
Modeling Complex Air Traffic Management Systems

Neha Rungta
NASA Ames Research Center
neha.s.rungta@nasa.gov

Eric G Mercer
Brigham Young University

egm@cs.byu.edu

Franco Raimondi
Middlesex University

F.Raimondi@mdx.ac.uk
Bjorn C. Krantz

NASA Ames Research Center
bjorn.c.krantz@nasa.gov

Richard Stocker
Middlesex University

soxsheba@hotmail.com

Andrew Wallace
Brigham Young University
wallaceac@byu.edu

ABSTRACT
In this work, we propose the use of multi-agent system (MAS)
models as the basis for predictive reasoning about various
safety conditions and the performance of Air Traffic Man-
agement (ATM) Systems. To this end, we describe the engi-
neering of a domain-specific MAS model that provides con-
structs for creating scenarios related to ATM systems and
procedures; we then instantiate the constructs in the ATM
model for different scenarios. As a case study we generate
a model for a concept that provides the ability to maximize
departure throughput at La Guardia airport (LGA) without
impacting the flow of the arrival traffic; the model consists
of approximately 1.5 hours real time flight data. During this
time, between 130 and 150 airplanes are managed by four en-
route controllers, three TRACON controllers, and one tower
controller at LGA who is responsible for departures and ar-
rivals. The planes are landing at approximately 36 to 40
planes an hour. A key contribution of this work is that the
model can be extended to various air-traffic management
scenarios and can serve as a template for engineering large-
scale models in other domains.

1. INTRODUCTION
Multi-agent systems (MAS) offer design abstraction and

modeling capabilities for systems involving both humans and
automation, but to the best of our knowledge there is no
work that provides support for creating models for a spe-
cific application domain. In recent years, there has been a
lot of work in developing domain-specific languages (DSL) in
context of programming languages and software engineering.
DSLs provide developers constructs and functionality rele-
vant to their domain-specific applications; there are, how-
ever, no domain specific MAS modeling frameworks. Sev-
eral MAS models have been developed to model applications
from different domains such as aviation, health care system,
nuclear power plants, and others. But since the MAS ar-
chitectures are designed as general-purpose frameworks, it
is often challenging for experts in a specific domain to learn

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

MiSE’16, May 16-17, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4164-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2896982.2896993

and use the MAS modeling frameworks for their applica-
tions. Although the practice of engineering domain-specific
models is applicable to a wide variety of applications where
humans interact with each other and automation, in this pa-
per we consider problems related to the design of air traffic
management systems and procedures for civil aviation.

The goal of several government agencies related to civil
aviation in the US and Europe is to have a system-wide au-
tonomous optimized airspace with a flexible, scalable, and
resilient system to meet significant traffic growth while sup-
porting ever changing operator roles and business-network
models. This increase in automation is required for the pro-
jected growth in traffic demand including Unmanned Aerial
Systems (UAS) in National Airspace (NAS) [3]. The Na-
tional Research Council (NRC) report on “Autonomy Re-
search for Civil Aviation” [6] points out,

“current safety methods rely heavily on the hu-
man operator to mitigate system anomalies and
unanticipated events”.

There is, however, no formal or precise characterization of
the decision making process or the actions of the human
operators that lead to the safety of the current system. In
light of this, it is very difficult to estimate the impact on
the overall safety of the NAS with the introduction of new
systems, automation, or procedures.

In this work, we propose the use of domain-specific multi-
agent system (MAS) models as the basis for predictive rea-
soning about various safety conditions and the performance
for Air Traffic Management (ATM) scenarios. We describe
the engineering of a domain-specific MAS model that pro-
vides constructs for creating ATM scenarios. We then present
how these constructs can be instantiated for specific tasks
and scenarios. The instantiation process is described using a
case study based on an evaluation of the Departure Sensitive
Arrival Scheduling (DSAS) concept [9]. The DSAS concept
provides the ability to maximize departure throughput at
LaGuardia airport (LGA) without impacting the flow of the
arrival traffic; each scenario in the DSAS evaluation consists
of approximately 1.5 hours real time flight data. During this
time, between 130 and 150 airplanes are managed by four en-
route controllers, three TRACON controllers, and one tower
controller at LGA who is responsible for departures and ar-
rivals. The planes are landing at approximately 36 to 40
planes an hour. The case study demonstrates the poten-
tial utility of constructing domain-specific MAS models for
ATM applications.

