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This paper presents a new adaptive control approach using Chebyshev orthogonal polynomials as basis
functions in a least-squares functional approximation. The use of orthogonal basis functions improves the
function approximation significantly and enables better convergence of parameter estimates. Flight control
simulations demonstrate the effectiveness of the proposedadaptive control approach.

I. Introduction

In many physical applications, there is no clear certainty about the structure between the input and output of
a process. This uncertainty is called unstructured. In systems with unstructured uncertainty, the transfer function
between the input and output is usually not known. Lety(t) ∈ R be the output with an unknown transfer function,
expressed as

y = f (x) (1)

wherex(t) ∈ D ⊂ R
p and f (x) ∈ R is an unknown function but assumed to be bounded function inx.

When the structure of the uncertainty is unknown, function approximation is usually employed to estimate the
unknown function. In recent years, neural networks have gained a lot of attention in function approximation theory
in connection with adaptive control. Multi-layer neural networks have the capability of approximating an unknown
function to within an arbitrary value of the approximation error. The universal approximation theorem for sigmoidal
neural networks by Cybenko1 and the Micchelli’s theorem2 for radial basis functions provide a theoretical justification
of function approximation using neural networks. The use ofmulti-layer neural networks can create an additional
complexity in the back propagation gradient-based training rules.

Polynomial approximation is a well-known regression technique for function approximation. In theory, as the de-
gree of an approximating polynomial increases, the approximation error is expected to decrease. However, increasing
the degree of the approximating polynomial beyond a theoretical limit could lead to oscillations in the approximating
polynomial due to over-parametrization. Regularization techniques to constrain parameters have been developed to
prevent over-parametrization.3

In this paper, we explore the use of a special class of polynomials, known as Chebyshev orthogonal polynomials,
as basis functions for function approximation. The Chebyshev polynomials have been shown to provide the “best”
approximation of a function over any other types of polynomials.4 The use of the Chebyshev polynomials in the
context of adaptive control with unstructured uncertaintyis demonstrated in this paper. Simulation results demonstrate
a significant improvement in the effectiveness of Chebyshevpolynomials in the adaptive control setting over a regular
polynomial regression.
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II. Polynomial Approximation

Any sufficiently smooth functionf (x) ∈ C can be expanded as a Taylor’s series about somex = x0

f (x) = f (x0)+ ∇ fx (x0)(x− x0)+
1
2

(x− x0)
> ∇2 fx (x0)(x− x0)+ · · · (2)

Then f (x) can be represented as

f (x) = Θ∗>Φ(x)− ε (x) (3)

whereΘ∗ ∈ R
m ×R

n is a matrix of constant but unknown coefficients,Φ(x) ∈ R
q is a vector of regressors in terms of

monomials ofx

Φ(x) =
[

1 x1 x2 . . . xp x2
1 x1x2 . . . x2

p . . . xq
1 x1xq−1

2 . . . xq
p

]

(4)

andε (x) is a function approximation error which depends onx.
f (x) is then approximated by a polynomial ofq-degree

f̂ (x) = pq (x) = Θ>Φ(x) (5)

whereΘ ∈ R
m ×R

n is the estimate ofΘ∗.
The coefficientsΘ can be computed using various least-squares methods such asthe batch least-squares, least-

squares gradient method, or RLS method. Note that sinceΘ>Φ(x) is an approximation of an unknown functionf (x),
the approximation error will not be asymptotic regardless whether or notΦ(x) is persistently exciting.

The Weierstrass’s theorem4 states that given any sufficiently smooth functionf (x)∈C [a,b] andε0 > 0, there exist
a polynomialpq(x) for some sufficiently largeq such that

∥
∥ f (x)− pq (x)

∥
∥

∞ < ε0. This means that any sufficiently
smooth function can be approximated by a polynomial ofq-th degree. Then the function approximation error could
be made sufficiently small on a compact domain ofx such that supx∈D ‖ε (x)‖ ≤ ε0 for all x ∈ D ⊂ R

n.
There are several types of polynomial approximation of a function. The regular polynomial regression using

monomials as basis functions is frequently used for function approximation. Orthogonality is a property of a function
that belongs to a metric space endowed with an inner product.Given two functionsg(x) andh(x), theng(x) andh(x)
are orthogonal to each other if their inner product is zero. That is

〈g(x) ,h(x)〉 = 0 (6)

where〈., .〉 is an inner product operator that takes on two real-valued functions and returns with a constant. The inner
product has a concrete mathematical definition depending onthe class of functions.

A regular polynomial does not possess this orthogonality property. In contrast, certain classes of polynomials
such as Chebyshev polynomials and Legendre polynomials areorthogonal polynomials. One advantage of an orthog-
onal polynomial over a regular polynomial is that a low-degree orthogonal polynomial can provide a good function
approximation with minimal loss of accuracy as compared to ahigher-degree regular polynomial.

Chebyshev polynomials are special polynomial functions that are associated with the solution of a class of Sturm-
Liouville differential equations

(
1− x2) d2y

dx2 − x
dy
dx

+ n2y = 0 (7)

for x ∈ [−1,1].
This differential equation is known as the Chebyshev differential equation of the first kind. The Chebyshev differ-

ential equation of the second kind is of the form

(
1− x2) d2y

dx2 −3x
dy
dx

+ n(n +2)y = 0 (8)

The Chebyshev polynomials of the first kind are given by a generating function

Tn+1 (x) = 2xTn (x)−Tn−1(x) (9)

whereT0 (x) = 1 andT1 (x) = x.
The first several terms of the Chebyshev polynomials are given as follows:
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T0 (x) = 1

T1 (x) = x

T2 (x) = 2x2−1

T3 (x) = 4x3−3x

T4 (x) = 8x4−8x2+1
...

