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Abstract— This paper demonstrates a novel optimization-
based approach to estimating fault states in a DC power system.
Potential faults changing the circuit topology are included along
with faulty measurements. Our approach can be considered
as a relaxation of the mixed estimation problem. We develop
a linear model of the circuit and pose a convex problem
for estimating the faults and other hidden states. A sparse
fault vector solution is computed by using l1 regularization.
The solution is computed reliably and efficiently, and gives
accurate diagnostics on the faults. We demonstrate a real-time
implementation of the approach for an instrumented electrical
power system testbed, the ADAPT testbed at NASA ARC. The
estimates are computed in milliseconds on a PC. The approach
performs well despite unmodeled transients and other modeling
uncertainties present in the system.

I. PROBLEM

We consider a DC (direct current) electric circuit with
sources, loads, and switching elements. Voltage and current
measurements are available at certain circuit locations. The
problem is to estimate, from the measurements, the fault
states of the circuit. The faults are defined as the deviations
from the nominal state. The source voltages or loads can
differ from their nominal values; voltage and current sensors
can be faulty; assumed open/closed states of relays and
breakers might differ from their actual states; short-circuit
and open-circuit faults are possible, including shorts to the
ground. We are interested in the case when several faults
might be present simultaneously; however it is known that
the fault state is a sparse vector, i.e., most of its components
are zero.

Let y ∈ <Nm be a vector of observations (measurements).
The fault states are described by a vector f ∈ <Nf . The
problem is: given the observations y, estimate faults f . The
states of the circuit (e.g., voltages and currents) are described
by a vector x ∈ <Ns and have to be estimated along with f .

Section III below describes a model of the form

0 = Ax + Bf + ξ, (1)
y = Cx + Df + η, (2)

where matrices A, B, C, D have appropriate dimensions.
The process noise vector ξ ∈ <Ns describes the modeling
error; the measurement noise η ∈ <Nm describes the
observation error. The state equation (1) and the observation
equation (2) are similar to linear state space model commonly
used in estimation, except the model (1), (2) is static.
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We compute an estimate of the fault vector f and the state
x by solving the quadratic programming (QP) optimization
problem

minimize
1
2
‖Ax + Bf‖2Q +

1
2
‖Cx + Df − y‖2R + λT |f | (3)

where ‖z‖2Q = zT Qz; Q, R are positive definite matrices;
|f | is the component-wise absolute value; λ is a vector with
positive components. The last term provides a weighted l1
penalty for the unknown components of vector f .

Optimization-based estimation of electrical power systems
is well established area, e.g., see [1], [19] for an overview.
More discussion is given in Section II. The novelty of the
formulation (3) is that the faults f are introduced in a
structured way separately from the states x. Another novelty
is in use of quadratic penalty for mismatches ξ, η in the
model (1), (2), which are usually small; at the same time an
l1 penalty is used for the fault vector f , which is usually large
and sparse. We demonstrate that such formulation allows for
efficient and accurate estimation of the faults. Additional
theoretical justification of the proposed approach can be
found in [29].

Problem (3) can be interpreted as Bayesian Maximum A
posteriori Probability (MAP) estimation of x and f given
y. The MAP formulation assumes Gaussian noises ξ ∼
N(0, Q−1) and η ∼ N(0, R−1) in (1), (2). A Laplacian
prior distribution is assumed for the fault vector f . No prior
is assumed for the state x. The noise covariance matrices R
and Q in (3) and the fault prior parameters λ can be thought
of as parameters that describe the distributions, or as the
tuning knobs of the estimation algorithm.

The main benefit of using l1 regularization in (3) is that for
properly selected weights λ the solution vector f is sparse,
with many zero components. See [6], [9], [27], [28] for the
recent work and further references on sparse solutions using
l1 regularization. The sparsity property matches well the
needs of fault estimation and detection. Another advantage
of formulation (3) is that linear constraints can easily be
added to the problem. Section V considers such constraints
describing a prior knowledge of certain voltages and currents
being positive.

