
Algorithms for speeding up distance-based outlier
detection

Kanishka Bhaduri
MCT Inc., NASA Ames Research Center

Moffett Field, CA
Kanishka.Bhaduri-1@nasa.gov

Bryan L. Matthews
SGT Inc., NASA Ames Research Center

Moffett Field, CA
Bryan.L.Matthews@nasa.gov

ABSTRACT
The problem of distance-based outlier detection is difficult
to solve efficiently in very large datasets because of poten-
tial quadratic time complexity. We address this problem and
develop sequential and distributed algorithms that are sig-
nificantly more efficient than state-of-the-art methods while
still guaranteeing the same outliers. By combining simple
but effective indexing and disk block accessing techniques,
we have developed a sequential algorithm iOrca that is up to
an order-of-magnitude faster than the state-of-the-art. The
indexing scheme is based on sorting the data points in or-
der of increasing distance from a fixed reference point and
then accessing those points based on this sorted order. To
speed up the basic outlier detection technique, we develop
two distributed algorithms (DOoR and iDOoR) for mod-
ern distributed multi-core clusters of machines, connected
on a ring topology. The first algorithm passes data blocks
from each machine around the ring, incrementally updating
the nearest neighbors of the points passed. By maintain-
ing a cutoff threshold, it is able to prune a large number
of points in a distributed fashion. The second distributed
algorithm extends this basic idea with the indexing scheme
discussed earlier. In our experiments, both distributed al-
gorithms exhibit significant improvements compared to the
state-of-the-art distributed method [13].

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
Data Mining

General Terms
Algorithms, Experimentation, Performance

Keywords
Outlier detection, Distributed computing, Nearest neighbor
search

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD ’11 San Diego, CA, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
Unsupervised outlier detection is an important and well-

studied problem in the data mining, machine learning, and
statistics literature. Given the broad array of meanings that
may be sensibly ascribed to the term “outlier”, many vari-
ations of the problem have been developed and addressed.
One commonly used definition in the literature involves defin-
ing points as outliers if their nearest neighbors are suffi-
ciently distant (distance-based outliers). A specific form of
the problem along these lines can be stated by first defining
an outlier score for each point x in dataset D as the distance
to the kth nearest neighbor of x in D [3] or, similarly, the
sum of the distances of the k nearest neighbors of x in D
[15]. Then the outlier detection problem is as follows: given
parameters t and k, find the top t points in D in terms of
their outlier scores1. This definition has been used in many
domains to find anomalies such as Earth sciences, astron-
omy, space applications and more [8].

The naive nested loop algorithm requires O(n2) (with
n = |D|) computation time which is infeasible for large
datasets. A key idea for improvement, developed by Bay
and Schwabacher [4] (the Orca algorithm), is to maintain
the t-th largest outlier score and use it as a cutoff threshold.
When considering a point x, if the distance to the k-th near-
est neighbor found thus far is less than the threshold, then x
can be immediately pruned. A key to making this idea work
even better is considering the points in D in an order such
that the outliers are considered as early as possible. Doing
so allows the cutoff threshold to be set as high as possible,
as early as possible in the algorithm. One of the key con-
tributions of our work is a simple and quick-to-build index
that allows the points to be considered in an order that sig-
nificantly improves upon the random ordering of Orca [4].
The index is a list of two-tuples consisting of IDs of data
points ordered by decreasing distance to a randomly chosen
reference point and the respective distances. For a given
test point x, we search on the index for finding its k near-
est neighbors by gradually “spiraling out” along the index.
Based on a new termination criterion that we develop, the
algorithm can terminate without having to scan the entire
dataset. These contributions combine to form iOrca, a new

1All of our algorithms can be used with either of these two
definitions of outlier score. For simplicity, henceforth we
will work with the k nearest neighbor definition. A closely
related version of the problem we study was developed in
[12]: given parameters r and k, find all points in D whose
outlier score is less than r. However, [15] argue that r can be
difficult to set and is dataset dependent. We do not consider
the “r” version of the problem further in this paper.

outlier detection algorithm.
We also develop two distributed algorithms both on top

of a ring overlay network leveraging the modern multi-core
cluster of machines. The first algorithm passes data blocks
around the ring allowing the computation of k nearest neigh-
bors to proceed in a parallel. Along the way, the cutoff
threshold is updated and distributed across all nodes. As
such, data points can be pruned at any node without cen-
tral coordination. This idea allows the cutoff threshold to be
utilized fully and efficiently and offers a significant improve-
ment over the distributed parallel Bay’s algorithm (PBay)
[13]. The second distributed algorithm extends this basic
idea with the indexing scheme discussed earlier.
Our main contributions: (1) We develop a new outlier
detection algorithm, iOrca, which improves upon the Orca
algorithm [4] by means of a novel indexing scheme. The in-
dex allows for greater pruning of data points based on the
cutoff threshold and also allows for more efficient computa-
tion of the k nearest neighbors of any given datapoint. Fur-
thermore, it allows us to terminate the algorithm much ear-
lier, without even looking at all the data points for outliers,
thereby saving both I/O cost and runtime. (2) We develop
two new distributed outlier detection algorithms based on
a ring computation which allows the cutoff threshold to be
exploited efficiently in a distributed fashion. To the best of
the authors’ knowledge, this paper shows for the first time
how indexing can be used in conjunction with distributed
processing to speed up distance-based outlier detection tech-
nique. (3) We experimentally demonstrate we show that our
sequential and distributed algorithms are significantly more
efficient than the respective state-of-the-art methods.