2. DOMAIN-SPECIFIC MODEL
In order to create a model, that allows for predictive rea-

soning about ATM systems, such that the model is exten-
sible and reusable across different scenarios we were posed
with two different choices:

1. Design and develop a new domain-specific MAS frame-
work for creating and analyzing ATM models.

2. Use or extend an existing MAS framework for devel-
oping and checking ATM models.

The challenge with creating a new domain-specific MAS
framework from scratch is that it takes a significant effort
to develop such a framework. The required steps include
defining a syntax for the language, formalizing the seman-
tics, developing a compiler for the language, implementing
the execution semantics so that we can run simulations, and
finally implement algorithms that allow us to reason about
interesting properties about the models. Each of these steps
is non-trivial, making the process more than expensive in
both time and resources. Hence, we decided to leverage an
existing MAS framework, Brahms, to create and analyze
ATM models. Brahms has been developed over the past
10 years and includes clear definitions of the language and
semantics with a stable implementation.

The core contributions of defining a domain-specific ATM
model is: (a) define constructs of the system that are fa-
miliar to the domain expert and (b) provide simulation and
analysis data in a manner such that the domain expert can
easily interpret and understand the results. In this section
we first present a high-level overview of the Brahms language
and its semantics; next we present how we create constructs
for the ATM model in Brahms.

2.1 Overview of Brahms
Brahms is a simulation and development environment orig-

inally designed to model the contextual situated activity be-
havior of groups of people in a real world context [4, 15].
Brahms has now evolved to model humans, robots, auto-
mated systems, agents, and interactions between humans
and automated systems. Brahms follows a rational agent
approach: rational agents are autonomous, react to changes
in circumstance and choose their actions based on their own
agenda. Brahms is a beliefs, desires, and intentions (BDI)
model that describes the goals the agent has and the choices
it makes, all based on a certain set of beliefs.

A Brahms model contains a set of Objects and Agents
that are used to model humans and automated systems in
a real-world context. Brahms is able to represent artifacts,
data, and concepts in the form of classes and objects. A
geography model is used to locate agents and objects and
provides an additional context to activities.

The key structural aspects of Brahms are:

1. attributes: properties of agents/objects/locations,

2. activities: actions an agent performs, typically advanc-
ing simulation time,

3. beliefs: each agent’s own personal perception of all the
attributes in the model,

4. facts: actual values of the attributes,

5. detectables: detection of facts, bringing facts into an
agent’s belief base and determining the response,

6. workframes: guarded plans which denote a sequence
of events required to complete a task, including belief
updates and actions,

7. thoughtframes: guarded plans for belief revisions made
due to the situated context of the agent/object, and

8. time: forms the time-line output presented by Brahms
to describe the simulation.

In this project, we use a Brahms Simulator implemented
in Java that describes the semantics for executing a Brahms
model [8]. The Brahms scheduler has a discrete clock. The
scheduler can jump multiple time steps to move simulation
faster than real time simulation.

Here we provide a brief overview of the Brahms semantics.
For more details, please refer to papers on Brahms [4, 15, 8].
The Brahms scheduler initializes the system, the agents, ob-
jects, and geography. The scheduler first instantiates all the
agents where they initialize their facts and beliefs. After ini-
tialization, the scheduler instructs all agents to process their
thoughtframes. The agents check the guards to generate a
set of active thoughtframes. Next, the scheduler selects the
active thoughtframe with the highest priority. If, however,
there is more than one active thoughtframe with the same
priority, one is randomly selected from the set.

In the past, Brahms models have been created to analyze
conditions that led to the Air France 447 accident [8], to
review the sequence of events that led to the Überlingen
collision [14], and to perform a comparative evaluation of
operator workload between a single pilot and traditional two
pilot concept [16]. Each of these models is a one-off exercise
requiring a MAS modeling expert to create; they are not
re-usable across different scenarios and do not share any
modeling constructs.