(10)

A solution of a Sturm-Liouville differential equation constitutes an orthogonal basis that spans any Hilbert space
which is a complete, inner product space with a weighted inner product definition

〈g(x) ,h(x)〉 =

ˆ b

a
w(x)g(x)h(x)dx (11)

The Chebyshev polynomials are orthogonal with respect to a weighting function

w(x) =
1√

1− x2
(12)

such that

〈Tn (x) ,Tm (x)〉 =

ˆ 1

−1

Tn (x)Tm (x)√
1− x2

dx =







0 n 6= m

π n = m = 0
π
2 n = m

(13)

Any subspaceS in an inner product spaceC has an orthogonal complementS ⊥ such that their bases completely
span the inner product spaceC . Therefore

C = S ⊕S
⊥ (14)

Since the Chebyshev polynomials are orthogonal, they form acomplete basis for an real-valued function. This
implies that any unknown, non-singular functionf (x) can be approximated by a Chebyshev polynomial of degreen.

f̂ (x) = θ0T0 (x)+ θ1T1 (x)+ · · ·+ θnTn (x) =
n

∑
i=1

θiTi (x) = Θ>Φ(x) (15)

where the polynomial coefficients are approximated by

θi =

ˆ 1

−1

f (x)Ti (x)√
1− x2

dx

(
ˆ 1

−1

T 2
i (x)√
1− x2

dx

)−1

(16)

for x ∈ [−1,1].

III. Least-Squares Estimation

The input-output transfer function of a system is given by a set of measurement data ofy(t) ∈ R
n as a function of

some independent variablex(t)∈ R
p, expressed as data pairs(xi,yi), i = 1,2, . . . ,N. Furthermore, suppose the transfer

function betweenx(t) andy(t) can be linearly parametrized as

y = Θ∗>Φ(x) (17)

whereΘ∗ ∈ R
m ×R

n is a matrix of constant but unknown coefficients andΦ(x) ∈ R
m is a bounded regressor (or basis

function) vector and is assumed to be known.
Let ŷ(t) be an estimate ofy(t) such that

ŷ = Θ>Φ(x) (18)

whereΘ is an estimation ofΘ∗.
Formulating an approximation errorε (t) as

ε = ŷ− y = Θ>Φ(x)− y (19)
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Consider the following cost function

J (Θ) =
1
2

N

∑
i=1

ε>i εi (20)

WhenJ (Θ) is minimized, the approximation error is also minimized. Then ŷ approximatesy in a least-squares
sense. Thus, the parameter identification problem is posed as a functional minimization.

The necessary condition is given by

∂J
∂Θ

= ∇JΘ (Θ) =
N

∑
i=1

∂εi

∂Θ> ε>i =
N

∑
i=1

Φ(xi)
[

Φ> (xi)Θ− y>i
]

= 0 (21)

where∇JΘ is called a gradient ofJ with respect toΘ.
Thus,Θ can be found by solving the following least-squares regression equation

Θ = A−1B (22)

where

A =
N

∑
i=1

Φ(xi)Φ> (xi) (23)

B =
N

∑
i=1

Φ(xi)y>i (24)

andA−1 is assumed to exist.
Example:Supposey ∈ R is a scalar variable which can be approximated as ap-th degree polynomial in terms of

x ∈ R as

y = θ0 + θ1x + · · ·+ θpxp =
p

∑
j=0

θ jx
j = Θ>Φ(x)

whereΘ> =
[

θ0 θ1 . . . θp

]

andΦ(x) =
[

1 x . . . xp
]>

.

The least-squares regression equation is expressed as

AΘ = B (25)

where

A =
N

∑
i=1

Φ(xi)Φ> (xi)=









∑N
i=11

∑N
i=1 xi
...

∑N
i=1 xp

i









[

1 xi · · · xp
i

]

=









∑N
i=11 ∑N

i=1 xi · · · ∑N
i=1 xp

i

∑N
i=1 xi ∑N

i=1 x2
i · · · ∑N

i=1 xp+1
i

...
...

. . .
...

∑N
i=1 xp

i ∑N
i=1 xp+1

i · · · ∑N
i=1 x2p

i









=

{
N

∑
i=1

x j+k
i

}

jk

(26)

B =
N

∑
i=1

Φ(xi)y>i =









∑N
i=11

∑N
i=1 xi
...

∑N
i=1 xp

i









yi =









∑N
i=1 yi

∑N
i=1 xiyi

...

∑N
i=1 xp

i yi









=

{
N

∑
i=1

x j
i yi

}

j

(27)

This least-squares regression method is essentially a polynomial curve-fitting technique. For example, letp = 2,
then the quadratic curve-fitting coefficients can be found with

A =






N ∑N
i=1 xi ∑N

i=1 x2
i

∑N
i=1 xi ∑N

i=1 x2
i ∑N

i=1 x3
i

∑N
i=1 x2

i ∑N
i=1 x3

i ∑N
i=1 x4

i




 , B =






∑N
i=1yi

∑N
i=1 xiyi

∑N
i=1x2

i yi




 (28)

When all available data are used in the least-squares regression method, it is sometimes called a batch least-squares
method. This is usually when there are sufficient data over a given time interval and the estimates of the unknown
coefficients are not needed immediately at each time step.

4 of 21

American Institute of Aeronautics and Astronautics



A. Convex Optimization and Least-Squares Gradient Method

When the estimates of the unknown coefficients are needed at each time step,Θ can be estimated recursively using
each pair of data(xi,yi) at each time step.