2. RELATED WORK
The naive approach of distance-based outlier detection

takes quadratic time with respect to the number of points
in the dataset by comparing each point with the rest. Such
a technique has been proposed by Knorr and Ng [12]. Their
first algorithm is a block nested loop algorithm which scales
as O(n2d), where n is the size and d is the dimensionality of
the dataset. Their second algorithm partitions the dataset
into cells that are hyper-rectangles. By efficiently pruning
the unpromising rectangles early, their second algorithm ex-
ecutes in time linear in n but exponential in d. Hence, both
these algorithms do not work well for large datasets.

Spatial database indexing methods such as KD-tree [5],
R-tree [10] or X-tree [6] can be used for speeding up nearest
neighbor search. The main idea is to query the k-nearest
neighbors of each point in the index structure. This method
works extremely well for low dimensional datasets, often
scaling as O(n log n). However, they scale poorly with the
dimension of the data, making them inefficient for dimension
greater than 10 [7].

Ordering the data often helps in the nearest neighbor
search for outlier detection. Knorr and Ng [12] present an
idea in which the data is first split into multiple cells (hyper
rectangles) and only the corners of the minimum bounding
rectangles (MBRs) are stored. For any test point, all those
MBRs are pruned which cannot contain the nearest neigh-
bors of the test point. One major drawback of this approach
is that the complexity of these hyper rectangles increases
exponentially with the dimension of the dataset, rendering
them ineffective for high dimensional datasets. Similar prob-
lems with R-tree based indexing schemes have also been re-

ported by Ramaswamy et al. [15].
Orca proposed by Bay and Schwabacher [4] shows how

distance-based outlier detection can be made efficient using
a simple pruning strategy and randomization of the dataset.
We describe it in more details in Section 3.3 since this forms
a baseline for our comparison. To speed up Orca, Ghot-
ing et al. [9] have proposed the Recursive Binning and Re-
Projection (RBRP) method. In their method, the data is
first clustered and then, for any test point xt, the nearest
neighbors of xt are first searched in the cluster in which xt

belongs to and then in the next closest cluster and so on.
The authors empirically show that this method speeds up
Orca. However, this method needs to load the entire dataset
in memory during the clustering phase which can be a seri-
ous drawback for large and high dimensional datasets. Also,
for each test point, RBRP needs to go through the data in
a particular order, leading to an excessive number of disk
I/O. Furthermore, RBRP does not reorder the test data
points and so the growth in the cutoff rate is much slower
compared to iOrca. Another technique for improving Orca
is the Dolphin algorithm proposed by Angiulli and Fassetti
[2]. In their method, using a pivot-based index, they only
need two sequential scans of the dataset, leading to an im-
proved running time with respect to Orca. However, the
authors use the “r” definition of outliers and hence do not
find the same outliers as Orca or iOrca. Moreover, [2] does
not demonstrate the accuracy of their method compared to
Orca or RBRP.

There exist some approaches to speeding up distance-
based outlier detection methods using parallel/distributed
computing. In the PBay algorithm by Lozano and Acuna
[13], a master node first splits the data into separate chunks
for each processor. Then the master node loads each block of
test data and broadcasts it to each of the worker nodes. Each
worker node then executes Orca using its local database and
the test block. The nearest neighbors of the test points from
all the workers are aggregated at the master node to find
the global set of nearest neighbors for those test points. All
points whose score is less than the cutoff are dropped and
the cutoff is updated accordingly. The cutoff is broadcast
back to all the worker nodes along with the next block of
test data. The algorithm that we propose in this paper dis-
tributes workload among the nodes more efficiently and does
not require the master node to do all the aggregation of the
nearest neighbors; as a result both of our distributed algo-
rithms are much faster. Hung and Cheung [11] present a
parallel version of the basic nested loop algorithm which is
not suitable for distributed computation since it requires all
the dataset to be exchanged among all the nodes. Otey et
al. [14] present a distributed algorithm in which the defini-
tion of outlier is completely different that the one presented
here. In order to process mixed attributes, their definition is
based on support. In their work, outlier score function is de-
fined by taking into account the dependencies among all the
attributes in the dataset and outliers are those points which
contradict these dependencies. Angiulli et al. [1] present a
distributed distance-based outlier detection algorithm based
on the concept of solving set which can be viewed as a com-
pact representation of the original dataset. The solving set
is such that by comparing any data point to only the ele-
ments of the solving set, it can be concluded if the point
is an outlier or not. This solving set is itself updated as
more and more points are processed such that it at least

contains the correct scores of the top t requested outliers.
They demonstrated the performance of their algorithm on
only two real datasets which shows linear scalability (wrt
number of nodes). Our algorithm combines both distributed
processing and indexing, thereby giving us better speedup.

3. BACKGROUND

3.1 Notations
Let t, k > 0 be fixed (user-defined) parameters. Let D

be a finite subset of R
d having n points such that |D| ≥

max{t, k}. Given x ∈ D, let Nk(x,D) denote the set of k
nearest neighbors from {D \ {x}} to x (with respect to Eu-
clidean distance with ties broken according to some arbitrary
but fixed total ordering ≺).

