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Abstract

Monitoring, diagnosis, and control of com-
plex physical systems require tracking their
dynamic behavior during system operation.
Effective tracking requires an accurate sys-
tem behavior model, and sufficient measure-
ments to estimate system state. However,
models suffer from lack of accuracy, and mea-
surements are noisy, making the tracking task
difficult. Dynamic Bayes Nets (DBNs) pro-
vide a general framework for modeling and
reasoning about complex systems under un-
certainty. However, reasoning with DBNs
can be computationally expensive. This pa-
per presents an approach to improve the
tracking efficiency by partitioning the system
DBN into smaller, conditionally independent
DBN factors. We present a methodology of
deriving the DBN factors by analyzing the
structural observability of dynamic systems
and demonstrate the effectiveness of our fac-
toring approach for accurate, yet more effi-
cient, tracking of dynamic systems.

1 Introduction

Monitoring, diagnosis, and control of complex systems
require tracking their dynamic behavior during sys-
tem operation. Effective tracking requires an accurate
model of system behavior, and sufficient measurements
to estimate system state. Moreover, to be useful in
real-world scenarios, the tracking approaches must ac-
count for process and observation noise. Hence, many
tracking approaches are stochastic (Murphy, 2002).

In general, stochastic tracking approaches use a
discrete-time invariant nonlinear dynamic system
model: Xt+1 = f(Xt,Ut)+Vt, and Yt+1 = h(Xt+1)+
Wt+1, where, X, U, and Y denote vectors of (hid-
den) state, input, and measured random variables in

the dynamic system, respectively, and V and W de-
note vectors of process and observation noises, respec-
tively. Subscript t represents a variable at time t. Vari-
ables X, Y, and U are also considered stochastic ran-
dom variables, and a Gaussian distribution is assumed
around each random variable, and the functions f(·)
and h(·) are assumed to be deterministic. Given this
formulation, the tracking problem involves determin-
ing P (Xt+1|Y0:t+1).

For linear time-invariant (LTI) systems, Kalman fil-
ters (KFs) (Murphy, 2002) can be used to solve the
tracking problem recursively, under the assumption
that the process and observation noises are zero mean
multivariate Gaussian noises with covariance Q and
R, respectively. A LTI system is modeled as: Xt+1 =
AXt + BUt + VVt, and Yt+1 = CXt+1 + WWt+1,
where, A, B, C, V, and W are matrices with appropri-
ate dimensions. Given this formulation, the behavior
tracking using Kalman Filter is set up in two phases.
The prediction phase involves: X̂−t+1 = AX̂−t + BUt,

and P−t+1 = APtAT + Q, where, P− and P denote a
priori and a posteriori estimate error covariance, re-
spectively, and X̂− and X̂ denote a priori and a poste-
riori state estimates, respectively. The update phase
of KF involves: Kt+1 = P−t+1CT (CP−t+1CT + R)−1,

X̂t+1 = X̂−t+1 + Kt+1(Yt+1 − CX̂−t+1), and Pt+1 =

(1−Kt+1C)P−t+1, where K is the Kalman gain.

In order for the KF to give accurate state estimates,
the system must be observable.

Definition 1. (Samantaray and Bouamama, 2008)
(Observability). A system is observable if its initial
state variables, Xt0 , at time t0, can be derived from
the knowledge of inputs, Ut0:tf , and outputs, Yt0:tf , in
the time interval [t0, tf ], where tf is the current time.

A KF built around a system with unobservable states
will simply not work, because, by definition, an unob-
servable state is one about which no information can
be obtained using the measurements. An nth-order
LTI system is observable if its observablity matrix,



O =
[
Ct, (CA)t, . . . , (CAn−1)t

]t
is of full rank, i.e.,

rank(O) = n.