2.2 Generic ATM Model
A key challenge in building models with a high enough

fidelity to generate actionable predictions is to choose the
right level of abstraction. The generic model, or frame-
work, described here represents an abstraction level distilled
from close work with a team of airspace design experts, con-
trollers, cognitive scientists, human factor researchers, and
pilots. The resulting model is both configurable and exten-
sible to any specific air space or ATM protocol.

At a high-level the model leverages Brahms’ object-oriented
nature to create a type hierarchy of agents and objects that
comprise the building blocks of an ATM system simulation.
These can be roughly grouped into the following categories:
Geography represents physical locations in the real world

and routes through those locations. This category pro-
vides flight plans for the navigation objects and the
structure of the world for the controllers.

Navigation represents anything that moves in the airspace.
This category provides a common set of trajectory
based activities to determine movement through time
between locations that includes altitude.

Controllers coordinate aircraft in the airspace. This cat-
egory provides a common set of controller actions for
interactions with the aircraft.

Clock that creates a universal view across the model of time
advancing.

2.2.1 Geography

GVE COLIN

SWL

GARE
D

AGAR
D

ENO
FL250

SKIPY
FL220

BESSI
FL200

EDJE
R

DAVY
S

HOLE
Y

BRAN
D
14000

ZDC
Center
South

ZDC
Center
South

ZNY
Cente
r West

H/O to Empyr
(114) 127.30

Figure 1: Example of a Sector (ZDC Center South)
in the NY metroplex as defined in the DSAS HILT
study setup

Geography elements in the ATM model are waypoints,
flight segments, and flight plans; an example of the geogra-
phy concept is illustrated in Fig. 1. The labeled points are
waypoints and the lines connecting the waypoints (blue or
gray) are flight plans. These define highways in air which
aircraft follow through the airspace. The waypoints shown
in Fig. 11 are part of the south sector of the airspace in the
NY metroplex.

More specifically, waypoints are latitude and longitude co-
ordinates of points on the earth shown below. An instance
of a waypoint is made by creating a named object waypoint
with appropriate coordinates in the ATM model.

A flight segment is a pair of waypoints that includes an
ending altitude and speed. It reflects the intended trajectory
a navigation object, e.g., an airplane, would follow through
the segment. Similar to waypoints, instances of flight seg-
ments are created to reflect standard operating procedures
(SOP)2 in the airspace being modeled.

A flight plan is an ordered list of flight segments. The
flight plan is the defined highway followed by a navigation
object through the airspace. The framework is designed such
that a modeler is able to make either a standard set of flight
plans through the airspace or make flight plans specific to
individual aircraft.

Normally in ATM, there is a concept of sectors that de-
fine a portion of the airspace managed by either a single
controller or a group of controllers. Aircraft move through
sectors along specific flight plans, and controllers hand-off
aircraft at sector boundaries. The model presented here

1The figure was part of the airspace configuration setup pro-
vided to controllers in the DSAS HILT.
2A SOP specifies constraints for how a given class of aircraft
should fly along a given route unless instructed otherwise by
a controller.

does not expressly model sectors directly. Rather it indi-
rectly models sectors with boundary waypoints. The con-
troller category is responsible for defining the boundaries
that belong to any individual controller. Hand-off is han-
dled via the flight segment and detected when the boundary
waypoint is reached.

2.2.2 Automation
There are several systems being used in current day op-

erations to improve the throughput of the NAS while main-
taining the current levels of safety. One such automation is
the Terminal Sequencing and Spacing (TSS) system which
is currently being deployed across different regions in the US
and is being used by controllers to assist with the complex
task of scheduling and controlling aircraft during periods
of congestion [18]. The goal of the TSS model is to create
conflict-free schedules for arriving flights at meter fixes, run-
way thresholds, and any other merge points. The TSS gen-
erates a slot marker for each of the planes. A slot marker
represents a 4-dimensional point (latitude, longitude, alti-
tude, and time) in space that specifies where its respective
plane needs to be in order to meet scheduling, sequencing,
and miles in-trail (MIT)3 spacing requirements.