Let δk(x,D) denote the maximum distance between x and
all the points in Nk(x,D) i.e. the distance between x and
its k-nearest neighbors in D. δk(x,D) can be viewed as
an outlier ranking function. Let Ot,k(D) denote the top t
points (outliers) in D according to δk(., D). In the rest of
the description, for simplicity, we rewrite Nk(b,D), δk(b,D)
and Ot,k(D) as Nk(b), δk(b) and Ok.

Definition 3.1 (Centralized problem definition).
Given integers t, k > 0, and dataset D, the goal of outlier
detection algorithm is to compute the outliers Ok in D as
quickly as possible.

3.2 Distributed problem definition
In the distributed setup, there are p machines P1, . . . , Pp

connected to each other in a ring G, such that Pi’s neighbor
Γi is known to Pi. Each Pi holds a dataset Di such that size
of |Di| ≥ {t, k}. We assume that the datasets are disjoint
i.e. Di ∩Dj = ∅, ∀i 6= j.

Definition 3.2 (Distributed problem definition).
Given integers t, k > 0, and dataset Di at each node Pi, the
goal of outlier detection algorithm is to compute the outliers
Ok as quickly as possible, where D =

⋃p

i=1
Di.

In the above definition, we have assumed that the dis-
tributed outlier detection algorithm produces the same set
of outliers as Orca [4]. The algorithms that we have pro-
posed in this paper all guarantee that the set of outliers are
the same as Orca, therefore, we drop the issue of accuracy
from our problem definition.

3.3 Distance-based outlier detection with prun-
ing: Orca

In this section we describe Orca [4] in details since it forms
our baseline for comparison. Orca achieves a near-linear
runtime for many datasets by using a simple pruning rule
and randomization. It is disk-based and processes the data
in blocks instead of reading in all the data at once from
memory. The pseudo-code of the algorithm is shown in Alg.
1. The inputs are k, t, the block size b, and the dataset D.
The basic idea of the algorithm is very simple. Let cutoff c
denote the score of the t-th largest outlier (or 0 if less than t
points have been processed). It reads in a block of data from
the memory (call it the test block) and then computes the
nearest neighbors of each point in the test block by looking
at all the other points. During this computation it keeps
track of the nearest neighbors found so far for each test
point. As soon as the outlier score (e.g. the distance to the

k-th nearest neighbor) drops below c, that point is pruned
since it can no longer be an outlier. If any outlier is found for
this block, both the outlier list and the cutoff are updated.
As more points are processed, c increases, and the algorithm
achieves a better prune rate.

In Orca, the number of disk access is O(n/b ∗ n) where
n = |D|. Also, as shown in [4], the expected number of
distance computations to prune a non-outlier point x is 1/ρx,
where ρx is the probability that a point chosen at random
lies within the cutoff threshold. Since this is independent of
n, it achieves a near linear time performance on the entire
dataset. However, to achieve this, ρx needs to be a constant.
This does not hold for many datasets as we demonstrate
later. Our indexing technique described in the next section
helps to alleviate this problem by ensuring that the cutoff
grows faster, the nearest neighbors of a test point are found
quicker and the algorithm terminates earlier without having
to scan the entire database.

Input: k, t, b, D
Output: Ok, the set of top t outliers in D
Initialization: c← 0, O ← ∅
while B ←get next block(D, b)<> ∅ do

forall the b ∈ B do Nk(b)← ∅;
forall the i = 1 to |D| do

x = getFromfile(i, D);
forall the b ∈ B, b 6= x do

if |Nk(b)| < k or dist(b, x) <
maxdist(b, Nk(b)) then

Nk(b)← Update nbors(Nk(b), x, k);
δk(b)← max{‖b− y‖ : y ∈ Nk(b)};
if δk(b) < c then B ← B \ b;

end

end

end
for b=1 to B do

newO ← newO
⋃

[b; δk(b); Nk(b)];
end
Ok ← Find Top t(newO ∪Ok, t);
c← min{δk(y,D) : y ∈ O};

end
Algorithm 1: Orca by Bay and Schwabacher [4].

4. FAST OUTLIER DETECTION USING IN-
DEXING: IORCA

In Orca, one of the factors that affects the prune rate is
the cutoff threshold. If the cutoff grows very slowly, it does
many redundant comparisons for inliers. To alleviate this
problem, we need to develop a method such that: (1) the
cutoff is updated faster, (2) the data is rearranged such that
for every point, the nearest neighbors are found in approx-
imately constant time, (3) it does not perform unnecessary
disk accesses in order to achieve (1) and (2), and (4) the
index is fast to build and does not require the entire data
to be loaded in memory. In the remainder of this section
we show how our indexing method addresses each of these
problems elegantly.

In order to update the cutoff faster, we need to process
the outliers as early as possible. In our indexing method, we
first select a random point R from D as a reference point
and then calculate the distance of all the other points in

Reference point

Test point

1

.

.

.

T
est point order

2

3

4

5

6

Figure 1: Description of the index. Left figure shows
a dataset with normal points in blue, outliers in red
and the reference and test point. The right figure
shows the order in which the test points are pro-
cessed with the points farthest from the reference
point being processed first.