KFs can be extended to Extended Kalman Filters
(EKFs) for nonlinear system, under the assumption
of zero-mean multivariate Gaussian distributions for
process and measurement error (Murphy, 2002). Dy-
namic Bayesian Networks (DBNs) provide the most
general method for modeling the dynamics of complex
systems in the presence of noise and sensor inaccu-
racies (Murphy, 2002). DBN-based state-estimation
methods apply to nonlinear systems and arbitrary
probability distributions, and hence, generalize KFs
and EKFs. A DBN is a 2-slice Bayesian network, that
compactly models a dynamic system. The nodes of a
DBN represent random variables, and directed links
capture the causal relations between these variables at
a time point, and across consecutive time steps. How-
ever, inference algorithms using DBNs is exponential
in the number of state variables, and for nonlinear sys-
tems and non-Gaussian noise models, analytic, closed
form, exact estimation methods may not exist. Ap-
proximate estimation algorithms, e.g., particle filters
(PF) (Koller and Lerner, 2001), are therefore used
for tracking dynamic behavior and state estimation.
However, these approaches also require large compu-
tational resources.

This paper proposes an approach to improve the com-
putational efficiency of DBN-tracking schemes by par-
titioning the DBN into factors that represent indepen-
dent subsystems conditioned on a set of measurements,
and applying tracking algorithms to each factor in-
dependently. Specifically, we generate DBN factors
by expressing some of the state variables as algebraic
functions of measurements converted to system inputs.
As a result, the across0time links directed to wards
these state variables are replaced by intra-time links
from the measurements. This makes some of the state
variables in the generated factors conditionally inde-
pendent from the state variables in other factors, given
the selected measurements. Hence, the state estima-
tion in one factor becomes independent of the other
factors, and the state estimation for the individual fac-
tors can be carried out separately, thus increasing the
overall computational efficiency.

Recall that estimation of state variables from the sys-
tem measurements works only if the physical sys-
tem is observable. The traditional control-system-
theoretic schemes for analyzing observability apply to
linear systems and depend on the numerical values of
the system parameters. The approach presented in
this paper employs the bond graph (BG) modeling
paradigm (Karnopp et al., 2000) to establish structural
observability (Sueur and Dauphin-Tanguy, 1991, 1989)
for each DBN factor. Structural observability does not

depend on the numerical values of the system param-
eters, and applies to nonlinear systems where the non-
linearities are in the system components, and not in
the system structure.

2 Related Work

Our distributed inference approach, applicable to
continuous-time, dynamic, physical systems, im-
prove upon other distributed inference schemes ex-
isting in literature, such as, Boyen-Koller (BK) algo-
rithm (Boyen and Koller, 1998) and Distributed decen-
tralized extended Kalman filters (DDEKF) (Mutam-
bara, 1998). The BK algorithm creates the individual
factors by eliminating causal links between weakly in-
teracting subsystems. The belief state derived from
the individual factors is an approximation of the true
belief state, but the error in approximation is bounded.
However, the bounds may not be accurate for infer-
ence of physical systems. Heuristic techniques for au-
tomatically decomposing a DBN into factors are pre-
sented in (Frogner and Pfeffer, 2008). This approach
results in lower estimation errors, but the computed
factored belief state is still an approximation. The Fac-
tored Particle filtering (FPF) scheme (Ng and Peshkin,
2002) further reduces estimation errors by applying
the PF scheme to the BK factored inference approach.
Our factoring scheme is not arbitrary, but a result of
thorough analysis of structural observability, and the
factors exactly preserve the overall system dynamics in
factored form, and our estimation approach uses the
PF scheme on each factor. Hence, we produce accurate
state estimates efficiently.

Moreover, in BK algorithm, the results from different
factors are integrated together to get globally correct
inference, thereby still having the issue of single point
of failure. DDEKFs represent an approach for subdi-
viding the estimation problem into smaller subprob-
lems. However, in DDEKFs, each local component re-
quires both measurements and state variable estimate
from other components to correctly estimate its states.
As a result, inaccuracies in one component can affect
the estimation in other components. Our estimation
approach for each individual factor is more robust to
failures in other factors (as long as the required mea-
surements are available) because the random variables
in a factor are conditionally independent of those in
all other factors, given a subset of the measurements.

3 Modeling Dynamic Systems using
DBNs

A two-step systematic procedure for generating DBNs
for physical systems has been developed: (i) gener-



(a) Schematic. (b) Bond graph.

(c) Temporal causal graph.

Figure 1: Spring-mass-damper system models.

ate a temporal causal graph (Mosterman and Biswas,
1999) from the bond graph (BG) model of the system,
and (ii) generate a DBN from the TCG (Lerner et al.,
2000).

