fix SS
{started 0, waiLng 0}   t‐15: 1, t‐23: 44 Fix SS
{waiLng  [0]}    t‐23: 45
{waiLng 0}    t‐23: 45

parcprinter‐strips:
{uniniLalized }   t‐23: 41
{Lmepoint 0 [1], locaLon 0 [1]}    
t‐15: 26, t‐23: 15 Fix SS
{notprintedwith 0 1 [2]}   t‐23: 41
{notprintedwith 0 2 [1]}   t‐23: 41
{notprintedwith 1 2 [0]}   t‐23: 41
{notprintedwith 0 1 2}   t‐23: 41
{hasimage 0 1 [2], notprintedwith 0 1 [2]}
t‐15: 4, t‐23: 37 Fix SS

pegsol‐strips:
{free 0, occupied 0}  t‐15: 1, t‐23: 31 Fix SS
{occupied  [0]}  t‐15: 1, t‐23: 31

sokoban‐strips:
{at 0 [1]}    t‐15: 3, t‐23: 269
{at 1 [0], clear 0}   t‐15: 3, t‐23: 269 Fix SS
{clear  [0]}  t‐15: 3, t‐23: 269

transport‐numeric:
{ready‐loading  [0]}  t‐15: 2, t‐23: 64
{ready‐loading 0}   t‐15: 2, t‐23: 64
{in 0 [1], at 0 [1]}   t‐15: 3, t‐23: 63 Fix SS

woodworking‐numeric:
{unused 0, wood 0 [1]}  t‐15: 2, t‐23: 14  Fix SS
{unused 0, treatment 0 [1]}  t‐15: 7, t‐23: 9 Fix SS
{unused 0, surface‐condiLon 0 [1]}  
t‐15: 4, t‐23: 12 Fix SS
{unused  [0]}    t‐23: 16
{unused 0}   t‐23: 16
{idle  [0]}    t‐15: 9, t‐23: 7
{idle 0}    t‐15: 9, t‐23: 7

Figure 2: Invariants for the temporal domains of the IPC-6.

Domains # SV
NIS IIS FIS

Crew Planning - p10 112 112 106
Crew Planning - p20 305 305 261
Crew Planning - p30 510 510 498
Elevators-Num - p10 193 193 21
Elevators-Num - p20 578 578 34
Elevators-Num - p30 1216 1216 49
Elevators-Str - p10 203 203 21
Elevators-Str - p20 592 592 34
Elevators-Str - p30 1240 1240 49
Openstacks-Adl - p10 97 97 57
Openstacks-Adl - p20 166 166 97
Openstacks-Adl - p30 235 235 137
Openstacks-Num - p10 71 71 29
Openstacks-Num - p20 121 121 49
Openstacks-Num - p30 171 171 69
Openstacks-Num-Adl - p10 85 85 57
Openstacks-Num-Adl - p20 145 145 97
Openstacks-Num-Adl - p30 205 205 137
Openstacks-Str - p10 83 83 29
Openstacks-Str - p20 142 142 49
Openstacks-Str - p30 201 201 69

Domains # SV
NIS IIS FIS

Modeltrain-Num - p10 397 205 191
Modeltrain-Num - p20 396 204 188
Modeltrain-Num - p30 910 418 390
Parcprinter-Str - p10 641 641 431
Parcprinter-Str - p20 1273 1273 673
Parcprinter-Str - p30 669 669 439
Pegsol-Str - p10 66 66 33
Pegsol-Str - p20 66 66 33
Pegsol-Str - p30 66 66 33
Sokoban-Str - p10 490 490 72
Sokoban-Str - p20 127 127 37
Sokoban-Str - p30 1131 1131 75
Transport-Num - p10 1292 1292 36
Transport-Num - p20 1292 1292 36
Transport-Num - p30 1772 1772 64
Woodworking-Num - p10 143 143 95
Woodworking-Num - p20 239 239 151
Woodworking-Num - p30 251 251 158

Table 2: Number of state variables (# SV) for temporal domains of the IPC-6 that are obtained by instantiating invariants coming from: (1)
a Naive Invariant Synthesis (NIS); (2) a Simple Invariant Synthesis (SIS); and (3) our Temporal Invariant Synthesis (TIS).



variables. In particular, we have used the temporal in-
variant synthesis described here in our translator from
PDDL2.2 to NDDL, EUROPA2’s domain specification lan-
guage (Bernardini and Smith, 2008). The use of this trans-
lator, which includes the temporal invariant synthesis de-
scribed here as one of its core steps, has facilitated the test-
ing of EUROPA2 against domains of the IPCs originally ex-
pressed in PDDL2.2.