D from R. Then the points in the database are reordered
with increasing distance from R. Fig. 1 shows the index
for a dataset. The left part shows the original dataset. The
blue circles represent the inlier points while the red ones
denote the outliers. The green circle at the center is the
randomly chosen reference point. The right part of the figure
shows the index. The index is simply a one dimensional list
of ordered points where the ordering is determined by the
distance of all the points in the database from the reference
point (highest to lowest). Instead of traversing through the
data in the original order (or random order [4]), we test
the points along this index order. The rationale for this
traversal is as follows. Since we choose R, at random, it is
likely that R will be one of the inlier points if there are more
inliers than outliers. Therefore, the points farthest from R
will be more likely be the outliers. Since we process the
points in decreasing distance to R, it is very likely that the
outliers will be processed first, leading to a faster increase in
the cutoff threshold. This approach would therefore, satisfy
challenge (1) as stated above.

Re-ordering the database for testing has another advan-
tage. If the points are processed in this order, it can be
shown that iOrca can stop the processing and terminate
much early compared to other state of the art methods by
using the following termination criterion.

Lemma 4.1. [Stopping rule] Let L be the index as de-
scribed in this section. Let y be the reference point used
to build L. Let xt be any test point currently being tested by
iOrca. If

‖xt − y‖+ ‖xn−k+1 − y‖ < c,

then iOrca can terminate with the correct outliers, where c
is the current cutoff threshold, xn−k+1 is the k-th nearest
neighbor of y and ‖·‖ is the 2-norm of a vector.

Proof. Using triangle inequality,

‖xt − xn−k+1‖ < ‖xt − y‖+ ‖xn−k+1 − y‖ < c

i.e. the distance between xt and its k-th nearest neighbor
is less than c, in which case it can be pruned. Surprisingly,
the entire execution of the algorithm can be terminated at

this point since, for any other test point x′

t closer to y than
xt (and hence not yet processed), we can show that,

∥

∥x′

t − xn−k+1

∥

∥ <
∥

∥x′

t − y
∥

∥+ ‖xn−k+1 − y‖

< ‖xt − y‖+ ‖xn−k+1 − y‖ < c

This shows that if the result holds for any test point, it will
hold for all subsequent test points and so the algorithm can
stop without further testing of any other point.

Note that these distances are pre-computed and available in
memory. Therefore, checking if the condition holds is very
fast and causes very little overhead.

In order to solve the second problem, we need to search for
the nearest neighbors of a test point in a constant amount
of time. To do this, we again apply our index. Instead of
starting the search from the beginning of the database for
every test point, we start the search from the location it lies
along the index and then gradually “spiraling” out. Figure
1 shows one of the test points T (magenta color) in the
dataset. It also shows where T lies along the index. Now
the search for the nearest neighbor spirals out from T by first
looking at the nearest two points (top and bottom) and then
continuing further until the score of that point drops below
the threshold (in which case the point is pruned) or the
test point has a score higher than the t-th largest outlier (in
which case the outlier list and the cutoff are updated). Since
the index prescribes a total ordering of the points projected
along one dimension, it is likely that, for a test point xt, if
xi is closer to xt than xj along the index, then it will be so
when the actual distances are also computed i.e. if

‖xt − y‖ > ‖xi − y‖ > ‖xj − y‖

then it is expected that

‖xt − xi‖ < ‖xt − xj‖ .

As a result, we can find the nearest neighbors very fast as
demonstrated by our extensive experimental study.

The above technique prescribes a way of testing each point
by traversing the database points in a spiral order. Loading
the entire database for testing each point one by one is I/O
expensive; instead, we process the test points in blocks such
that they can be tested simultaneously by creating a spiral
search order for that entire test block. Our index allows us
to do this by loading a block of index distances (they are
the distances of the test points to y), computing the average
distance and then starting the spiral search from the location
where this average lies along the index. Since after ordering,
the test blocks are expected to be similar, testing them using
the same spiral order helps speed up the search as well.

Finally, our index is simple and cheap to compute. It
can be entirely loaded in memory at runtime since it only
consists of n floating point numbers and the associate integer
indices.

Putting these building blocks together, we develop a novel
indexed version of Orca (iOrca) which is upto an order of
magnitude faster than Orca and costs less disk I/O. The
pseudo-code of iOrca is shown in Alg. 2. Note that the
choice of R is critical in determining the effectiveness of the
pruning. However, discussion on a proper choice of R is
beyond the scope of this paper.
Complexity analysis: For building the index, n distance
computations are needed, each taking O(d) time. Also, the
sorting takes O(n log n) time, giving a total running time of

Input: k, t, b, D
Output: Ok, the set of top t outliers in D
Initialization: c← 0, Ok ← ∅, L = BuildIndex(D);
while B ←get next block(D, b, L)<> ∅ do

// process points as specified in L.id
if (Lemma 4.1 holds for B(1)) then Terminate;
else

µ = findAvg(L(B));
startID =find(L >= µ);
order = spiralOrder(L.id, startID);
forall the b ∈ B do Nk(b)← ∅;
forall the i = 1 to |D| do

x = getFromfile(order(i), D);
forall the b ∈ B, b 6= x do

if |Nk(b)| < k or dist(b, x) <
maxdist(b, Nk(b)) then

Nk(b)← Update nbors(Nk(b), x, k);
δk(b)← max{‖b− y‖ : y ∈ Nk(b)};
if δk(b) < c then B ← B \ b;

end

end

end
for b=1 to B do

newO ← newO
⋃

[b; δk(b); Nk(b)];
end
Ok ← Find Top t(newO ∪Ok, t);
c← min{δk(y,D) : y ∈ O};

end

end
Algorithm 2: Indexed Orca (iOrca)

O(n log n+nd). n floating point numbers are required to be
stored as the index, so the space requirement is O(n). Since
we block both the test points and the reference points using
a block size of b, the number of disk accesses is O(n/b∗n/b)
in the worst case, unless the algorithm can terminate early.