2.2.3 Navigation
The navigation class updates the position of airplanes

based on the current position, altitude, and airspeed using
a Java activity. The class has workframes that activate on
a regular frequency, determined by an attribute in the type,
to call the external activity for the position update. Based
on the position, the class has workframes that update or
advance the flight plan. It uses the Java externals feature
of Brahms to create Java activities implemented in the Java
programming language. The choice to use Java for comput-
ing trajectory information means that it is possible to be
as detailed or abstract as desired in modeling movement.
As such, the model can be tuned, with little effort, to meet
different modeling objectives.

The navigation class is specialized in two distinct ways:
one for airplanes and the other for slot markers. The air-
plane specialization includes support for controller interac-
tions. That support includes hand-offs between sectors and
clearances for metering. Metering is a deviation from the
specified airspeed in the flight plan; this change of speed is
issued as a clearance by the controller. For example, a con-
troller may issue a clearance for the airplane to decrease its
airspeed by 20 knots in order to sequence the plane through
a merge point and maintain MIT separation.

The slot marker specialization indicates where the plane
needs to be in order to meet its scheduled time of arrival
(STA) according to the TSS automation. The controller is-
sues clearances in order to ensure that the plane is at the co-
ordinates of its corresponding slot marker. The slot marker
is placed in a specific position by the TSS automation, and
it then follows the same flight plan as its associated airplane.
As mentioned previously, a benefit to this model structure is
that the airplane and slot marker use the same Java library
to update their position. In essence a slot marker is a vir-
tual airplane but it can make abrupt jumps when the TSS
performs a change in the schedule. The airplane and slot
types are used by instantiating specific instances of flights

3MIT is the number of miles required between aircrafts.

and slot markers for those flights. In this way, the modeler
is able to build different traffic patterns using the model.

2.2.4 Controller
The controller is the most complex model in the system.

It is responsible for managing traffic through a sector of the
airspace including any sequencing that needs to take place
in order for planes to maintain proper horizontal and verti-
cal separation. More specifically, Air Route Traffic Control
Center (ARTCC), also known as enroute centers, handle
traffic during the cruise phase of flight. Each center has sev-
eral en route sectors with aircrafts at altitudes between 10K
to 37K feet altitude. Most aircraft in this phase of flight are
simply transitioning through one section to another. Some
aircraft are transitioning from cruise to descent; these air-
craft are handed off to the appropriate TRACON approach
controllers.

The TRACON handles a 40 mile airspace around an air-
port. TRACON controllers are responsible to transition ar-
riving and departing aircraft with Tower controllers. Depar-
ture TRACON gives pilots headings, altitudes and speeds
for the cruise phase of the flight, while approach TRACON
controllers funnel and sequence aircraft approaching from
different enroute sections into a single stream. The local
controller in the tower is responsible for the aircraft landing
and taking off on the runways. The local controller issues
clearances to land and take-off and handle transitions with
their respective TRACON controllers.

The controller model defines sectors by border waypoints
and the controllers that own those points. For example, in
Fig. 1, the blue dotted line defines a sector managed by a
specific controller. The COLIN waypoint marks the hand-
off waypoint. As a plane follows its flight plan, it moves
through waypoints and, when it is approaching a hand-off
waypoint, the controller initiates the hand-off with the own-
ing controller.

The controller type keeps track of planes in its sector us-
ing a relation. At each hand-off the plane, or flight, is added
to or removed from the relation. In this way, the controller
is able to track all the planes in its airspace. Similar to the
navigation class, the controller agents leverage Java exter-
nal activities to check separations between planes. For each
plane that it owns, at a regular frequency determined by an
attribute in the type, it computes the ETAs of the planes
to merge points, and issues clearances to individual flights
to sequence through merge points. Similarly, once TSS has
assigned an STA and put the slot marker in the appropri-
ate position, the controller will check the distance between
flights and slot markers issuing clearances as appropriate.
As of writing, the controller is only able to meter flights
(i.e., adjust airspeed) to accomplish sequencing. Vectoring
flights (i.e, change trajectory), is a subject of future work.
It should be noted that part of the controller monitoring
process is reporting the loss of separation4.