Consider the following cost function

J (Θ) =
1
2

ε>ε (29)

The gradient of the cost function with respect toΘ is given by

∂J
∂Θ

= ∇JΘ (Θ) =

(
∂ε

∂Θ>

)

ε> = Φ(x)ε> (30)

To determine a least-squares estimation based on a given data pair at each time step, the concept of convex opti-
mization is now introduced.

A subsetS is said to be convex if there existx, y in S and a constantα ∈ [0,1] such thatαx+(1−α)y is also in
S . A function f is said to be convex in a convex setS if for everyx, y in S , then

f (αx +(1−α)y) ≤ α f (x)+ (1−α) f (y) (31)

Note thatJ (Θ) is convex since

1
2

[αε +(1−α)ε1]
> [αε +(1−α)ε1] =

1
2

α2ε>ε + α (1−α)ε>ε1 +
1
2

(1−α)2 ε>1 ε1

=
1
2

α2
(

ε>ε −2ε>ε1

)

+ αε>ε1 +
1
2

(1−α)2 ε>1 ε1 (32)

butα2 ≤ α and(1−α)2 ≤ 1−α for all α ∈ [0,1], so

1
2

α
(

ε>ε −2ε>ε1

)

+ αε>ε1 +
1
2

(1−α)ε>1 ε1 ≤ α
1
2

ε>ε +(1−α)
1
2

ε>1 ε1 (33)

If f ∈ C 1, i.e., f is differentiable at least once, then

f (y) ≥ f (x)+ (∇ f (x))> (y− x) (34)

If f ∈ C 2, then f is convex if∇2 f ≥ 0 where∇2 f is called the Hessian off .
Now consider the minimization ofJ (Θ). Θ∗ is said to be a global minimum ofJ if

J (Θ∗) ≤ J (Θ) (35)

This implies that∇JΘ (Θ∗) = 0 and∇2JΘ (Θ∗) ≥ 0 sinceJ (Θ) is twice-differentiable with respect toΘ.
Utilizing Taylor’s series expansion, one writes

∇JΘ (Θ∗) = ∇JΘ (Θ∗ + ∆Θ)+ ∇2JΘ (Θ∗ + ∆Θ)∆Θ +O

(

∆Θ>∆Θ
)

︸ ︷︷ ︸

≈0

(36)

Since∇JΘ (Θ∗) = 0, ∇JΘ (Θ∗ + ∆Θ) = ∇JΘ (Θ), and∇2JΘ (Θ∗ + ∆Θ) = ∇2JΘ (Θ), then

∆Θ = −
[
∇2JΘ (Θ)

]−1 ∇JΘ (Θ) (37)

Equation (37) can be written in discrete-time form as

Θi+1 = Θi −
[
∇2JΘ (Θi)

]−1∇JΘ (Θi) (38)

This is known as a second-order gradient or Newton’s method for convex optimization. It is noted that the inverse
of the Hessian matrix is generally numerically intensive. So a first-order approximation can be made by recognizing
that∇2JΘ (Θ)≈ ∇2JΘ (Θ∗) = ε ≥ 0, whereε is a small positive parameter, whenΘ is in the neighborhood ofΘ∗. This
approximation leads to the well-known steepest descent or first-order gradient method for convex optimization.

Θi+1 = Θi − ε∇JΘ (Θi) (39)
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Now dividing both sides by∆t and taking the limit as∆t → 0 yield

Θ̇ = −Γ∇JΘ (Θ) (40)

whereΓ = Γ> > 0 ∈ R
m ×R

m is a positive definite adaptation rate matrix that effectively replaces ε
∆t . This is the

continuous-time version of the gradient method.
Returning to the minimization ofJ (Θ) to estimateΘ∗, the differential form of the least-squares estimation ofΘ

can be expressed using the gradient method as

Θ̇ = −Γ∇JΘ (Θ) = −ΓΦ(x)ε> (41)

Notice the resemblance of this least-squares gradient method to a model-reference adaptive law, where the approx-
imation errorε (t) replaces the tracking errore(t).

Example:For the example in Section 6.1, the least-squares gradient method is

Θ̇ =









θ̇0

θ̇1
...

θ̇p









= −Γ

















1 x · · · xp

x x2 · · · xp+1

...
...

. . .
...

xp xp+1 · · · x2p

















θ0

θ1
...

θp









−









y

xy
...

xpy

















(42)

B. Persistent Excitation and Parameter Convergence

Let Θ̃(t) = Θ(t)−Θ∗ be the estimation error, then

ε = Θ>Φ(x)Θ− y = Θ̃>Φ(x) (43)

The least-squares gradient method can be written as

˙̃Θ = Θ̇ = −ΓΦ(x)Φ> (x) Θ̃ (44)

Now, choose a Lyapunov candidate function

V
(
Θ̃

)
= trace

(

Θ̃>Γ−1Θ̃
)

(45)

Then

V̇
(
Θ̃

)
= 2trace

(

Θ̃>Γ−1 ˙̃Θ
)

= −2trace
(

Θ̃>Φ(x)Φ> (x) Θ̃
)

= −2Φ> (x) Θ̃Θ̃>Φ(x) = −2ε>ε = −2‖ε‖2 ≤ 0 (46)

Note thatV̇
(
Θ̃

)
can only be negative semi-definite becauseV̇

(
Θ̃

)
can be zero whenΦ(x) = 0 independent of̃Θ.