5. DISTRIBUTED OUTLIER DETECTION
ALGORITHM: DOOR

In this section we describe two distributed algorithms for
distance-based outlier detection (DOoR). The algorithms
are disk-aware, and substantially faster than the state of
the art methods while still guaranteeing correct results.

In our distributed setup, we assume that there is a central
node which does the reporting of all the outliers. We also
assume that all nodes P1, . . . , Pn in G form a ring (except
the leader node P0) i.e. any node Pi can communicate with
nodes Pi+1 and Pi−1, 1 ≤ i < p. It is further assumed that
the leader has access to all the data; splits the dataset into
n partitions and ships them to the nodes, while still main-
taining a copy for itself to be used as the test points. Each
Pi has access to its own data block Di; the test blocks are
supplied either by the leader or read from the disk. P0 main-
tains the current list of outliers Ok, of at most t points which
currently have the largest δk(, D). Initially Ok is empty and
accumulates more points as their k-nearest neighbors w.r.t
D are computed by other machines. The leader also main-
tains a cutoff threshold, c = min{δk(x,D) : x ∈ O}, with
c = −∞ initially. Whenever this threshold is changed, it is
broadcast to all nodes for more efficient pruning of points.

Each worker node works in a push-pull mode. Description

Input: k, t, b,Di

while B ←get next block(Di , b)6= ∅ do
forall the b ∈ B do Lk(b)← ∅;
forall the ℓ = 1 to |Di| do

x = getFromfile(ℓ, Di);
forall the b ∈ B, b 6= x do

if |Lk(b)| < k or dist(b, x) <
maxdist(b,Lk(b)) then
Lk(b)← Update nbors(Lk(b), x, k);
rb ← max{‖b− y‖ : y ∈ Lk(b)};
if rb < ci then B ← B \ b; τi ← τi + 1;

end

end

end
forall the b ∈ B do

Send (b,Lk(b), rb) to machine (i+ 1) mod p;
end
CheckMsg();
CheckThreshold();

end
Procedure CheckMsg()
begin

while (received buffer 6= ∅) do
Extract (x,Lk(x), rx) from received buffer ;
Lk(x)← Nk(x,Di) ∪ Lk(x);
rx ← max{‖x− y‖ : y ∈ Lk(x)};
if rx > ci then

if x originated in machine Pi then
Send (x, rx,Lk(x)) (a potential outlier
message) to the leader machine (P0);

end
else Send (x,Lk(x), rx) to machine (i+ 1)
mod p (put it in received buffer of machine
(i+ 1) mod p);

end
else τi ← τi + 1;

end

end
On receiving a new threshold c: ci ← c;

Algorithm 3: DOoR at any worker node Pi.

of the worker node for DOoR is given in Fig. 2 and Alg. 4.
The inputs to each worker are k, t, size of the block b, and
the local dataset Di. Machine Pi maintains a threshold ci
it has received from the leader. Initially ci = −∞. For each
point b in the test data block B, machine Pi also maintains:

• Lk(b)— the k-nearest neighbors found thus far for b

• rb = max{‖b− y‖ : y ∈ Lk(b)}

Initially, Lk(b)← ∅ and rb = 0 for each point b ∈ B. In the
push mode, for each point b ∈ B, the algorithm checks to
see if there exist a set of neighbors in Lk(b) such that the
current score of b is below ci i.e. if rb < ci. If this is true,
then the point is no longer tested and pruned; otherwise b
along with its nearest neighbors found so far Lk(b) and rb
are forwarded (pushed) to the next node Pi+1 for validation.

The other phase of DOoR is the pull phase in which Pi

first checks to see if there are any messages in the received
buffer (RB) from node Pi−1. If RB is not empty, Pi needs
to validate all the received points against its local data Di.
It does so by first extracting the points from RB and then

checking, for every point x in RB, if there are any neighbors
in Di which are closer than the ones in Lx (which contains
the current closest neighbors as received from Pi−1). The
neighbor list and the value of rx are updated accordingly.
As a result, if rx becomes less than ci, then x is pruned.
Otherwise, if x originated in Pi itself, it has survived the
pruning of all the nodes and is sent to the leader node P0

(since it can be a potential outlier data point). If x did
not originate on Pi, is forwarded to Pi+1 with the updated
nearest neighbors. Node Pi then goes back to the push mode
and begins testing the new set of points. In any step of
the execution, if any node gets a new cutoff threshold c, it
immediately sets ci ← c and resumes the processing.

Alg. 4 shows the tasks executed by the leader node in
DOoR. It initializes the outlier list Ok to null. Whenever
it receives a new potential outlier x, it adds x to Ok if the
outlier list contains less than t points. If it contains t points,
the outlier in Ok with the smallest score is replaced by x. If
due to either of these computations, the outlier list becomes
full, the cutoff is set to the score of the smallest outlier and
it is then broadcast to all the nodes.