The proposed optimization-based estimation approach
works as follows. At each time step, the observed data are
collected into vector y and QP problem (3) is formed. The
estimate f is then computed using a QP solver. The QP
problem (3) can be solved very fast, in milliseconds for
hundreds of states, using modern interior-point methods, see
[5]. Because the problem is convex, attaining the global
optimum is guaranteed.



Today electric utilities use EMS (Energy Management
Systems) to monitor, control, and optimize the transmission
and generation facilities. Optimization-based estimation is
presently used for power systems monitoring, see [19], [1].
On-line QP optimization is also used in Model Predictive
Control systems broadly employed in industry, see [24].

II. MOTIVATION

This work was initially motivated by the interest of the
aerospace systems community in Integrated Vehicle Health
Management (IVHM). IVHM systems collect data from
sensors and electronic systems of aircraft (or spacecraft)
and diagnose fault conditions or provide predictive warning
of incipient faults. Diagnostic estimation for Electric Power
Systems (EPS) is important because of trend towards more
electric aircraft; wiring problems on aging aircraft (short
circuits, arching) are important as well, e.g., see [12], [26].

There is a large body of prior work in diagnostics of
electric power systems. Much work is focused on specific
electric power system units and elements, such as electric
machines, motors, generators, inverters, batteries, solar cells,
relays, and other. Work on integrated diagnostics of power
distribution systems with many interconnections is primarily
focused on AC (alternating current) power distributions sys-
tems, e.g., [8]. A few papers consider large vehicle electric
systems: integrated diagnostics of international space station
is discussed in [11]; diagnostics of marine vehicle power
system in [16]; integrated diagnostics and prognostics of
aircraft electric system in [12].

The integrated diagnostics architectures in the above
cited papers have a degree of commonality. First, there is
subsystem-level (unit-level) diagnostics logic, which is often
discussed under a name of ‘software agents’. The subsystem-
level diagnostics is specific to a particular subsystem type.
Second, there is ‘integrated reasoning’ or ‘sensor fusion’ to
integrate the subsystem-level diagnostics; typically, AI-type
computational reasoning is used.

Our formulation is related to the approaches in
optimization-based estimation of power system state that
were developing since 1969, see [4], [2] and the books [1],
[19] for an overview. The state of AC power system includes
the power flows and phase angles in all branches. The state
vector is determined by least squares fit of the nonlinear
equations relating the state variables and the measurements
(e.g., voltage or current magnitudes). The problems are
generally nonconvex and an efficient solution with global
convergence is difficult to achieve.

Most of the power system estimation work is not oriented
towards fault diagnostics. However, a portion of this work
explicitly takes into account possibility of outliers in the
measurements data (an equivalent of the sensor fault) and
unknown states of the circuit breakers (might be caused by
a fault). A number of papers discuss using l1 model fit error
instead of the quadratic error for countering and detecting
bad measurement data, e.g., [10], [14], also see [2], [4]. The
papers [25], [13], [7] look into the problem of determining

network topology errors. In [25], [13] mixed integer prob-
lems for determining topology are formulated and different
relaxation approaches are pursued. These papers pursue
nonconvex optimization problems and use many heuristics.
The approach of [7] and several follow-on papers is based
on thresholding Lagrange multipliers in the quadratic fit
problem with topology-induced constraints.

Recent use of GPS for time synchronization made possible
accurate phase measurements and harmonic state estimation
of power systems, e.g., see [17]. Harmonic models are linear
in quadrature components of voltages and currents, which
makes them close to the models in this paper. An approach
using l1 penalty in harmonic source estimation is discussed
in [15].

This paper considers a DC power system with linear
constitutive equations (1), (2). We show how the fault pa-
rameters can be chosen to preserve the linearity, including
the topology changing faults. For the convex optimization
problem (3) the solution can be obtained in one call to
a standard QP solver, without a need for tweaking. Our
approach can be extended to fault estimation in harmonic
power system analysis, where the equations are linear.