One can establish thatV
(
Θ̃

)
has a finite limit ast → ∞ since

V (t → ∞) = V (t0)−2
ˆ ∞

t0

‖ε‖2 dt < ∞ (47)

which implies

2
ˆ ∞

t0

‖ε‖2 dt = V (t0)−V (t → ∞) < ∞ (48)

Therefore,ε (t) ∈ L2∩L∞. Moreover, sinceΦ(x) ∈ L∞ by the problem statement, thenΘ̃(t) ∈ L∞, but there is
no assurance that̃Θ(t) → 0 ast → ∞ which implies parameter convergence.

One cannot conclude thatV̇
(
Θ̃

)
is uniformly continuous since

V̈
(
Θ̃

)
= −4ε>ε̇ = −4ε>

[

Θ̇>Φ(x)+ Θ>Φ̇(x)− ẏ
]

(49)

is not necessarily bounded because there is no other condition placed onΦ(x) andy(t) except forΦ(x) ∈ L∞ and
y(t) ∈ L∞. ForV̇

(
Θ̃

)
to be uniformly continuous, additional conditions thatΦ̇(x) ∈ L∞ andẏ(t) ∈ L∞ are required.

Then, using the Barbalat’s lemma, one can conclude thatV̇
(
Θ̃

)
→ 0 or ε (t) → 0 which also implies thaṫΘ(t) → 0 as
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t → ∞. Note that from Eq. (44)̇Θ(t) → 0 does not necessarily imply thatΘ̃(t) → 0 sinceΦ(x)Φ> (x) can also tend
to zero instead of̃Θ(t).

So up to this point, one can only show that the approximation error ε (t) can tend to zero iḟΦ(x) ∈ L∞, but not
necessarily the estimation errorΘ̃(t) sinceΦ(x) can be a zero signal at some time interval. To examine the issue of
parameter convergence, suppose for a moment, Eq. (44) is a scalar equation whose solution is

Θ̃(t) = exp

[

−Γ
ˆ t

t0

Φ(x)Φ> (x)dτ
]

Θ̃(t0) (50)

Note thatx(t) is an independent variable as a function oft. Then forΘ̃(t) to be exponentially stable which implies
an exponential parameter convergence, the following condition is required

1
T

ˆ t+T

t
Φ(x)Φ> (x)dτ ≥ αI (51)

for all t ≥ t0 and someα > 0.
This condition is called a persistent excitation (PE) condition which essentially requires an input signal to be

persistently exciting (PE), that is, a signal that does not go to zero after some finite time when parameter convergence
has not been reached. Another interpretation of the persistent excitation condition is that for parameter identification
to converge exponentially, an input signal must be sufficiently rich to excite all system modes associated with the
parameters to be identified. It should be noted that while persistent excitation is needed for parameter convergence, in
practice, input signals that are persistently exciting canlead to unwanted consequences such as exciting unknown or
unmodeled dynamics that can exacerbate stability of a dynamical system.

Another observation to be made is that ifx(t) is a state variable of a closed-loop system, one cannot assume that
the persistent excitation condition can easily be satisfied. This can be explained as follows: suppose a parameter
identification is used for adaptation, then closed-loop stability usually implies parameter convergence to the ideal
values of the unknown parameters. However, parameter convergence requires persistent excitation which depends on
x(t) which in turn depends on parameter convergence. This is a circular argument and, therefore, it is difficult to assert
the PE condition. However, ifx(t) is an independent variable, then the persistent excitationcondition can be assumed
to be satisfied. Suppose that this is the case, then the estimation error is given by

∣
∣Θ̃(t)

∣
∣ ≤

∣
∣Θ̃(t0)

∣
∣e−γαt , ∀t ∈ [t1,t1 + T ] , t1 > t0 (52)

whereγ = λmin (Γ) is the smallest eigenvalue ofΓ. Thus,Θ̃(t) is exponentially stable with̃Θ(t)→ 0 ast → ∞. Hence,
the parameter convergence is established. It follows that the approximation error is also asymptotically stable (but not
necessarily exponentially stable because ofΦ(x)) with ε (t) → 0 ast → ∞.

C. Recursive Least-Squares

Consider the following cost function

J (Θ) =
1
2

ˆ t

t0

ε>εdτ (53)

which is the continuous-time version of the cost function for batch least-squares.
The necessary condition is

∇JΘ (Θ) =
∂J>

∂Θ> =

ˆ t

t0

Φ(x)
[

Φ> (x)Θ− y>
]

dτ = 0 (54)

from whichΘ is obtained as

Θ =

[
ˆ t

t0

Φ(x)Φ> (x)dτ
]−1ˆ t

t0

Φ(x)y>dτ (55)

assuming the inverse of
´ t

t0
Φ(x)Φ> (x)dτ exists. Note that the matrixΦ(x)Φ> (x) is always singular and is not

invertible. However, if the PE condition is satisfied, then
´ t

t0
Φ(x)Φ> (x)dτ is invertible.

Introducing a matrixR(t) = R> (t) > 0∈ R
m ×R

m where

R =

[
ˆ t

t0

Φ(x)Φ> (x)dτ
]−1

(56)
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Then

R−1Θ =

ˆ t

t0

Φ(x)y>dτ (57)

Upon differentiation, this yields

R−1Θ̇+
dR−1

dt
Θ = Φ(x)y> (58)

From Eq. (56)
dR−1

dt
= Φ(x)Φ> (x) (59)

Therefore
Θ̇ = −RΦ(x)

[

Φ> (x)Θ− y>
]

= −RΦ(x)ε> (60)

Now sinceRR−1 = I, then

ṘR−1+ R
dR−1

dt
= 0 (61)

Thus
Ṙ = −RΦ(x)Φ> (x)R (62)

Both Eqs. (63) and (62) constitute the well-known recursiveleast-squares (RLS) parameter identification method.5

The matrixR is called the covariance matrix and the RLS formula is similar to the Kalman filter where Eq. (62) is a
differential Riccati equation for a zero-order plant model. Comparing Eq. (41) with Eq. (63),R plays a role ofΓ as
a time-varying adaptation rate matrix and Eq. (62) is effectively an adaptive law for the time-varying adaptation rate
matrix.