Finally, we discuss the assignment of test points to the
worker nodes. There are several ways this can be done. In
our implementation, we choose a simple but effective ap-
proach. This is shown in Fig. 2. Instead of testing all the
test blocks in parallel at all nodes, we assign the test blocks
in a round robin fashion: the first test block (red) is as-
signed to the top left node, the second to the top right and
the third goes to the bottom node. These points are then
tested in parallel at the nodes. Some of the test points are
locally pruned, and the remaining ones are then validated
at the other nodes by passing them through the ring topol-
ogy formed by the nodes. The next set of blocks are then
read and this process continues until all the test points are
exhausted. Unlike the Parallel Bay’s algorithm (PBay) [13],
our method is expected to be faster since we do not evaluate
the same test block in parallel at all the nodes. For a set
of test points, we leverage the nearest neighbors found at
one node to continue the search on the next node, instead
of starting from scratch at all the nodes for that test block.
As a result, the size of the test block keeps diminishing as it
moves around the ring from one node to the other.

One critical component of any distributed algorithm is
the termination criterion. In our algorithm this can be im-
plemented in one of the two ways. Each node Pi keeps
track of τi, the total number of points that it has pruned,
and the leader machine keeps track of ρ, the total number
of points it received as potential outliers. Periodically the
leader polls the workers for their values of τi’s. Whenever
∑n

i=1
τi + ρ = |D|, the leader sends a terminate message to

all the nodes. Alternatively, each node can send a termina-
tion signal to the leader when the remaining test block size
becomes zero.

The second distributed algorithm that we describe in this
paper combines the index developed for iOrca and the dis-
tributed processing of DOoR. We call this the indexed dis-
tributed outlier detection algorithm or iDOoR. The leader
node first reorders the data based on a randomly chosen ref-
erence point. This is to ensure that the points which have
the highest distance to the reference point (the potential out-
liers) are processed first. Then it broadcasts the reference
point to all the worker nodes and splits the data amongst
all the nodes as before. Any worker node on receiving the

Input: Di, n, k
Output: Ok, the set of outliers
Initialization: Ok ← ∅;
if (x, rx,Lk(x)) is received then

ρ← ρ+ 1;
if |Ok| ≤ t− 2 then Ok ← Ok

⋃

[x; rx; Lk(x)];
if |Ok| = t− 1 then

Ok ← Ok

⋃

[x; rx; Lk(x)];
c← min{δk(y,D) : y ∈ Ok};
Broadcast c to all nodes;

end
if |Ok| ≥ t then

if rx > min{δk(y,D) : y ∈ Ok} then
Drop y ∈ Ok with minimum δk, add x to Ok;
c← min{δk(y,D) : y ∈ Ok};
Broadcast c to all nodes;

end

end

end
Algorithm 4:Distributed outlier detection at master node

reference point builds its own index on its local dataset Di.
The rest of the algorithm is similar to DOoR. On receiving
a block of test points, any worker node executes the spiral
search based on the index built onDi for the entire block. To
save the number of messages exchanged between the master
node and the worker nodes, before every new test block is
sent out, the master node checks to see if Lemma 4.1 holds
for the test block. Since the index is stored in memory, these
computations do not require any extra disk access. If this
condition holds for any test block, iDOoR can terminate.
We omit the pseudo code here due to shortage of space.

It is fairly easy to argue the correctness of DOoR or iDOoR.
First note that if the cutoff c = 0, we pass all the data points
through all the nodes, thereby ensuring that the nearest
neighbors of all the points are correctly found. In the pres-
ence of cutoff, the latter is only updated by the leader. At
any point during the execution of the algorithm ci < c, guar-
anteeing no false dismissals.

6. EXPERIMENTS

6.1 Setup
We have implemented our algorithms in Java. The cen-

tralized experiments have been run on a 64-bit 2.33 GHz
quad core dell precision 690 desktop running Red Hat En-
terprise Linux version 5.4 having 18GB of physical memory.
For the distributed experiments, we have used a mid-range
linux cluster comprised of 16 slave nodes each containing
two, quad-core 2.66GHz CPU totaling 128 cores and 256GB
Ram (2Gb/Core). It is controlled by two master nodes and
has 30Tb storage. The distributed Java code uses the Java
RMI (remote method invocation) framework to mange the
worker nodes with a central client handling communication
between the distributed threads. In all the experiments, we
report the wall time to include both the CPU and I/O time.
Note that we do not report accuracy, because our method is
guaranteed to produce the same outliers as Orca. We have
tested our algorithms on the following real datasets2:

2The first 2 datasets are available at http:
//archive.ics.uci.edu/ml/index.html. MODIS is avail-

Reference data

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��������

����

����

����

��������

��������

����

����

����

����

����

����

��
��
��
��

����

Test points

Reference data

Reference data Reference data

Reference data

Reference dataReference data

Reference data

Reference data

Test points Test points

D2

D3

D1

D3

D2D1

D3

D1
D2

Figure 2: Execution of distributed algorithm. The leftmost figures shows the setup: the test points are color
coded to show which block is assigned to which node. Second figure shows that assignment. Third figure
shows how the not pruned points are tested at the other nodes.