Similar to the other agents and objects, a modeler instan-
tiates specific instances of the controller, including the req-
uisite border waypoints and controllers, to define a specific
airspace. Together with the instantiated flights and geogra-
phy, the modeler constructs a scenario. The modeler does
not have to define behavior in any of these instances; only
the attributes are defined (i.e., given specific values).

4A loss of separation between aircraft occurs whenever the
specified separation in controlled airspace is no longer valid.

2.2.5 Clock
The model has its own clock that tracks the time advanc-

ing during the simulation of the model. The clock internal
to the model provides the flexibility to determine the gran-
ularity of time steps in the model. Sometimes when fine-
grained actions are not relevant to the simulation, the clock
can jump multiple time-steps at a given instance.

3. DSAS CONCEPT
Air traffic operations around the New York airspace are

notoriously complex. High demand combined with a highly
constrained airspace and uncertainty from factors such as
weather, create a challenging operational environment and
sometimes brittle system. Given the level of arrival demand
and the priority given to arrival aircraft for runway use,
departure aircraft are often required to sustain delays and
await opportunities to depart as they arise. An extreme,
though not entirely uncommon, result of this situation is
that delays often grow on the departure side until the de-
parture queue extends to the point of gridlock.

One strategy for addressing the departure problem is to
work toward developing an arrival schedule that ensures de-
parture release without reducing arrival capacity or the need
for a reduction in arrival demand. Leveraging the capa-
bilities of the TSS technology suite, Optimized Profile De-
scent (OPD) routings and procedures, and scheduling deci-
sion support, a human-in-the-loop (HITL) simulation was
conducted in the summer of 2014 in the Airspace Oper-
ations Lab (AOL) at NASA Ames Research Center that
examined the potential benefits, feasibility, and issues re-
garding Departure-Sensitive Arrival Scheduling (DSAS) at
LaGuardia Airport (LGA) in New York [9].

Each scenario evaluated in the HILT of the DSAS study
consists of approximately 1.5 hours real time of simulation.
During this time, there are between 130 and 150 airplanes
being managed by four enroute controllers, three TRACON
controllers, and one tower controller at LGA who is respon-
sible for departures and arrivals. The planes are landing at
approximately 36 to 40 planes an hour.

We believe the airspace around the New York metroplex
evaluated in the DSAS study serves as an ideal represen-
tative part of the NAS in order to create instances of the
generic ATM model. The specific parts that we create are
as follows:

1. The airspace in the NY metroplex and operations that
includes the three major airports: JFK, Newark (EWR),
and La Guardia (LGA). We will restrict the airport
operations to LGA even though we will consider the
entire NY metroplex airspace.

2. Traffic flow and runway configurations under standard
operating conditions.

3. Air Traffic Controllers at the New York Air Route
Traffic Control Center (New York ARTCC, New York
Center, or ZNY), New York TRACON (N90), and the
tower at LGA.

4. Supervisors and Traffic Management Coordinators at
the respective Center, TRACON, and Towers.

5. Pilots flying the planes in the defined airspace.

6. Automation related to trajectory-based operations, e.g.,
TSS.

In Brahms, we were able to successfully model all the
planes, the pilots of the planes, the different controllers, the
interactions amongst the humans (controllers, pilots, and
supervisors), and the interactions between human operators
and automation by instantiating specific parts of the ATM
general model. To create specific instances of the constructs
in the model we use the data logged by the Multi-Aircraft
Control System (MACS) tool; the MACS software was used
to setup and run the simulations in DSAS HITLs. We use in-
formation about arrival traffic flow, flight plans, and depar-
tures from the MACS data logs to then automatically gen-
erate Brahms objects/agents for airplanes, the flight plans
for the airplanes, the waypoints, the departures, the config-
uration of the sectors, and the various controllers directing
the approaching traffic.