Let Θ̃(t) = Θ(t)−Θ∗ be the estimation error. Sinceε = Θ̃>Φ(x), then

˙̃Θ = −RΦ(x)Φ> (x) Θ̃ (63)

Choose a Lyapunov candidate function

V
(
Θ̃

)
= trace

(

Θ̃>R−1Θ̃
)

(64)

Then

V̇
(
Θ̃

)
= trace

(

2Θ̃>R−1 ˙̃Θ + Θ̃>dR−1

dt
Θ̃

)

= trace
(

−2Θ̃>Φ(x)Φ> (x) Θ̃+ Θ̃>Φ(x)Φ> (x) Θ̃
)

= −trace
(

Θ̃>Φ(x)Φ> (x) Θ̃
)

= −ε>ε = −‖ε‖2 ≤ 0 (65)

One can establish thatV
(
Θ̃

)
has a finite limit ast → ∞ since

V (t → ∞) = V (t0)−
ˆ ∞

t0

‖ε‖2 dt < ∞ (66)

Therefore,ε (t)∈L2∩L∞. SinceΦ(x)∈L∞ by the problem statement, thenΘ̃(t)∈L∞, but there is no guarantee
thatΘ̃(t) → 0 ast → ∞ which implies parameter convergence, unlessΦ(x) is PE.

Note thatV̇
(
Θ̃

)
is not necessarily uniformly continuous since this would require thatV̈

(
Θ̃

)
is bounded. Evaluating

V̈
(
Θ̃

)
as

V̈
(
Θ̃

)
= −2ε>ε̇ = −2ε>

[
˙̃Θ>Φ(x)+ Θ̃>Φ̇(x)

]

= −2ε>
[

−Θ̃>Φ(x)Φ> (x)RΦ(x)+ Θ̃>Φ̇(x)
]

= −2ε>
[

−Θ̃>Φ(x)Φ> (x)

[
ˆ t

t0

Φ(x)Φ> (x)dτ
]−1

Φ(x)+ Θ̃>Φ̇(x)

]

(67)

Therefore,V̈
(
Θ̃

)
is bounded if the following conditions are imposed:

• Φ̇(x) ∈ L∞
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•
[
´ t

t0
Φ(x)Φ> (x)dτ

]−1
is invertible which impliesΦ(x) is PE

If these conditions are satisfied, then using the Barbalat’slemma, it can be shown thatε (t) → 0 ast → ∞. In addition,
Θ̃(t) → 0 ast → ∞ and the parameter convergence is achieved.

Note that there are various versions of the RLS method. One popular version is the RLS method with normalization
where the adaptive law forR is modified as follows:

Ṙ = −RΦ(x)Φ> (x)R
1+ n2 (68)

where 1+ n2 = 1+ Φ> (x)RΦ(x) is called a normalization factor.
The time derivative of the Lyapunov candidate function for the RLS method with normalization is

V̇
(
Θ̃

)
= trace

(

−2Θ̃>Φ(x)Φ> (x) Θ̃+
Θ̃>Φ(x)Φ> (x) Θ̃

1+ n2

)

= −trace
(

Θ̃>Φ(x)Φ> (x)Θ̃
(
1+2n2)

)

= −ε>ε
(
1+2n2) = −‖ε‖2(

1+2n2) ≤ 0 (69)

Note thatV̇
(
Θ̃

)
is more negative with than without normalization. Therefore, the effect of normalization is to

make the adaptive law forR more stable, but the parameter convergence is slower.
Another popular version is the RLS method with forgetting factor and normalization which is given by without

derivation

Ṙ = β R− RΦ(x)Φ> (x)R
1+ n2 (70)

where 0≤ β ≤ 1 is called a forgetting factor.

IV. Adaptive Control with Unstructured Uncertainty

The RLS method has been used in adaptive control applications and demonstrated to be highly effective in esti-
mating parametric uncertainty in adaptive control. In a previous study, a hybrid direct-indirect adaptive control with
the RLS was developed. Other techniques based on the RLS havebeen recently developed such as the RLS-based
modification in adaptive control.7 In this study, the approach is considered to be a direct adaptive control method.

Consider a second-order SISO system

ÿ + aẏ+ cy = b [u + f (y)] (71)

wherea, b, andc are known andf (y) is an unstructured uncertainty
The state-space form of the system is

ẋ = Ax + B [u + f (y)] (72)

wherex =
[

y ẏ
]>

∈ R
2 and

A =

[

0 1

c a

]

, B =

[

0

b

]

(73)

A reference model is given by
ẋm = Amx + Bmr (74)

wherexm ∈ R
2, r ∈ R, and

Am =

[

0 1

−ω2
n −2ζωn

]

, Bm =

[

0

bm

]

(75)

with ζ > 0 andωn > 0.
The nominal system is designed to track the reference model with a nominal controller

ū = −Kxx + krr (76)

whereA−BKx = Am andBkr = Bm.