The bond graph (BG) modeling paradigm provides
a framework for domain-independent, energy-based,
topological modeling of physical processes. The nodes
of a BG include energy storage (capacitors, C, and
inertias, I), dissipation (resistors, R), transformation
(gyrators, GY , and transformers, TF ), source (effort
sources, Se, and flow sources, Sf), and detection (ef-
fort detectors, De, and flow detectors, Df) elements.
Nonlinear systems are modeled by modulated versions
of BG elements whose values are functions of other sys-
tem variables (e.g., MSe, denotes a “modulated Se”).

Bonds, drawn as half arrows, with associated effort,
e, and flow, f , variables, represent the power interac-
tion pathways between the bond graph elements, such
that e × f defines the power transferred through the
bond. 0- and 1-junctions represent idealized connec-
tions for lossless energy transfer between two or more
BG elements.

Fig. 1(b) shows the BG of a simple tenth-order spring-
mass-damper (SMD) system (shown in Fig. 1(a)). In
the mechanical domain, I elements are masses, C el-
ements are springs, R elements are dampers, flows
represent velocities (e.g., f2 denotes the velocity of
mass m1, and f6 denotes the relative velocity between
masses m2 and m1), and efforts represent forces, (e.g,
e3 denotes the force on spring k1). The velocities f∗2 ,
f6, f∗9 , f12, f∗15, f18, f∗21, f24, f∗27 and the force e5
are the available sensors (measurements) in this SMD
model. The force, e28, impressed upon mass m5 is a
system input. In this system, the BG parameters are
assumed to be constant.

The temporal causal graph (TCG) of a system, system-
atically derived from its BG (Mosterman and Biswas,
1999), captures the causal and temporal relations be-

tween system variables through directed edges and
their labels. Causality establishes the cause and ef-
fect relationships between the e and f variables of the
bonds determined by constraints imposed by the in-
cident BG elements. Of special interest are the en-
ergy storage elements, which can either impose inte-
gral (preferred) or derivative causality. The sequential
causal assignment procedure (SCAP) systematically
assigns the causality in a BG (Karnopp et al., 2000).
The nodes in a TCG correspond to the power variables
of the system BG model. Fig. 1(c) shows the TCG for
the SMD system. The direction of a TCG edge and its
label are based on causality. For example, for a C ele-
ment in integral causality, e = (1/C)

∫
fdt, and hence

the TCG edge directed from the flow to the effort has
a label dt/C, with dt denoting a temporal relation-
ship between f and e. For a C element in derivative
causality, the TCG edge is directed from the effort to
the flow, since f = Cde/dt, and has a label C/dt. The
system DBN can be constructed from its TCG in in-
tegral causality using the method outlined in (Lerner
et al., 2000).

(Murphy, 2002) defines a DBN as D = (X,U,Y),
where X, U, and Y are sets of stochastic random vari-
ables that denote (hidden) state variables, system in-
put variables, and measured variables in the dynamic
system, respectively. Graphically, a DBN is a two-slice
Bayesian network, representing a snapshot of system
behavior in two consecutive time slices, t and t + 1.
Each DBN time-slice represents the Markov process
observation model, P (Yt|Xt,Ut) derived from causal
links Xt → Yt and Ut → Yt, where X ∈ X, Y ∈ Y,
U ∈ U, and subscript t represents a variable at time
t. Similarly, across-time causal links Xt → Xt+1,
Xt → X ′t+1, and Ut → Xt+1, where X ′ ∈ X, represent
the Markov state-transition model, P (Xt+1|Xt,Ut).

After we identify the TCG nodes, N, which include all
state variables, measured variables, and system inputs;
for each N ∈ N, we instantiate nodes Nt and Nt+1 in



the consecutive time slices of the DBN. Then, for ev-
ery pair of variables, N,N ′ ∈ N that are algebraically
related, causal links Nt → N ′t and Nt+1 → N ′t+1 are
constructed in each DBN time slice. For every pair
of variables, N,N ′ ∈ N having an integrating rela-
tion (i.e., a delay), the across-time Nt → N ′t+1 link
is added to the DBN. Fig. 2(a) shows the DBN for
the spring-mass-damper (SMD) system, where thick-
lined circles denote state variables, thin-lined circles
denote observed variables, and squares denote input
variables. If a state variable N is directly measured,
two new nodes N∗t and N∗t+1 are created in the DBN,
and links Nt → N∗t and Nt+1 → N∗t+1 are established.
For example, since the state variable f2 of SMD is also
measured, the SMD DBN has nodes f∗2t and f∗2t+1

.