We implement the approach for the ADAPT EPS testbed.
This testbed was developed and is maintained at NASA
ARC as an experimental platform for research in integrated
systems health management, diagnostics, and prognostics.
More detail on ADAPT can be found in [23]. Over the
last few years ADAPT was used in preliminary studies
of diagnostics approaches based on AI-type reasoning and
several heuristics, see [3], [18]. These approaches might
take from several seconds to many minutes for computing
a single diagnosis and have difficulty with diagnosing mul-
tiple simultaneous faults. We demonstrate that the proposed
optimization-based estimation approach works very well for
ADAPT. The solution is computed in milliseconds. We
use a static DC model and there might be a concern that
the transients in the circuit would cause a problem. Our
experimental results show that the transients are not an issue.

In summary, the contributions of this paper are as follows.

1) The paper formulates an estimation approach for a DC
power system that is specifically aimed at detecting and
diagnosing faults and uses a structured fault model.
An l1 penalty is used for the faults and a quadratic
penalty is used for other mismatches in the equations.
The approach allows modeling of faulty measurements
and of faulty circuit topology data. It produces a sparse
fault vector estimate.

2) The proposed approach is conceptually simple and
works reliably. A small number of tuning parameters is
required. The implementation is amenable to existing
QP solver technology.

3) The approach is verified to perfom well for multiple
faults in extensive simulations.

4) The approach is sucessfully validated in ADAPT
testbed experiments and demonstrated suitable for real-
time on-line implementation at millisecond timescale.
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III. MODEL

This section formulates a linear model of the form (1), (2)
for a DC circuit. Section V details an instance of such model
for the ADAPT EPS.

We consider a static circuit comprised of current sources
(batteries), switching elements, and loads. The available mea-
surements include currents, voltages, and switching element
states (open/closed). Ground faults and other short-circuit
faults can be included in the model as switching elements
that are thought to be open, but could fail into a closed state.

A. State equations

We formulate the Sparse Tableau Analysis (STA) equa-
tions of the nodal DC circuit in a standard way, e.g., see
[22]. The STA model is sufficiently general and is the core of
most standard small-signal linear analysis of electric circuits.
This section extends the STA to include a linear model of
the faults. We consider several types of faults. Some of them
or all of them, might be present and need to be considered.

The circuit has NN nodes; each node has a voltage ek with
respect to the ground. The circuit contains NB branches,
each has current jl and voltage drop vl. The signs of the
currents and the voltage drops are relative to the directions
of respective branches (graph edges). The incidence matrix
G ∈ <NN ,NB has entries gkl = 1 if the branch l leaves
the node k, gkl = −1 if it enters node k, and gkl = 0
otherwise. The STA equations comprise Kirchhoff’s Current
Law (KCL), Kirchhoff’s Voltage Law (KVL), and Branch
Constitutive Equations (BCE), which are discussed below.

The KCL equations for the currents j ∈ <NB can be
expressed as

SBGj = 0 (4)

where SB ∈ <NI ,NN is a selection matrix that un-selects
the boundary nodes of the circuit for which KCL does not
hold (the current might flow to or from the outside of the
modeled circuit).

The KVL relates voltage drops v ∈ <NB to the node
voltages e ∈ <NN

GT e = v (5)

Finally, the BCE relate the branch voltage drop and the
current as

−KIj + KV v = fG (6)

where KV and KI are diagonal matrices. A diagonal entry of
KV could be conductance; in that case the respective entry
of KI is unity. Alternatively, a diagonal entry of KI could
be a branch resistance; in that case the respective entry of
KV is unity. The components of the fault vector fG describe
the faults in the branches.

For a branch fault, (5) and (4) still hold while (6) would
have an error fG,j = f∗,j . A straightforward relaxation
approach is to assume fG,j = sjf∗,j , where sj = 1 if the
fault is present and sj = 0 otherwise. We could then solve
the least square fit problem assuming sj is a real and adding

a sparsity-inducing l1 penalty for vector s. It is easy to see
that such approach is equivalent to (3).