Kx =
(

B>B
)−1

B> (A−Am) (77)
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kr =
(

B>B
)−1

B>Bm (78)

Note that
(
B>B

)−1
B> is the left pseudo-inverse ofB and is equal to

(

B>B
)−1

B> =
1
b2 B> (79)

To accommodate the uncertainty, an adaptive controller is included in the controller

u = ū+ uad (80)

where the adaptive controller
uad = −Θ>Φ(y) (81)

is designed to estimate the unstructured uncertainty whichcan be expressed as

f (y) = Θ∗>Φ(y)− ε (y) (82)

whereΘ∗ ∈ R
p is an unknown constant ideal weight matrix,Φ(y) ∈ R

p is a vector of known bounded regressors or
basis functions, andε (y) ∈ R is an approximation error.

In general,Φ(y) can be any bounded regressor function. However, with the choice of Chebyshev polynomials,
these regressor functions are also true basis functions with their endowed orthogonality properties. Basis functions
provide a better approximation of an unstructured uncertainty than non-basis regressor functions.

Alternatively, an unstructured uncertainty can also be approximated by a neural network

f (y) = Θ∗>Φ
(

W ∗>ȳ
)

(83)

whereΘ∗ ∈ R
p+1 andW ∗ ∈ R

2 are unknown constant ideal weight matrices, ¯y =
[

1 y
]>

∈ R
n+1, Φ

(
W ∗>ȳ

)
∈

R
p+1.

Invoking the Weierstrass’s theorem,ε (y) can be made sufficiently small in a compact domain ofy(t) such that
supy∈D ‖ε (y)‖ ≤ ε0∀y ∈ D ⊂ R by a suitable selection ofΦ(y).

Define a desired plant model as
ẋd = Amx + Bmr (84)

Then formulating a plant modeling error as

ε̄ = ẋd − ẋ = Ax + Bū− ẋ = BΘ̃>Φ(y)+ Bε (85)

The RLS adaptive law for estimatingΘ is given by

Θ̇ = −RΦ(y) ε̄>B
(

B>B
)−1

(86)

Ṙ = −ηRΦ(y)Φ> (y)R (87)

where 0≤ η ≤ 1.
The estimation error equation for the RLS adaptive law is then obtained as

˙̃Θ = −RΦ(y)
[

Φ> (y) Θ̃B> + ε>B>
]

B
(

B>B
)−1

= −RΦ(y)
[

Φ> (y)Θ̃+ ε>
]

(88)

The tracking error equation can be expressed in terms of the approximation error as

ė = ẋm − ẋ = ẋm − ẋd + ẋd − ẋ = Ame + ε̄ = Ame + BΘ̃>Φ(y)+ Bε (89)

Now, choose a Lyapunov candidate function

V
(
e,Θ̃

)
= e>Pe + trace

(

Θ̃>R−1Θ̃
)

(90)
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ThenV̇ is

V̇
(
e,Θ̃

)
= −e>Qe +2e>Pε̄ + trace

(

2Θ̃>R−1 ˙̃Θ + Θ̃>dR−1

dt
Θ̃

)

= −e>Qe +2e>Pε̄ + trace
(

−2Θ̃>Φ(y)
[

Φ> (y)Θ̃ + ε>
]

+ ηΘ̃>Φ(y)Φ> (y)Θ̃
)

= −e>Qe +2e>Pε̄ − (2−η)Φ> (y) Θ̃Θ̃>Φ(y)−2ε>Θ̃>Φ(y)

≤−e>Qe +2e>Pε̄ −Φ> (y)Θ̃Θ̃>Φ(y)−2ε>Θ̃>Φ(y) (91)

Note that
‖ε̄‖2

‖B‖2 = Φ> (y)Θ̃Θ̃>Φ(y)+2ε>Θ̃>Φ(y)+ ε>ε (92)

Therefore

V̇
(
e,Θ̃

)
≤−λmin (Q)‖e‖2 +2‖P‖‖e‖‖ε̄‖− ‖ε̄‖2

‖B‖2 + ε2
0 (93)

whereε0 = supy∈D ‖ε (y)‖.
Define a compact setS

S =

{

(e, ε̄) |λmin (Q)‖e‖2−2λmax (P)‖e‖‖ε̄‖+
‖ε̄‖2

‖B‖2 ≤ ε2
0

}

(94)

V̇
(
e,Θ̃

)
> 0 inside ofS , but V̇

(
e,Θ̃

)
≤ 0 outsideS . Therefore,e(t) ∈ L∞ and ε̄ (t) ∈ L∞. Define ε̄0 =

supx∈D ‖ε̄ (x)‖, then

‖e‖ ≥ r =

λmax (P) ε̄0 +

√

λ 2
max (P) ε̄2

0 + λmin (Q)
(

ε2
0 − ε̄2

0/‖B‖2
)

λmin (Q)
(95)

It can be shown thate(t) is uniformly ultimately bounded with an ultimate bound

ρ =

√

λmax (P)

λmin (P)
r (96)

Example:Consider a first-order scalar system with unstructured uncertainty

ẋ = ax + b [u + f (x)]

wherea and f (x) are unknown, butb = 2. For simulation purpose,a = 1 and f (x) = 0.2
(

sin2x +cos4x + e−x2
)

.