4 State Estimation Using Particle
Filters

The general iterative solution of the
DBN state estimation problem is
P (Xt+1|Y0:t+1) = αP (Yt+1|Xt+1,Ut) ×∑

Xt
P (Xt+1|Xt,Ut)P (Xt|Y0:t), where Y0:t de-

notes measurement readings from time 0 to t, and α is
the normalizing factor (Murphy, 2002). In this work,
we choose PF as our iterative algorithm for DBN
state estimation (Koller and Lerner, 2001). PF is a
sequential Monte Carlo method that approximates
the belief state of a system using a weighted set of
samples, or particles (Arulampalam et al., 2002).
The value of each particle describes a possible system
state, and its weight denotes the likelihood of the
observed measurements given this particle’s value.
As more observations are obtained, each particle is
moved stochastically to a new state, and the weight
of each particle is readjusted to reflect the likelihood
of that observation given the particle’s new state.

5 Structural Observability

To ensure accurate tracking of system behavior for
diagnosis, the system must be observable, i.e., all
its state variables can be correctly determined given
the available measurements (Samantaray and Boua-
mama, 2008). We describe a more general property
of structural observability, and show how this prop-
erty holds for nonlinear systems. Recall that an nth-
order LTI system is observable if its observability ma-

trix, O =
[
Ct, (CA)t, . . . , (CAn−1)t

]t
is of full rank,

i.e., rank(O) = n. Therefore, system observability is
a function of the numeric values of the system pa-
rameters. Structural observability alternatively de-
fines observability as a function of the system struc-
ture (Sueur and Dauphin-Tanguy, 1991, 1989). This
notion of structural observability holds for a class of

(a) Full DBN. (b) 4-factored
DBN.

(c) 2-factored
DBN.

Figure 2: Factorings of the Spring-mass-damper DBN.

structurally equivalent systems. If a system is struc-
turally observable, but its O matrix is not of full rank,
i.e., rank(O) < n, the full rank can be restored by
perturbing the values of elements of its A and C ma-
trices (Sueur and Dauphin-Tanguy, 1991). The struc-
tural observability properties of a system can be de-
termined by analyzing its BG (Sueur and Dauphin-
Tanguy, 1991). The notion of structural rank (struct-
rank) is central to this analysis.

Definition 2. (Sueur and Dauphin-Tanguy, 1991)
(Structural Rank). Structural rank of a matrix is de-
fined as the maximal rank of this matrix as a function
of its free parameters, taking into account the relations
between parameters.

For example, struct-rank

([
−R/L1 R/L2

R/L1 −R/L2

])
= 1,

since the second row of the matrix is linearly depen-
dent on the first row.

Given the BG model of a system with matrices A,
B, C, and D, the system is structurally observable
iff (Sueur and Dauphin-Tanguy, 1991): (1) every dy-
namical element of the BG in integral causality is
causally connected to a measurement sensor, and (2)
struct-rank([At Ct]t) = n, where n is the number of
state variables in the system.

Intuitively, condition 1 is satisfied if for each indepen-
dent decoupled subsystem, at least one dynamical el-
ement in integral causality is causally connected to a
measurement. Condition 2 is satisfied if the causality
of every I and C element initially in integral causality
can be inverted to produce a valid derivative causality
assignment for the BG model. In some situations, De



and Df elements may have to be changed into their
dual form to assign consistent derivative causality to
the BG. This procedure for manipulating the BG to di-
rectly determine the structural rank of matrix [At Ct]t
has been presented in (Sueur and Dauphin-Tanguy,
1991).

The proposed method for analyzing structural observ-
ability for linear systems can be extended for nonlinear
systems when the nonlinearities can be expressed by
making the I, C, and R values as functions of other
variables, since the notion of junction structure re-
mains unchanged from that of linear systems. How-
ever, this equivalence does not hold when the nonlin-
earities are linked to the system structure (Sueur and
Dauphin-Tanguy, 1991).