We consider a few types of faults. The fault of switching
element k, which is thought open but might be actually
closed is expressed in the form (6) as

−jk = fG,k, (7)

where the fault parameter fG,k is a current through the
switching element. The current should be zero if the switch-
ing element is open.

The fault of a switching element k, which is thought closed
can be expressed in the form (6) as

vk = fG,k, (8)

where the fault parameter fG,k is a voltage drop at switching
element. The voltage drop should be zero if the switching
element is closed.

Finally, consider faults of the DC loads. We assume that
the load resistance is known. The load fault can be described
as the load current being different from what is given by the
BCE. The BCE model (6) for branch k with the load fault
is

gkvk − jk = fG,k, (9)

where gk is the branch conductance and fG,k is a load current
deviation from the model, which is indicative of the fault.

B. Observation equations

The STA equations need to be complemented by obser-
vation equations. We model sensor faults through additive
offsets caused by these faults.

We assume that the observations include the currents
jmeas ∈ <MI measured by current sensors and voltages
emeas ∈ <MV measured by voltage sensors. The respective
observation equations have the form

emeas = SV e + fV , (10)
jmeas = SIj + fI , (11)

where fV and fI are fault offsets, SV and SI are selection
matrices.

We also count the known voltage sources esrce ∈ <MS and
grounded nodes egrnd ∈ <MG (we assume that egrd = 0)
among the observations. Though no on-line voltage sensing
might be available for the source voltages, there might be
an off-line knowledge of these. The respective observation
equations have the form.

esrce = SSe + fS , (12)
egrnd = SGe, (13)

where fS is the fault offset, SS and SG are selection
matrices. We do not consider ground voltage faults though
it would be easy to add these to the model.

The voltage offset fV , the current offset fI , and the
source (battery voltage) offset fS are unknown vectors of
appropriate dimensions.

3



C. STA model with faults

To integrate the STA equations, introduce a state vector
x ∈ <2NB+NN and a matrix A ∈ <2NB+Nin,2NB+NN as

x =




j
v
e


 , A =




SBG 0 0
0 I −GT

KI KV 0


 , (14)

Let f be a vector of all fault parameters.

f =
[
fT

G fT
V fT

I fT
S

]T ∈ <NF , (15)

where NF = NB + MV + MI + MS . Introduce the
observation vector y ∈ <My , where My = MI + MV +
MS + MG, and the observation matrix C ∈ <My,2NB+NN ,
The combined observations can be expressed as

y =




jmeas

emeas

esrce

egrnd


 , C =




SI 0 0
0 0 SV

0 0 SS

0 0 SG


 , (16)

Introduce matrix B ∈ <2NB+Nin,NF describing the fault
impact on the states x and matrix D ∈ <Ny,NF describing
the impact of the sensor faults on the observation vector y

B =




0 0 0 0
0 0 0 0

BG 0 0 0


 , D =




0 BI 0 0
0 0 BV 0
0 0 0 BS


 , (17)

The faults enter equations linearly. After pulling together
state equations (4), (5), (6) and observation equations (10),
(11), (12), and (6) and adding noises ξ and η we obtain the
linear model of the form (1), (2). In this model x, y, A, and
C are given by (14), (16); the faults are defined by (15) and
the fault-related matrices B, D in (1), (2) have the form (17).

For zero noises ξ = 0, η = 0 the STA equations (1), (2)
make a system of total My + 2NB + Nin equations in the
2NB + NN unknown components of vector x. In a special
case of My = NN−Nin (where NN−Nin is the number of
the edge nodes), the system is square and a unique solution
can be found. This paper considers the redundant observation
case of My ≥ NN −Nin.

IV. VERIFICATION

This section presents an application to ADAPT. We first
describe a model of the testbed, then discuss results of
simulation based on the model. Next section presents the
experimental results.