The reference model is given by
ẋm = amxm + bmr

wheream = −1, bm = 1, andr (t) = sint.
Since f (x) is unknown, a regular polynomial ofq-degree is used to approximatef (x) as

f (x) = a0 + a1x + · · ·+ aqxq − ε (x) = Θ∗>Φ(x)− ε (x)

whereai, i = 0,1, . . . ,q are constant unknown coefficients.
The controller is designed as

u = kx (t)x + krr−Θ> (t)Φ(x)

wherekx (t) andΘ(t) are computed by the least-squares gradient adaptive laws as

k̇x =
γxε̄
b

Θ̇ = −ΓΦ(x) ε̄
b
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with kx (0) = 0, Θ(0) = 0, γ = 1, andΓ = I, where

ε̄ = âx + bū− ẋ

â = am −bkx

ū = kxx + krr

The tracking error forq = 1,2,3,4 are shown in the following plots. Note that the tracking error improves for
q ≥ 2. Even the tracking error improves, the functionf (x) does not seem to be well approximated as shown in Fig. 3.
This is also due to the poor convergence ofkx andΘ.
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Fig. 1 - Tracking Error due to Least-Squares Gradient Methodwith regular Polynomial Approximation
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Fig. 3 - Function Approximation att = 100 due to Least-Squares Gradient Method with regular Polynomial

Now suppose the Chebyshev orthogonal polynomials are used instead. Then

f (x) = a0 + a1T1 (x)+ · · ·+ aqTq (x)− ε (x) = Θ∗>Φ(x)− ε (x)

The simulation results are as shown. Forq = 1, the result is the same as the regular polynomial. However,it can
be seen that the tracking error significantly reduces forq = 2 with the Chebyshev polynomial and is even smaller than
that forq = 4 with the regular polynomial. Forq = 4, the Chebyshev polynomial approximation results in a verysmall
tracking error. The unknown function is very well approximated by a 4th-degree Chebyshev polynomial as shown in
Fig. 6.
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Fig. 4 - Tracking Error due to Least-Squares Gradient Methodwith Chebyshev Polynomial Approximation
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Fig. 6 - Function Approximation att = 100 Least-Squares Gradient Method with Chebyshev Polynomial

In contrast, let us compare the least-squares adaptive control with the standard model-reference adaptive control
(MRAC). The MRAC update laws are given by

k̇x = γxeb

Θ̇ = −ΓΦ(x)eb

wheree = xm − x.
Figure 8 illustrates parameter convergence of MRAC. As noted, the tracking error is not as good with the MRAC

as with the least-squares gradient method. The parametersk (t) andΘ(t) are more oscillatory. The function approxi-
mation by the MRAC adaptive laws is poorer than that by the least-squares gradient method. Furthermore, for systems
with unstructured uncertainty, MRAC is known to be non-robust since the parameter estimation error is not necessarily
bounded. Therefore, robust modification or a projection method must be used to ensure that the parameter estimation
error is bounded.
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V. Flight Control Application

Consider the short-period dynamics of an aircraft with unstructured uncertaintyf (α) as a function of the angle of
attack due to nonlinear aerodynamics






α̇
θ̇
q̇




 =






Zα
ū 0 1

0 0 1

Mα + Mα̇ Zα
ū 0 Mq + Mα̇











α
θ
q




+






Zδe
ū

0

Mδe +
Mα̇ Zδe

ū




 [δe + f (α)] (97)

whereZα , Zδe , Mα , Mα̇ , Mq, andMδe are stability and control derivatives; and ¯u is the trim airspeed.
A pitch attitude controller is designed to track a desired second-order pitch attitude dynamics according to

θ̈m +2ζωnθ̇m + ω2
n θm = ω2

n θc (98)

whereωn = 1.5 rad/sec andζ = 0.85 are the desired natural frequency and damping ratio of thepitch attitude response,
andθc is the pitch attitude command..

The pitch rate equation is written as

θ̈ −
(

Mα +
Mα̇ Zα

ū

)

α − (Mq + Mα̇) θ̇ =

(

Mδe +
Mα̇ Zδe

ū

)

[δe + f (α)] (99)

The elevator input is designed with the following proportional-derivative (PD) control law

δe = −kαα − kθ (θ −θc)− kqq−Θ>Φ(α) = −Kxx + kθθc −Θ>Φ(α) (100)

wherex =
[

α θ q
]>

, Kx =
[

kα kθ kq

]>
, and

kα =
Mα + Mα̇ Zα

ū

Mδe +
Mα̇ Zδe

ū

(101)

kθ =
ω2

n

Mδe +
Mα̇ Zδe

ū

(102)

kq =
2ζωn + Mq + Mα̇

Mδe +
Mα̇ Zδe

ū

(103)

The numerical model of the short-period dynamics is given by





α̇
θ̇
q̇






︸ ︷︷ ︸

ẋ

=






−0.7018 0 0.9761

0 0 1

−2.6923 0 −0.7322






︸ ︷︷ ︸

A






α
θ
q






︸ ︷︷ ︸

x

+






−0.0573

0

−3.5352






︸ ︷︷ ︸

B



 δe
︸︷︷︸

u

+ f (α)





For simulation purpose, the unstructured uncertainty thatrepresents nonlinear aerodynamics is described by

f (α) = 0.1cosα3−0.2sin10α −0.05e−α2

The feedback gain is computed to beKx =
[

0.7616 −0.6365 −0.5142
]>

. The nominal closed-loop plant is

then chosen to be the reference model as





α̇m

θ̇m

q̇m






︸ ︷︷ ︸

ẋm

=






−0.6582 −0.0365 0.9466

0 0 1

0 −2.2500 −2.5500






︸ ︷︷ ︸

Am






αm

θm

qm






︸ ︷︷ ︸

xm

+






0.0365

0

2.2500






︸ ︷︷ ︸

Bm

r
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The plant modeling error is computed asε̄ = ẋd − ẋ = Amx + Bmr− ẋ, assuming that the angle of attack rate and
pitch acceleration are measurable from the vertical acceleration sensors. The uncertainty is modeled with the first four
terms of the Chebyshev basis polynomials