6 Factoring DBNs For Efficient State
Estimation

6.1 Problem Statement

Given a DBN D = (X,U,Y), our goal is to factor D
into the maximal number of conditionally independent
DBN Factors (DBN-Fs), Di = (Xi,Ui,Yi), i ∈ [1,m],
such that each DBN-F is observable. Observability and
conditional independence of each DBN-F is a necessary
condition for ensuring efficient and accurate state es-
timates when the estimation algorithm is applied to
each DBN-F separately.

Definition 3 (DBN Factor). A DBN Factor (DBN-
F), Di = (Xi,Ui,Yi), i ∈ [1,m], of DBN D =
(X,U,Y) is a smaller DBN such that (i)

⋃
Xi ⊂ X,

(ii)
⋃

Yi ⊂ Y, (iii)
⋃

Ui = U
⋃

(Y − ∪Yi), and
(iv) eachDi is conditionally independent from all other
DBN-Fs given the inputs, Ui.

Definition 4 (Conditionally Independent DBN-F).
Any DBN-F, Dj = (Xj ,Uj ,Yj), of a global DBN,
D = (X,U,Y), is conditionally independent from
all its other DBN-Fs Dk = (Xk,Uk,Yk), s.t. k 6=
j, k ∈ [1,m] given Uj if (i) P (Xjt+1 |Xt−n:t ,Ut−n:t) =

P (Xjt+1 |Xjt−n:t ,Ujt−n:t), and (ii) P (Yjt |Xt ,Ut) =

P (Yjt |Xjt ,Ujt).

Definition 5 (Observable DBN-F). A DBN-F, Dj =

(Xj ,Uj ,Yj) is observable if the underlying subsystem
it represents is structurally observable.

Example: Fig. 2(b) shows four DBN-Fs, D1 =
({f2, e3, e7}, {f∗9 }, {f∗2 , f6, e5}), D2 = ({e13},
{f∗9 , f∗15}, {f12}), D3 = ({e19}, {f∗15, f∗21}, {f18}), and
D4 = ({e25, f27}, {f∗21, F}, {f24, f∗27}). As shown in
Defn. 3, ∪i∈[1,4]Xi ⊂ X, ∪i∈[1,4]Yi ⊂ Y, ∪i∈[1,4]Ui =
U∪ (Y−∪Yi). Also, each DBN-F shown in Fig. 2(b)
is conditionally independent of all other DBN-Fs. For
example, in the global DBN shown in Fig. 2(a), the

value of e13 at time step t + 1 depends on f9, e13,
and f15 at time step t, and f2 and e7, among oth-
ers, at time step t − 1, and so on. However, DBN-F,
D2, shown in Fig. 2(b), is conditionally independent of
all other DBN-Fs given its inputs f∗9 and f∗15 because
the values of its state variable, e13, and measurement
variable, f12, at time t, do not depend on any variable
external to D2.

6.2 Overview of Factoring Approach

Our procedure for factoring a DBN involves replacing
one or more of its state variables by algebraic functions
of at most r measured variables, Yr, where r is a user-
specified parameter. Once we express a state variable
in terms of Yr, i.e., X = g−1(Yr), considering Yr to
be inputs, we delete every Xt → Xt+1, Ut → Xt+1,
Xt → Yt link, and replace X with g−1(Yr). Then, we
restore an intra-time slice link g−1(Yr)→ Yt for every
Xt → Yt, such that Yt /∈ Yr. The across-time links
into Xt are not restored, since g−1(Yr) can be com-
puted independently at each time step. The replacing
of sufficient number of state variables in terms of mea-
surements, and the subsequent removal of across-time
links involving these state variables produces condi-
tionally independent DBN-Fs.

The goal of our factoring scheme is to generate the
maximal number of DBN-Fs that are each observable.
A DBN can be factored into maximal number of ob-
servable DBN-Fs by (i) generating maximal number
of (possibly unobservable) conditionally independent
factors by replacing every state variable which can
be determined as an algebraic function of at most r
measurements, and (ii) merging unobservable DBN-
Fs from this maximal factoring into other factors till
all of the generated factors are observable.