A. Modeling

We are considering the part of the ADAPT testbed shown
in Figure 1, see [23]. The battery voltages V1 and V2 are
assumed to be known (they are included with the components
of the observation vector y). There are six branch resistances
(loads) that are assumed to be known as well: these include
two internal resistances of the batteries RB1, RB2; two DC
load resistances RDC1, RDC2; and two equivalent resis-
tances RAC1, RAC2, of the AC load branches (including the
AC/DC inverters). The resistances of the circuit breakers and
relays are assumed to be zero in the closed state and infinity

Fig. 1. Data tags for the ADAPT cicuit

V1 V2 RBAT1 RBAT2 RAC1 RDC1 RAC2 RDC2
25.84 24.83 0.1 0.1 6 10 4 20

TABLE I
ADAPT SIMULATION PARAMETERS

in the open state. The circuit parameters were identified from
experimental data.

As illustrated in Figure 1, there are a total of six current
sensors in the circuit, which correspond to the components
of the current measurement vector jmeas in (11). There are a
total of ten voltage sensors corresponding to the components
of the voltage measurement vector emeas in (10)

The branch constitutive equations (6) are defined by the
states of the switching elements (six relays and six circuit
breakers). These states indicating whether the switching
element is open or closed are collected from the embedded
switching element sensors in ADAPT.

B. Simulation

The incidence matrix of the circuit was defined in accor-
dance with Figure 1. The circuit parameters (source voltages
and resistances) used in the simulation are summarized in
Table I. The notation is the same as in Figure 1.

The simulations used the STA model (1), (2), (14), (16),
(15), (17) with zero noises ξ and η. In the simulations, the
model matrices were formed as described above, with the fol-
lowing variation. The current and voltage measurements were
ignored by assuming MI = 0, MV = 0, and eliminating the
vectors jmeas, emeas, from the observation equations (11),
(10). The resulting system of equations has 2NB +NN = 54
states x and 2NB +Nin +MS +MG = 54 equations, where
NB = 18, NN = 18, Nin = 12, MS = 2, and MG = 4. The
MS source voltages and MG ground voltages (6 at all) define
NN − Nin = 6 boundary conditions. For given switching

ESH141A ESH144A ESH160A ESH241A ESH244A ESH260A
open open closed closed closed closed

TABLE II
BASIC RELAY CONFIGURATION IN THE SIMULATION

4



element states, the resulting square system was solved to
determine the state vector x.

The switching element states define the BCE matrices
KI and KV in (6), (14). The basic switching element
configuration in the simulation is shown in Table II. All
breakers are assumed closed. The relays are configured to
connect Battery 2 to all DC and AC loads; Battery 1 is
disconnected from the loads.

The simulation input is the fault state f , which we
generated as a sparse random vector. The simulation output
includes the original switching element states, (before the
applied faults), and the sensor measurements (computed
after applying the faults). The switching element faults were
applied by inverting the respective open/closed states before
calculating the BCE matrices KI , KV , and the STA matrix
A (14) in accordance with (7), (8).

The load faults were applied by modifying the respective
load resistances in BCE (6). The resistances shown in Table I
were modified by a given percentage in the range from -50%
(-100% corresponds to a short circuit) to +50%. The source
faults were applied by modifying the the respective value
of esrc in (16). The source voltages shown in Table I were
modified by a given percentage in the range from -50% (-
100% corresponds to zero battery voltage) to zero (no change
in the voltage).

The current sensor measurements and the voltage sensor
measurements at the simulation output were modified by
adding offsets proportional to the respective fault magni-
tudes. The fault offsets for current sensors were distributed
in the range from -1A to 1A. The fault offsets for the voltage
sensors were distributed in the range from -12V to 12V.

In the simulations, all parametric faults were constrained
to be at least 20% of the respective maximum magnitude.
This avoids small faults that are below the noise level.