Θ>Φ(α) = θ1 + θ2α + θ3
(
2α2−1

)
+ θ4

(
4α3−3α

)

The RLS parameter estimation is computed by withη = 0, which effectively is a least-squares gradient method,
andη = 0.2. The covariance matrix is chosen to beR = 20I. The aircraft longitudinal responses forη = 0 andη = 0.2
are as shown in Figs. 10 and 11.
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Fig. 10 - Aircraft Response with Least-Squares Gradient Adaptive Control (η = 0)
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Fig. 11 - Aircraft Response with RLS Adaptive Control (η = 0.2)

It can be seen that the least-squares gradient method (RLS with η = 0) results in a very good tracking performance,
but the RLS method withη = 0.2 exhibits poor performance. This is expected as the rate of parameter convergence
for the RLS is proportional to−(2−η)‖ε̄‖2 according to the Lyapunov analysis. However, the slow parameter
convergenceof the RLS can improve stability robustness of adaptive control in the presence of time delay or unmodeled
dynamics, as will be shown later.

For comparison, the parameter estimation is computed by thestandard MRAC method using the same Chebyshev
basis polynomials according to

Θ̇ = −ΓΦ(α)e>PB (104)

wheree = xm − x.
In addition, instead of using the Chebyshev basis polynomials, a two-layer neural network with the sigmoidal

activation function is used to approximate the unstructured uncertainty as

f (α) = Θ>Φ
(

W>ᾱ
)

(105)
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whereᾱ =
[

1 α
]>

andW is the sigmoidal function.

The neural network adaptive control is specified by the following adaptive laws

Θ̇ = −ΓΘΦ
(

W>ᾱ
)

e>PB (106)

Ẇ = −ΓW ᾱe>PBV>σ
′ (

W>ᾱ
)

(107)

whereΘ> =
[

V0 V>
]

.

The aircraft responses with MRAC (Γ = ΓΘ = ΓW = 10I) using the Chebyshev polynomial and the neural network
are as shown in Figs. 12 and 13.
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Fig. 12 - Aircraft Response with MRAC
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Fig. 13 - Aircraft Response with Neural Network MRAC

The responses both exhibit initial high frequency oscillations which are indicative of incipient instability, even
though the subsequent tracking performance is very good. The neural network adaptive control has much more pro-
nounced high frequency oscillations which are due to the weights initialization with random numbers.

To illustrate the issue of robustness and show that the RLS isactually better able to handle a time delay or un-
modeled dynamics than the least-squares gradient method orMRAC, a numerical evidence of the time delay margin
is computed for each of the four adaptive laws. The results are shown in the following table:

Adaptive Law Numerical Evidence of Time Delay Margin

Least-Squares Gradient 60 ms

RLS with η = 0.2 260 ms

MRAC 10 ms

Neural Network MRAC 60 ms
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Table 1 - Estimated Time Delay Margins

The RLS method has the best time delay margin than the other methods. The standard MRAC has very poor
robustness which is a well-known fact.8 Generally, the standard MRAC has to be modified to improve robustness
using the well-knownσ -modification5 ande-modification9 or the recently developed optimal control modification10

and adaptive loop recovery.11

The aircraft responses due to a 60-ms time delay for the least-squares gradient method, RLS withη = 0.2, and
neural network MRAC are illustrated in Figs. 14, 15, and 16. The aircraft response due to a 10-ms time delay for
the MRAC is plotted in Fig. 17. As can be seen, the least-squares gradient method maintains a very good tracking
performance even with a 60-ms time delay. Both the MRAC and neural network MRAC exhibit high frequency
oscillations. The RLS method withη = 0.2 exhibits low frequency transients even though it is much more robust
than the other three adaptive laws. Thus, if the time delay isnot too large, the least-squares gradient method seems to
perform the best among the adaptive laws.
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Fig. 14 - Aircraft Response with Least-Squares Gradient Adaptive Control (η = 0) with 60-ms Time Delay
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Fig. 15 - Aircraft Response with RLS Adaptive Control (η = 0.2) with 60-ms Time Delay
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Fig. 16 - Aircraft Response with Neural Network MRAC (η = 0.2) with 60-ms Time Delay
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Fig. 17 - Aircraft Response with MRAC (η = 0.2) with 10-ms Time Delay

VI. Conclusions

This paper presents an adaptive control method for systems with unstructured uncertainty. The adaptive control
method uses Chebyshev orthogonal polynomials as basis functions to approximate the unstructured uncertainty. The
Chebyshev polynomials have many desirable features in function approximation and can be shown to be the “best”
polynomial function approximation. A recursive least-squares adaptive control method is developed for second-order
systems using Chebyshev polynomials as basis functions forparameter estimation. The adaptation is driven by a plant
modeling error as opposed to the usual tracking error in model-reference adaptive control. Simulations demonstrate
the superior performance of Chebyshev polynomials in an adaptive control setting over regular polynomials and even
neural networks. The least-squares gradient method demonstrates to outperform both the recursive least-squares adap-
tive control and the standard, unmodified model-reference adaptive control. On the other hand, recursive least-squares
adaptive control is shown to be much more robust to time delayand unmodeled dynamics than all the other adaptive
control methods being studied. However, this robustness comes at an expense of tracking performance. Thus, in
practice, the least-squares gradient method may strive a better balance between tracking performance and robustness.
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