0.5 1 2 5 6
x 10

5

10
−1

10
1

10
2

10
3

10
4

10
5

Data size

R
un

tim
e

(s
ec

s)

Orca
iOrca
Index building

(a) Runtime for Covtype

0.01 0.5 1 2
x 10

5

10
−1

10
0

10
1

10
2

10
3

10
4

Data size

R
un

tim
e

(s
ec

s)

Orca
iOrca
Index building

(b) Runtime for Landsat

0.5 5 15
x 10

6

10
−2

10
1

10
2

10
3

10
4

10
5

10
6

Data size

R
un

tim
e

(s
ec

s)

Orca
iOrca
Index building

(c) Runtime for MODIS

0 2 4 6 8 10
x 10

7

10
0

10
2

10
3

10
4

10
5

10
6

Data size

R
un

tim
e

(s
ec

s)

Index building
iOrca
Orca

(d) Runtime for CarrierX

0 50 100 150 200 250 300
100

200

300

400

500

600

700

Blocks of data

C
ut

of
f

Orca

iOrca

(e) Cutoff for Landsat

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.02

0.04

0.06

0.08

Blocks of data

C
ut

of
f

Orca

iOrca

(f) Cutoff for MODIS

Figure 3: Figure showing running time for the 4
datasets ((a) - (d)). As clearly shown for each
dataset, iOrca beats Orca in running time. This
happens because the cutoff increases at faster rate
compared to Orca ((e) and (f)).

1. Covertype: contains 581,012 instances and 10 features
2. Landsat : contains 275,465 instances and 60 features
3. MODIS : contains 15,900,968 instances and 7 features
4. CarrierX : contains 97,814,864 instances and 19 fea-

tures
Unless otherwise stated, we have used the following de-

fault values for the parameters: block size, b = 1000, t = 30
and k = 5.

6.2 Centralized results:iOrca

Our first set of experiments demonstrates the benefits of
our indexing method in speeding up Orca in a purely cen-

able at http://modis.gsfc.nasa.gov/data/dataprod/
dataproducts.php?MOD_NUMBER=09. The last is a propri-
etary dataset from a partner airline.

0 2 4 6 8 10

5000

5500

6000

6500

Number of nearest neighbors (k)

R
un

ni
ng

 ti
m

e
(s

ec
s)

(a) Time vs. k for Covtype

0 2 4 6 8 10
300

350

400

450

Number of nearest neighbors (k)

R
un

ni
ng

 ti
m

e
(s

ec
s)

(b) Time vs. k for Landsat

Figure 4: Running time vs. k for iOrca.

tralized setting. Fig. 3 ((a)–(d)) shows the results for the
4 datasets. Each of the Figures (a) - (d) shows the running
time (in log scale) along the y-axis for Orca (red squares),
iOrca (blue circles) and the index building phase of iOrca
(black diamond). The x-axis are random samples from these
datasets. As clearly shown, iOrca beats Orca; the decrease
in running time is from 2 to 17 times compared to Orca.
The decrease in runtime occurs because: (1) the indexing
method orders the points in such a manner that those which
are farthest from a common reference point are processed
first. Since these points are the potential outliers, the cut-
off increases much faster (compared to Orca), leading to
faster pruning of inliers (2) the spiral search helps to find
the nearest neighbors for each test point much faster than
going through the data in the original order, and (3) the
early stopping criterion helps to avoid testing all the data
points. For the Landsat dataset, there are 276 blocks of test
data and iOrca only needs to process the first 6 blocks before
the early stopping condition signals termination. Similarly,
for the MODIS dataset, there are 16,000 blocks of test data
and iOrca only evaluates the first 13,000 leading to signif-
icant savings in both I/O and runtime. Note that for the
CarrierX dataset, we could not plot the runtime of Orca on
the entire dataset since it has not finished in more than 8
days. The last two plots (e) and (f) of Fig. 3 compares how
the cutoff grows for both Orca and iOrca for Landsat and
MODIS datasets as each test block is processed.

The next set of figures (Fig. 4) demonstrates the variation
of runtime as each for varying number of nearest neighbors
k for Covtype and Landsat dataset. As shown, the runtime
increases very slowly as k is increased. This shows that for
both these datasets, the spiral search technique is able to
find the nearest neighbors of a test point in very little time,
leading to a very slow growth in runtime.

3 4 5 6 7
1.5

2

2.5

3

3.5

4

4.5

Number of nodes

S
pe

ed
up

PBay
DOoR

(a) Scalability for Covtype

3 4 5 6 7
1

2

3

4

5

6

7

Number of nodes

S
pe

ed
up

PBay
DOoR

(b) Scalability for MODIS

3 4 5 6 7
1

2

3

4

5

6

Number of nodes

S
pe

ed
up

PBay
DOoR

(c) Scalability for CarrierX

Figure 5: Speedup of DOoR vs PBay [13] algorithm with Orca as the baseline.

Comparison to other methods:
We have compared our algorithm with the RBRP algo-

rithm [9]. Unfortunately, the source code made available by
the authors was in C and so we re-implemented it in Java.
Overall we found it to be much slower than iOrca because of
primarily two reasons: (1) the number of clusters produced
is roughly of the order of 1000 for most of the datasets; more
so, finding the nearest clusters for each cluster is, in itself, a
quadratic time computation with respect to the number of
clusters, and (2) as described in Section 2, processing each
test point one by one leads to an unacceptably large number
(O(n2)) of disk I/O, thereby slowing down the performance
dramatically.