C. Diagnostics of simulated data

The diagnostics algorithm uses model (1), (2). The main
differences with the simulation model are as follows.
• The diagnostics model includes faults. The fault model

is described by (15), (17).
• In the diagnostics model, the switching elements are

assumed to be in the nominal state. If a fault is present,
the actual state differs from the nominal.

• The observations (2), (16) in the diagnostic model are
the currents and the voltages distorted by noise η.

• The observation and process noises ξ and η in the
diagnostic model (1), (2) are described through the
inverse covariance matrices R and Q.

The fault estimation algorithm is implemented in Matlab.
The dimension of fault vector f (15) is NF = NB + MV +
MI + MS = 38. The fault estimates were computed by
solving QP problem (3) and then thresholding the absolute
values of the fault vector f . The tuning parameters are
chosen as follows. All variables were made nondimensional:
the currents were divided by a scaling parameter 3 A, the
voltages, by the scaling parameter 10 V. The noise inverse
covariance matrices Q and R were set up by multiplying

1) Battery 1 circuit breaker ISH136 (BATT 1 CB) thought closed fails
open. This fault is misdiagnosed for an offset of BATT 1 voltage
sensor E135. The reason is that no current is flowing through BATT
1 CB; the relays are open and an open CB disconnects Branch
1. Floating voltage of the sensor E135 floats is the only observed
indication of the fault.

2) DC/AC Inverter 1 (INV 1) input CB thought closed fails open.
This fault is misdiagnosed for an offset of INV 1 load current. The
diagnosis confuses the faults of the current sensor and CB; both
change inverter load current. The faulty part of the circuit is pointed
out correctly.

3) DC/AC Inverter 2 (INV 2) input CB thought closed fails open. This
fault is mis-diagnosed for an offset of INV 2 load current. Same
comment as 2.

4) EY141A relay thought open fails closed. This fault is mis-diagnosed
for three faults: offset of BATT 1 output current sensor, two relays
EY141A and EY144A thought open fail closed. The actual fault
is detected correctly; in addition to that, there are false positives.
The change in the current balance could be attributed to each of the
diagnosed faults.

5) BATT 1 CB output voltage is offset. The actual fault is detected
correctly, but there is false positive: EY136 CB thought closed is
misdiagnosed failing open. No current flows through the CB and it
failing open cannot be excluded based on the data observed. See #
1 for more explanation.

TABLE III
SINGLE FAULT DIAGNOSTICS ERRORS

unity matrices of respective size by the weight of 100; this
corresponds to assuming a standard deviation 0.1 for the
noises. The fault covariance matrix Λ was set to a unity
matrix times 2. The thresholds for detecting the faults were
set to 0.05, except the 0.2 threshold for detecting switching
element faults.

The problem (3) is transformed into a standard form of a
QP problem by substituting f = f+ − f−, where f+ ≥ 0,
f− ≥ 0. The decision variables include the vectors x of
dimension 2NB+NN = 54 and vectors f+, f− of dimension
38 each. There are 130 decision variables at all. The QP
problem was solved using Mosek, see [20]. The solution
takes about 20 msec on a 2 Ghz Wintel laptop computer.
This is suitable for real-time implementation and much faster
than 0.5 sec sampling time for ADAPT data collection.

In the simulation experiments, a series of fault patterns
were seeded (input into the simulation) to generate the sensor
data. The estimation algorithms are applied to the simulated
sensor data and the diagnosis of the fault state is compared
to the seeded faults. In great majority of the simulation runs,
the estimation algorithms diagnose the seeded faults exactly.
We will focus on the cases when the diagnosis was inexact.

The first series of tests was to seed all faults, one fault
at a time. There were 5 imperfect diagnoses encountered
among the 38 total cases, one case for each fault component.
While imperfect, these diagnoses were not, strictly speaking,
incorrect. They can be explained by examining the circuit
diagram in Figure 1. The imperfect diagnoses are discussed
in Table III.