Waypoints are uniquely identified by their names. We au-
tomatically create all corresponding waypoints objects based
on their latitude and longitude. We create flight segments
such that they are specific to a plane; this is because the
speed and altitude restrictions vary for aircraft based on
their class. The flight plan is read from the MACS logs for
each aircraft, the corresponding flight segments are first gen-
erated and then the Brahms object representing the flight
plan is generated. Based on the information in the MACS
logs we also generate the initial state of the aircraft as well.
Note that we track traffic only in four enroute centers, the
TRACON, and LGA; so we assign the initial latitude and
longitude of a particular plane in the HITL at the time the
plane enters this region of interest. This information is also
gleaned from the MACS logs. The startTime of the air-
craft indicates at what time in the simulation a particular
plane appears in the region of interest to the model. Each
aircraft is also assigned a flight plan. There are attributes
for the starting latitude, longitude, speed and altitude of
an aircraft. The currentFlightSegment attribute provides
information about which flight segment the aircraft is cur-
rently flying on. The attributes such as latitude, longitude,
speed, altitude, and the currentFlightSegment are updated
as the plane starts flying. Consider the example shown be-
low where the initial values of the plane JBU6365 are set
based on when it enters the region of interest.

agent plane_JBU6365 memberof Airplane {

initial_beliefs:

(current.latitude = 41.25311);

(current.longitude = 73.71723);

(current.myFlightPlan = flightPlan_JBU6365);

(current.startTime = 40);

(current.speed = 239.12);

(current.altitude = 8755.76);

..

A certain set of attributes are also generated from the
MACS logs for the different enroute centers, TRACON, and
Tower controller. These include the set of waypoints with
the sector managed by the respective controller, the way-
point where the current controller performs the hand-off to
controller managing an adjoining sector, as well as the iden-
tifier of the adjoining sector (current.handoffTo = ZNY 114).

The Center and TRACON controllers perform handoffs
when planes cross sector boundaries. In the model, con-
trollers maintain the required separation based on the spec-
ified rules. The rules were derived from discussions with
retired controllers.

The Brahms constructs discussed above are all instances
of the templates specified in the generic ATM model. We
combine the auto-generated parts of the model (e.g., con-
structs that are different for each scenario such as traffic
flow, airplanes, departures) that represent instances of the
elements specified in the ATM model and the re-usable parts
of the ATM model (e.g., how planes fly or how hand-offs are
performed) to generate the final models.

4. DSAS SIMULATION
We were able to successfully simulate 1.5 hours of real

traffic in the Brahms model using the auto-generated and
static parts of the model. The simulation of the Brahms
model takes approximately 3 to 4 minutes. The output of
the simulation is visualized in a custom tool. The tool visu-
alizes the flow of the arrival traffic, the departures, and the
hand-off between the controllers. With this visualization
we were able to validate that the simulation of the Brahms
model, even at a high-level of abstraction, mimics the HITL
scenarios. In this section we describe our observations of the
model simulation.

Consider the snapshot of our visualization tool in Fig. 2
that is recreating one of the scenarios evaluated in the DSAS
HITL. This image is best viewed in color. The triangle rep-
resents the waypoints around the LGA airspace, examples
are FINSI, AWARE, FOLAM, DAVYS, HOLEY, and oth-
ers. The dot followed by a call sign are identifiers for planes
flying. The colors of the plane identifiers are indicative of
which controller is managing the particular aircraft. When
the plane transitions from one sector to another, the color of
the call sign changes to that of the corresponding controller.
All the planes shown in Fig. 2 are approaching the LGA air-
port that is indicated by the waypoint LGA22 (shown in the
upper right quadrant of Fig. 2) where 22 is the runway con-
figuration. Once an aircraft reaches LGA22, it is considered
as landed.

As seen in this figure there are three streams of traf-
fic approaching LGA, south, west, and north. First the
south and west traffic merges around waypoint TYKES.
This south/west merged traffic then merges with the traffic
from the north sector at the MIRRA and GREKO way-
points. Here the controller models reason about whether
the planes can have a potential loss of separation (less than
5 nautical miles in trail separation). A thick line shown
in Fig. 2 between call sign JBU3635 and SWA1837 is in-
dicative that if the controller does not take any action there
will be loss of separation between these two planes. In our
model, the controller slows down a plane (metering) to en-
sure that the planes continue to maintain the required sepa-
ration. The visualization provides an explicit representation
of the controllers’ thought process.