6.3 Distributed results: DOoR and iDOoR

Fig. 5 shows the performance results for DOoR. The red
curve shows the speedup (ratio of the runtimes) that is ob-
tained by running DOoR on 3 to 7 distributed machines
when compared against a centralized Orca. The blue curve
shows the speedup of obtained by PBay [13] vs. Orca. As
shown, the speedup of DOoR is much greater compared
to that of PBay for all the datasets. For Covertype and
MODIS, the speedup is almost linear for DOoR. This shows
that our distributed algorithm DOoR is more efficient in
finding outliers compared to PBay. The primary reason for
this is that DOoR can better utilize the cutoff by assign-
ing different test blocks to different nodes at the beginning,
unlike PBay which assigns the same test block to all the
nodes. As a result in DOoR, each test block keeps shrinking
in size as it travels through the ring for validation. Moreover,
DOoR can leverage the nearest neighbors of the test points
found at one node to speed up the search at the successive
node in the ring. In contrast, PBay tests all the blocks in
parallel at all the nodes, leading to more computations.

Finally, we present the speedup results for iDOoR in Fig.
6. In this case, our baseline is the iOrca algorithm. We are
interested in answering the following question: Does dis-
tributed processing help in reducing the runtime of iOrca?
As shown in the figure, for most cases, iDOoR is faster than
iOrca (speedup > 1 indicates this). The x-axis shows the
number of machines used while the y-axis shows the speedup
obtained. Each experiment is run for three datasets shown
by the three colored bars. Note that in this case, the speedup
is less than linear. Due to the index, the cutoff in iOrca in-
creases very fast; as a result, most of the outliers are found
in the first 20% of the blocks and the algorithm can pro-
cess the rest of the data very fast. iDOoR helps to speed
up the first 20% of the execution, but for the later 80%, of
the execution the overhead of message passing is more than

3 4 5 6 7
0

1

2

3

4

Number of nodes
S

pe
ed

up

CarrierX
Covtype
MODIS

Figure 6: Speedup of iDOoR vs. iOrca.

the single threaded iOrca. This is the prime reason why we
do not find a linear increase in speedup when the number
of machines is increased. Currently, we are working on a
hybrid method whereby we can switch between these two
modes on the fly.

7. CONCLUSION
In this paper we have developed both sequential and dis-

tributed outlier detection methods that are significantly more
efficient than existing methods while still guaranteeing the
exact same outliers. Using a simple, but effective index-
ing and disk block accessing techniques, our sequential al-
gorithm iOrca is up to an order-of-magnitude more efficient
than the state-of-the-art. By allowing the algorithm to stop
early, iOrca can terminate even before looking at all the test
points. We further propose two distributed algorithms for
outlier detection (DOoR) and iDOoR that can be run on
multi-core cluster of machines connected on a ring topology.
By combining the index scheme along with distributed pro-
cessing, our distributed algorithm is much faster than [13]
as validated on large public datasets.

Acknowledgments
This research is supported by the NASA SSAT project under
NASA Aeronautics Mission Directorate.

8. REFERENCES
[1] F. Angiulli, S. Basta, S. Lodi, and C. Sartori. A

Distributed Approach to Detect Outliers in Very
Large Data Sets. In Proocedings of Euro-Par’10, pages
329–340, 2010.

[2] F. Angiulli and F. Fassetti. DOLPHIN: An Efficient
Algorithm for Mining Distance-based Outliers in Very
Large Datasets. ACM TKDD, 3:4:1–4:57, 2009.

[3] F. Angiulli and C. Pizzuti. Fast Outlier Detection in
High Dimensional Spaces. In Proceedings of PKDD’02,
pages 15–26, 2002.

[4] S. Bay and M. Schwabacher. Mining distance-based
outliers in near linear time with randomization and a
simple pruning rule. In Proceedings of SIGKDD’03,
pages 29–38, 2003.

[5] J. Bentley. Multidimensional binary search trees used
for associative searching. Commun. ACM, 18:509–517,
1975.

[6] S. Berchtold, D. Keim, and H. Kriegel. The X-tree :
An Index Structure for High-Dimensional Data. In
Proceedings of VLDB’96, pages 28–39, 1996.

[7] M. Breunig, H. Kriegel, R. Ng, and J. Sander. LOF:
Identifying Density-based Local Outliers. In
Proceedings of SIGMOD’00, pages 93–104, 2000.

[8] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
Detection: A Survey. ACM Computing Surveys,
41:15:1–15:58, 2009.

[9] A. Ghoting, S. Parthasarathy, and M. Otey. Fast
mining of distance-based outliers in high-dimensional
datasets. DMKD, 16:349–364, 2008.

[10] A. Guttman. R-Trees: A Dynamic Index Structure for
Spatial Searching. In Proceedings of SIGMOD’84,
pages 47–57, 1984.

[11] E. Hung and D. Cheung. Parallel Mining of Outliers
in Large Database. Distrib. Parallel Databases,
12:5–26, 2002.

[12] E. Knorr and R. Ng. Algorithms for Mining
Distance-Based Outliers in Large Datasets. In
Proceedings of VLDB’98, pages 392–403, 1998.

[13] E. Lozano and E. Acuna. Parallel Algorithms for
Distance-Based and Density-Based Outliers. In
Proceedings of ICDM’05, pages 729–732, 2005.

[14] M. Otey, A. Ghoting, and S. Parthasarathy. Fast
Distributed Outlier Detection in Mixed-Attribute
Data Sets. DMKD, 12:203–228, 2006.

[15] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient
Algorithms for Mining Outliers from Large Data Sets.
In Proceedings of SIGMOD’00, pages 427–438, 2000.