In the future, we intend to use information about types,
which are available in PDDL2.2 domains, for identifying a
more comprehensive set of invariants. As an example, con-
sider the domain Depot . Our invariant synthesis produces
the following invariants (we use here the same abbreviated
notation as in Figure 2 to indicate invariants):

{clear [0]}

{on 1 [0], in 0 [1], clear 0, lifting 1 [0]}

{lifting 0 [1], available 0}

{in 0 [1], on 0 [1], lifting 1 [0]}

{in 0 [1], clear 0, lifting 1 [0]}

{in 0 [1], lifting 1 [0], at 0 [1]}

Intuitively, the predicate (at ?truck ?place) should
give rise to an invariant because a truck cannot be at two
different places at the same time. However, it is not in-
cluded in the list of invariant reported above. This is because
the current algorithm ignores type definitions, considers the
predicate (at ?locatable ?place), where truck,
hoist, pallet, and crate are all locatable, and for-
mulates the candidate C = 〈{at(locatable,place)},
{locatable}, {place}〉. Since the operator Drop
threatens C due to the unsafe add effect at end
(at ?crate ?place), the candidate fails and the
above mentioned invariant is never recognized. Clearly, if
we enrich the algorithm with the ability to use informa-
tion about types, it will consider the more specific candidate
C′ = 〈{at(truck,place)}, {truck}, {place}〉 and
accept it as an invariant since it is not threatened by any op-
erator.

Acknowledgments
We thank Malte Helmert and Gabriele Röger for making
their code for translating PDDL instances into FDR tasks
available.

References
Bernardini, S., and Smith, D. E. 2008. Translating pddl2.2.

into a constraint-based variable/value language. In Proc.
of the Workshop on Knowledge Engineering for Planning
and Scheduling, 18th International Conference on Auto-
mated Planning and Scheduling (ICAPS’08).

Blum, A., and Furst, M. 1997. Fast planning through plan-
ning graph analysis. Artificial Intelligence 90:281–300.

Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engel-
hardt, B.; Mutz, D.; Estlin, T.; B.Smith; Fisher, F.; Barret,
T.; Stebbins, G.; and Tran, D. 2000. ASPEN - Automated
planning and scheduling for space missions operations. In
6th International Conference on Space Operations.

Edelkamp, S., and Helmert, M. 1999. Exhibiting knowledge
in planning problems to minimize state encoding length.

In Proc. of the Fifth European Conference on Planning
(ECP’99), 135–147.

Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th international plan-
ning competition. Technical Report 195, Albert-Ludwigs-
Universität Freiburg.

Fox, M., and Long, D. 1998. The automatic inference of
state invariants in tim. Journal of Artificial Intelligence
Research 9:367421.

Fox, M., and Long, D. 2003. PDDL 2.1: An extension to
PDDL for expressing temporal planning domains. Jour-
nal of Artificial Intelligence Research 20:61–124.

Frank, J., and Jónsson, A. 2003. Constraint based attribute
and interval planning. Journal of Constraints 8(4):339–
364. Special Issue on Planning.

Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying Plan-
ning and Scheduling as Timelines in a Component-Based
Perspective. Archives of Control Sciences 18(2):5–45.

Gerevini, A., and Schubert, L. 2000. Discovering state
constraints in discoplan: Some new results. In In Proc.
of the 17th National Conference on Artificial Intelligence
(AAAI-2000), 761–767.

Ghallab, M., and Laruelle, H. 1994. Representation and con-
trol in IxTeT, a temporal planner. In Proc. of the Second
International Conference on Artificial Intelligence Plan-
ning Systems (AIPS-94), 61–67. AAAI Press.

Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.

Helmert, M. 2009. Concise finite-domain representations
for pddl planning tasks. Artificial Intelligence 3(17):503–
535.

Kautz, H., and Selman, B. 1999. Unifying sat-based and
graph-based planning. In Proc. of the Sixteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
99), 318–325. Morgan Kaufmann Publishers Inc.

Muscettola, N. 1994. HSTS: Integrating planning and
scheduling. In Zweben, M., and Fox, M., eds., Intelligent
Scheduling. Morgan Kauffmann. 451–469.

Rintanen, J. 2000. An iterative algorithm for synthesizing
invariants. In Proc. of the Seventeenth National Confer-
ence on Artificial Intel ligence (AAAI-2000), 806–811.

Smith, D., and Jónsson, A. 2002. The logic of reachabil-
ity. In Proc. of the Sixth International Conference on AI
Planning and Scheduling (AIPS-02), 379–387.