The second series of tests was to seed two faults at a time.
(In each test, all but two components of vector f were zeros).
In a majority of cases, a perfect diagnosis was achieved.
Each time one of the five single faults from Table III was
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1) EY160A relay thought closed fails open and EY236 CB thought
closed fails open. EY236 CB failing open is the only fault diagnosed.
EY236 CB failing open disconnects the battery and powers down the
rest of the circuit; this makes the rest of the diagnostics ineffective.
Many more cases like that were encountered.

2) E242 voltage sensor is offset and EY244A relay thought closed fails
open. EY244A relay failing open is diagnosed correctly, the second
fault is misdiagnosed for EY260A relay thought closed failing open.
Open EY244A relay disconnects the load. This is similar to Case #
1 above. The failures in an unpowered branch can not be diagnosed
correctly.

3) EY241A relay thought closed fails open and load resistance is offset.
Only the first fault is diagnosed. Again, the failures in the unpowered
branch are not observable.

4) EY141A and EY241A relays thought open fail closed. EY141A
relay thought open failing open is diagnosed correctly, the second
fault is misdiagnosed for EY144A relay thought open failing closed.
Nominally, BATT 2 should connected while BATT 1 is disconnected.
The diagnosis that the fault causes BATT 1 to connect is correct. The
fact that BATT 2 is disconnected and the states of relays and breakers
are diagnosed imprecisely. This is because the parallel connection of
the batteries makes the currents through them very sensitive to the
(close) battery voltages and (small) internal resistances.

5) Resistances of the two DC loads are offset. Only offset on DC 1
Load is diagnosed. The fault is below the threshold. As Table I,
shows, the undetected DC Load 2 has the highest resistance (the
least power) of all the loads. Increasing the threshold, or decreasing
the l1 regularization penalty Λ makes the diagnostics more sensitive
and could allow to detect this fault. At the same time, more false
positives will be generated.

TABLE IV
TWO-FAULT DIAGNOSTICS ERRORS

encountered, the diagnosis was imperfect as explained above.
Besides the expected imperfections of diagnostics caused by
the single faults from Table III, combinations of two faults
introduce new ways for the diagnostic algorithm to be in
error.

About 200 two-fault cases were randomly generated out
of the entire set of the 38 · 37/2 = 703 double fault cases.
The results were manually examined and are instructive.
The cases of the diagnostic algorithm not working perfectly
are discussed in Table IV. While imperfect, most of these
diagnoses are not incorrect.

In summary, the proposed approach works quite well in
simulation. In a majority of the cases the diagnosis is perfect.
In the great majority of all cases, the problematic circuit
branch is diagnosed correctly. The remaining imperfect di-
agnoses make for less than 5% of all cases and are caused
by high or low problem sensitivities to some of the fault
parameters.

The ADAPT circuit includes DC/AC inverters and AC
loads. The inverter together with the AC load circuit can be
modeled through an equivalent DC resistance. A linearized
model can be fitted into a number of observations of the
steady state inverter draw currents and the inverter supply
voltages for the given load. A suitability of such simplified
inverter model is confirmed by the experimental results.

V. VALIDATION

The ADAPT testbed is an instrumented EPS with two
sets of computer controls. The data from the first set are

called “Observer” data and are used for testing diagnostic
algorithms. These data were used in this work. The second,
independent set of controls, known as “Antagonist” is em-
ployed in creating fault conditions for the Observer. These
controlled fault conditions are known and used as a reference
when evaluating diagnostic method performance. More detail
on ADAPT can be found in [23].

Once verified in the simulation, the algorithms were inte-
grated with ADAPT and validated in experiments.
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Fig. 2. Observed experimental data
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Fig. 3. Estimated fault states for the experimental data

One data set used for the algorithm testing is displayed
in Figure 2. The data was collected at 2 Hz rate (0.5 sec
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interval). In the experiment, all loads are initially unpowered.
Then relays EY244A and EY260A close to connect Battery
2 and to power AC Load 2. After a transient, the DC/AC
Inverter 2 powers the AC load nominally. After several
seconds, relay EY260A fails (opens). This disconnects the
load. The faulty relay sensor continues to show that the
relay is closed. The described scenario is complemented by
a voltage sensor fault (offset ramp). Figure 2 shows 9 plots
of selected observed signals, those with a transient and those
later found faulty. The remaining 27 channels out of the
36 monitored show constant values, e.g., battery voltages or
circuit breaker states (all closed) and are not plotted.