Example: For the DBN shown in Fig. 2(b), assum-
ing r = 1, measurements, f∗2 , f∗9 , f∗15, f∗21, and, f∗27,
each depend on the single state variable, f2, f9, f15,
f21, and, f27, respectively. In this system, f15 is di-
rectly measured, so f∗15 = g(f15) trivially exists, and
so does the function h = g−1. (More generally, a
set of measured variables may be needed to estab-
lish the value of a state variable, and h will be a
function derived from f and g.) Hence, as shown
in Fig. 2(b), if we replace f15 with the measure-
ment, f∗15, we no longer need variables f9, e13, f15, e19,
and f21 to compute f15. Thus the across-time links
to f15 can be removed. So, given the measurement
f∗15, the DBN-Fs D2 = ({e13}, {f∗9 , f∗15}, {f12}) and
D3 = ({e19}, {f∗15, f∗21}, {f18}) are conditionally inde-
pendent. Repeating the above procedure and replacing
f9 and f21 yields the maximally factored SMD DBN,
shown in Fig. 2(b), which contains 4 DBN-Fs. The two
middle DBN-Fs in Fig. 2(b) are not observable, since



Algorithm 1 Generating factors of a DBN.

Input: System DBN, D
Generate maximal Factoring1 = {D1, D2, . . . , Dn}
SetOfFactorings = {Factoring1}
while true do

SetOfObsF = ∅; SetOfUnobsF = ∅;
for each Factoringi ∈ SetOfFactorings do

if every DBN-F in Factoringi is observable then
SetOfObsF = SetOfObsF ∪ Factoringi

else
SetOfUnobsF = SetOfUnobsF ∪ Factoringi

if SetOfObsF 6= ∅ then
BestFactoring = Factoringj ∈ SetOfObsF hav-
ing the most number of balanced DBN-Fs
exit

else
NextBestFactoring = Factoringj ∈
SetOfUnobsF having the most number of
unobservable DBN-Fs

SetOfFactorings = all possible pairwise mergings of
the DBN-Fs of NextBestFactoring

the single state variable in either of the two DBN-
Fs does not affect the observed variable. However,
the factoring generated by merging each unobservable
DBN-F to its observable neighbor (see Fig. 2(c)) re-
sults in a factoring where all DBN-Fs are observable.

6.3 The Factoring Algorithm

Our algorithm for generating maximal number of ob-
servable DBN-Fs from a given DBN is as follows: (i)
partition the DBN into maximal DBN-Fs, (ii) map
each generated DBN-F to a BG fragment (BG-F) and
analyze the structure of this BG-F to determine if the
DBN-F is observable, and (iii) merge every unobserv-
able DBN-F with other DBN-Fs so as the resultant
DBN-Fs may be observable, till all DBN-Fs are ob-
servable. These steps (shown in Algorithm 1) are pre-
sented in detail below. We assume that the system
to be factored is observable, as otherwise, no factoring
with only observable factors exist. Also, we assume
that we have sufficient sensors to allow factoring.

6.3.1 Step 1 - Generating Maximal Factoring

Given the user-specified parameter, r, we analyze the
system DBN to identify all state variables that are
algebraic functions of single measurements, or pairs
of measurements, or triples, and so on, up to r mea-
surements. Then we express these state variables in
terms of a subset of measurements, remove the state
variables, and all across-time links directed into them.
The maximally factored DBN for the SMD system is
shown in Fig. 2(b). However, a state variable is not ex-
pressed in terms of measurements if the removal of this
state variable does not generate any new factors. For
example, in Fig. 2(b), f2 is not replaced with measure-

Figure 3: Four-Factored SMD bond graph with im-
posed derivative causality.

Figure 4: Three-Factored SMD bond graph with im-
posed derivative causality.

ment f∗2 since this does not generate any new factors.

6.3.2 Step 2 - Testing Observability of
DBN-Fs

Given a DBN-F Di, we can test whether or not it is
observable by first mapping Di to a BG-F, and analyz-
ing this BG-F, Bi for structural observability. Before
mapping a Di to a Bi, we identify the state variables
in the global DBN that were removed to generate Di,
and the measurement variables these state variables
were replaced with. Given this information, the first
step of mapping a Di to a Bi is to replace the I or
C element (in the global BG) corresponding to every
state variable that was removed from the global DBN
to generate Di by a MSf or MSe element, respec-
tively, whose value is computed in terms of at most r
measurements. Then, we define Bi to be that fragment
of the system BG that lies between these newly intro-
duced MSf or MSe elements, as the BG is factored
into independent subsystems by these source elements.