All communications between the controllers or between a
controller and plane is shown in the text box titled “Com-
munication Window” on the left panel of Fig. 2. Note that
communications are not restricted to voice communications.
For example, hand-offs are performed by assigning a data
block on the controllers’ screen to another controller. When
the other controller accepts the data block, the hand-off is

Figure 2: Visualization of the approach traffic in the NY metroplex airspace.

complete. The data communications are also presented in
the communications window.

The panel below the communications window depicts the
planes’ schedule, its ETA and the difference between its STA
and ETA. There are sliders which can be used to speed up
or slow down the simulation to observe specific interactions.
The Step Next button provides the ability to the user to
step through the simulation. The Zoom functionality is also
available in the tool. There are various display modes that
were designed to mimic the display screen used by controllers
and supervisors.

The visualization also presents a window titled “Depar-
ture Queue”and another titled“Separation Violators”shown
in Fig. 2. The departure queue is as the name suggests: the
list of airplanes waiting to depart from the LGA airport. In
our simulation we delete the aircraft as soon as it takes off
to mimic what was done in the DSAS HITLs. Though this
is not a restriction of the simulation. The plane could have
continued flying if we had defined departure TRACON con-
trollers and other controllers that handle departing aircrafts.
This demonstrates the flexibility of the ATM model. Ele-
ments and instances of controllers, traffic, and other agents
can be added or removed based on the requirements of the
simulation. The separation violators window presents any
loss of separation between aircraft; when such a case does
occur the relevant airplanes also blink to provide visual cues
to the observer.

Even though the model and simulation of the DSAS model
shown in Fig. 2 is at a high-level of abstraction compared to
that of the HITL, we believe that a visualization tool such
as this aids domain-experts understanding and interpreting
the results of the simulation. This model and visualization,

we believe, addresses, at least in part, a big challenge in
any simulation-related modeling exercise. Often there are
no good ways to map the results of the simulation back to
its original application. The choice of our visualization and
its layout was driven by the domain and display formats of
existing systems in use.

The visualization and other information gathered during
the simulation allows us to reason about the safety and per-
formance of the system. If by increasing the traffic or chang-
ing the conditions of the scenario the number of loss of sepa-
ration increases, then the coordination/communications ac-
tivities occurring at the time can be used to determine the
cause of reduced safety. Further, the model enables the mea-
surement of cognitive workload impact of procedure changes
on the controllers and planes. This measure can be used to
guide the design of automated systems and procedures.

5. RELATED WORK
Multi-agent systems have been employed to model, simu-

late and analyse a range of scenarios, from banking systems
to crowd management, auctions, trust issues and traffic sim-
ulations. A number of tools have been developed to support
these activities. Examples of tools include, just to name
a few: the Repast Agent Modelling Toolkit [12] that offers
features to support simulation and analysis of results using
external connectors; NetLogo [19], focusing mainly on ease
of use and with support for educational activies; MASON,
providing support for Java simulations and 3D visualiza-
tion tools [10]; the Jason tool for AgentSpeak programs,
enabling the use of the BDI paradigm in the modelling, sim-
ulation and verification of multi-agent systems; Brahms [5],
as shown above, is a framework targeting mainly systems

involving both human and artificial agents.
In spite of the plethora of generic tools, there doesn’t

seem to be support for domain-specific languages (DSL) for
multi-agent systems in the Software Engineering sense [11].
Indeed, while there is ample support in Software Engineering
for DSL development and runtime support, it seems that the
multi-agent community has focused mainly on the design
phase, see for instance [17, 7].

The closest related work to our ATM model is perhaps [2],
which employs the Prometheus methodology [13] to model
an avionics scenario. Prometheus models scenarios, and it
then generates JADE code [1]. Our approach, instead, aims
at providing a measure of how certain choices impact the
design of ATM technologies and procedures.