When applying the diagnostic algorithms to the data,
the model parameters were set as follows. The source
voltages were determined from the initial data segment
with no current flow through the batteries. The voltages
are VBAT1=25.84 V and VBAT2=24.83 V. The DC/AC
Inverter 2 load model was determined from the data segment
corresponding to nominal steady state operation of the load
as RINV2=2.8871 Ohm.

Though the data contains transients, the diagnostic algo-
rithm assume a steady state model at each step. The steady-
state model used for diagnosis neglects the transients. Despite
that, the algorithms are able to detect and diagnose the seeded
faults. The results are illustrated in Figure 3, which shows
the fault estimates corresponding to the signals in Figure 2.
The diagnosis was imperfect during the inverter transient
(which was diagnosed as a fault) in the circuit branch that
became unpowered. The reason for large deviation transient
in the inverter current is that the model assumes a steady-
state condition in which all of the loads in load bank 2 are on
after EY260 is closed. However, at the start of the inverter
transient at 27.5 seconds, the inverter takes approximately 6
seconds before power appears at the output. Then, it takes an
additional 14 seconds before all the loads are turned on and
the equivalent resistance reaches the full RAC2 value that is
used in the model.

The lower right plot shows an estimate of the fault
current (deviation from the nominal current) for the DC/AC
Inverter 2 with the AC load. Switching of the relays and
inverter excites very large current transients. These causes
false positives for current sensor faults. The middle plots in
Figure 3 show three false positive occurrences for one sensor
and two for another, one time-sample duration each. The
timeline of the events and the diagnostic estimation results
with a commentary are detailed in Table V.

VI. CONCLUSIONS

Overall, the discussed diagnostics approach works very
well for the DC power system applications exemplified by
ADAPT. The diagnosis is accurate when this can be ex-
pected. The diagnostic algorithm uses a straightforward nodal
DC circuit model with a minimum of detail. The algorithm
has a few well-defined parameters that need to be set up
and takes milliseconds to compute results. The approach has
been demonstrated to work well with ADAPT experimental
data despite ignoring the transients and modeling a complex

Time: Event Description
t=24: Control action Relays EY244A and EY260A are closed to

power the load
t=27.5: Start of INV2
transient

INV2 Input CD ISH262 is suspected open;
INV2 Load is suspected to be off-nominal

t=34: Sensor fault oc-
curs

E242 voltage offset starts ramping down from
zero

t=46.5: Sensor fault de-
tected

E242 voltage offset is detected during the
inverter transient

t=47.5: Nominal regime Inverter reaches a steady state
t=59.5: Relay fault oc-
curs

Relay EY260A opens and cuts off the branch
with the DC/AC inverter load and E242 volt-
age sensor

t=60: Relay fault de-
tected; sensor fault goes
undetected

Relay EY260A failure is detected; E242 volt-
age offset fault in the cut-off branch stops
being detected

t=65.5: Relay fault de-
tected, sensor fault un-
detected, false detection
of a second relay fault

The large offset of voltage measurement E242
is now interpreted as a voltage across relay
EY244A in the disabled branch indicating
that the relay failed open.

TABLE V
TIMELINE OF EVENTS IN EXPERIMENTAL DATA AND FAULT ESTIMATION

circuit of DC/AC inverter with a load by a single DC
resistor. The approach might briefly mistake some of the
transients for the faults, but location of such false positives
is correctly attributed to the source of the transients. The
approach is clearly suitable for on-line implementation in
practical monitoring or diagnostic systems.
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