Proposition 1. A BG may be factored into indepen-

Figure 5: Two-Factored SMD bond graph with im-
posed derivative causality.



dent BG factors B1, B2, . . . , Bn by replacing an I or
C element with a MSf or MSe element, respectively.

Proof: A capacitor C1’s constituent equation is eC1
=

1
C1

∫
fC1

dt. In the state-space formulation, fC1
can

be expressed in terms of other state variables. Hence,
any measurement or state variable that depends on
eC1

would, in turn, be dependent on fC1
, and possibly

every other state variable. Now, if fC1
can be mea-

sured, and we replace C1 with modulated MSeC1
=

g−1(fC1), the dependence between eC1 and all other
state variables is broken, and the BG is factored into
independent BG-Fs. The proof similarly follows for an
I element replaced with a modulated MSf . �

Example: The maximally factored SMD DBN has
four DBN-Fs (Fig. 2(b)), which correspond to the BG-
Fs shown in Fig. 3. The two outer BG-Fs are struc-
turally observable, as all their energy storage elements
can be assigned preferred derivative causality (albeit
by dualizing an effort sensor into a flow sensor, indi-
cated by the shaded background, in the first BG-F),
and every state variable affects at least one sensor. The
two BG-Fs in the middle, however, are not observable,
since, in each of these two BG-Fs, the single state vari-
able does not causally affect the flow sensor. Hence,
the maximal DBN factoring shown in Fig. 2(b) can-
not be used for accurate state estimation, and some of
the factors need to be merged to generate observable
DBN-Fs.

6.3.3 Step 3 - Merging Unobservable Factors

Unobservable DBN-Fs can be merged with other DBN-
Fs to generate an observable DBN-F. m DBN-Fs,
D1, D2, . . . , Dm, can be merged by restoring those
state variables and across-time links in the system
DBN that were replaced to generate D1, D2, . . . Dm.
The measurements that were used to compute these
state variables are also reintroduced.

Merging an unobservable DBN-F, D1, with another
DBN-F, D2, results in DBN-F, D1,2, which maps to
the BG-F, B1,2. The merging of D1 and D2 results
in the replacement of at least one source element in
B1 and B2 with a I or C element, and reintroduction
of at least one sensor element in the resultant B1,2.
Since, the reintroduced measurement sensors are di-
rectly connected to the reinstated I or C elements in
B1,2, condition 1 of structural observability is satisfied
for these reintroduced energy storage elements. More-
over, the new sensor can be causally linked to other I
or C elements that are not linked to any sensor ele-
ment, further aiding the satisfaction of condition 1 for
B1,2. Also, the greater are the number of sensors in
B1,2, the greater is the flexibility for dualizing these
sensors to satisfy condition 2.

Algorithm 1 shows how the merging procedure is in-
voked if a DBN-F in the maximally factored DBN is
not observable. In each iteration of this algorithm,
we create new factorings through all possible pair-
wise mergings of unobservable DBN-Fs, to create at
least one new factoring with all its DBN-Fs observ-
able. When multiple factorings are generated, we use
a heuristic to choose that factoring which has the most
number of balanced DBN-Fs with respect to state vari-
ables. If the merging step does not generate any fac-
torings with all its DBN-Fs observable, we select the
maximal factoring with the largest number of factors
and highest number of unobservable DBN-Fs, and gen-
erate the next set of factorings by pairwise merging of
unobservable DBN-Fs. This procedure is repeated till
we obtain at least one factoring where all the DBN-Fs
are observable. Since the system was initially observ-
able, continued merging will eventually result in a fac-
toring in which all DBN-Fs are observable, at worst
producing the original DBN model. Therefore, our
factoring algorithm terminates.

Example: The unobservable DBN-Fs, shown in
Fig. 2(b), can be merged in two possible ways to form
two different factorings. The factoring shown in Fig. 4
corresponds to a DBN-F generated by merging the two
central DBN-Fs, and is not unobservable (since capac-
itor k4 does not provide a consistent causal assignment
when it is assigned derivative causality). However, the
two BG-Fs shown in Fig. 5, and corresponding to the
DBN-Fs shown in Fig. 2(c), are observable, and hence,
we select this as our desired factoring.

6.4 Tracking using Factored DBNs

Given m observable DBN-Fs, D1, D2, . . . , Dm, we can
implement an inference algorithm on each DBN-F as
an independent process. In this work, we implemented
m PFs, one for each DBN-F. Each PF takes as inputs,
Ui, and estimates Xi based on Yi. Only measure-
ments

⋃
i Ui are communicated between PFs. The PF

for the DBN-F Di uses a |Xi|
|X| particles, where a is a

user-specified parameter. For m DBN-Fs,
∑

i |Xi| <
|X|, where X is the total number of states in the com-
plete system. Therefore, the complexity of tracking us-
ing each DBN-F is less than that of tracking using the
global DBN. Also, since the inference algorithms on
the different factors are executed simultaneously, the
total complexity of inference reduces to the complexity
of the PF with the maximum number of particles.

7 Experimental Results

For our experiments, we assumed all probability distri-
butions to be Gaussian, and all sensors to have white



Table 1: Estimation errors averaged over 10 runs
No. of Factors 1 2 4

Mean 0.1143 0.1381 0.1968
(Standard Deviation) (0.0360) (0.0470) (0.0314)

Table 2: Time taken for particle filter to complete es-
timation

No. of Factors 1 2 3 4
Time (s) 137.03 37.74 18.79 18.97

Gaussian noise with 0 mean and power 1 dbW. We
estimated the state variables using the DBN factor-
ings shown in Fig. 2(c) for 10 runs. Given m DBN-
Fs, Di = {Xi,Ui,Yi}, i = 1, 2, . . . ,m, such that X =
X1∪X2∪. . .Xm, for each run we computed the estima-

tion error: E = 1
|X|
∑

X∈X

(
1
T

∑T
t=0 (Xt −Xmodel

t )2
)

,

where T is the total simulation time, Xt denotes the
estimated value of state X at time t, and Xmodel

t de-
notes the actual value of state X at time t obtained
from the simulation model. Table 1 reports the mean
and standard deviation of errors obtained from each
factoring over all runs.

To demonstrate that the factoring scheme preserves
the system dynamics, we hypothesized the difference
in errors for the 2-factor and unfactored DBN would
not be statistically significant, and the error for the
4-factor DBN would be significantly larger than the
unfactored DBN. Further the difference in error for
the 2-factor and 4-factor DBNs would also be statis-
tically significant. We ran t-tests to establish signif-
icance of the differences. The tests for significance
indicated that the errors obtained using the 2-factor
DBN did not significantly differ from that obtained
using the unfactored DBN (p < 0.05), while those ob-
tained using the 4-factor DBN was significantly greater
(p < 0.05). The test of significance between the 2- and
4-factor DBN showed that the error in the 4-factor
DBN was significantly larger (p < 0.05). Therefore,
the 2-factor DBN preserves dynamics of the unfactored
DBN, whereas the 4-factor DBN, which has unobserv-
able factors, does not.

Table 2 shows the average time taken by the slowest
PF for each factoring to track system behavior for 1500
time steps. The time taken by a PF depends on the
number of particles it uses. In our experiments, the
number of particles used by a PF was proportional to
the number of states in the DBN factor the PF was
associated with. Hence, PF for unfactored DBN (with
1000 particles) took the most time, followed by the
PF on the larger DBN-F of the 2-factor DBN (with
500 particles). The least amount of time was taken by
the PFs applied to the 4-factor DBN, since its largest

DBN-F has 3 state variables, and hence, its PF used
300 particles.

8 Discussion and Conclusions

This paper presented an approach for factoring DBNs
based on structural observability. Each of the DBN
factors are conditionally independent from all other
factors given the measurements that are communi-
cated between them, thus preserving the dynamics
of the global system behavior. Experimental results
showed that factoring maintains inference accuracy in
DBNs while improving the efficiency of DBN inference
in the presence of sensor noise. Future work will focus
on investigating stochastic notion of observability and
its application to the design of DBN factors.
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