6. CONCLUSIONS
We propose the use of domain-specific MAS models as the

basis for predictive reasoning about various safety conditions
and the performance of systems and procedures in the do-
main of Air Traffic Management (ATM). In this work we
describe the engineering of a domain-specific MAS model
that provides constructs for creating scenarios related to
ATM. We present how these constructs can be instantiated
to implement specific tasks and procedures related to ATM.
Here we describe instances of the ATM model for recreating
the Departure Sensitive Arrival Scheduling (DSAS) concept
evaluated in a HITL [9]. A key contribution of this work is
that the model can be extended to various air-traffic man-
agement scenarios and can serve as a template for engineer-
ing large-scale models in other domains. We believe the pro-
cess defined to create ATM models could be used to create
models in other related domains for example autonomous
cars in real world traffic and operators with drones.

7. REFERENCES
[1] F. L. Bellifemine, G. Caire, and D. Greenwood.

Developing multi-agent systems with JADE, volume 7.
John Wiley & Sons, 2007.

[2] J. M. Canino, J. Garćıa, J. M. Molina, and J. B.
Portas. A Multi-Agent Approach for Designing Next
Generation of Air Traffic Systems. INTECH Open
Access Publisher, 2012.

[3] J. A. Cavolowsky, L. Quon, and P. Kopardekar. New
directions NASA’s airspace operations and safety
program, 2014.

[4] W. Clancey, P. Sachs, M. Sierhuis, and R. Van Hoof.
Brahms: Simulating practice for work systems design.
International Journal of Human-Computer Studies,
49(6):831–865, 1998.

[5] W. J. Clancey, P. Sachs, M. Sierhuis, and
R. Van Hoof. Brahms: Simulating practice for work
systems design. International Journal of
Human-Computer Studies, 49(6):831–865, 1998.

[6] N. R. C. Committee on Autonomy Research for
Civil Aviation. Autonomy research for civil aviation:
Towawrd a new era of flight, 2014.

[7] C. Hahn. A domain specific modeling language for
multiagent systems. In Proceedings of the 7th
international joint conference on Autonomous agents
and multiagent systems-Volume 1, pages 233–240.
International Foundation for Autonomous Agents and
Multiagent Systems, 2008.

[8] J. Hunter, F. Raimondi, N. Rungta, and R. Stocker. A
synergistic and extensible framework for multi-agent
system verification. In M. L. Gini, O. Shehory, T. Ito,
and C. M. Jonker, editors, AAMAS, pages 869–876.
IFAAMAS, 2013.

[9] P. U. Lee, N. M. Smith, J. Homola, C. Brasil,
N. Buckley, C. Cabrall, E. Chevalley, B. Parke, and
H.-S. Yoo. Reducing departure delays in laguardia
airport with departure-sensitive arrival spacing (dsas)
operations. ATM 2015, NASA Ames Research Center,
San Jose State University, NASA Ames Research
Center, Moffett Field, CA, 2015.

[10] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and
G. Balan. Mason: A multiagent simulation
environment. Simulation, 81(7):517–527, July 2005.

[11] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344, Dec. 2005.

[12] M. J. North, N. T. Collier, and J. R. Vos. Experiences
creating three implementations of the repast agent
modeling toolkit. ACM Trans. Model. Comput. Simul.,
16(1):1–25, Jan. 2006.

[13] L. Padgham and M. Winikoff. Prometheus: A
methodology for developing intelligent agents. In
Agent-oriented software engineering III, pages
174–185. Springer, 2003.

[14] N. Rungta, G. Brat, W. J. Clancey, C. Linde,
F. Raimondi, C. Seah, and M. Shafto. Aviation safety:
Modeling and analyzing complex interactions between
humans and automated systems. In Proceedings of the
3rd International Conference on Application and
Theory of Automation in Command and Control
Systems, ATACCS ’13, pages 27–37, New York, NY,
USA, 2013. ACM.

[15] M. Sierhuis. Modeling and Simulating Work Practice.
BRAHMS: a multiagent modeling and simulation
language for work system analysis and design. PhD
thesis, Social Science and Informatics (SWI),
University of Amsterdam, SIKS Dissertation Series
No. 2001-10, Amsterdam, The Netherlands, 2001.

[16] R. Stocker, N. Rungta, E. Mercer, F. Raimondi,
J. Holbrook, C. Cardoza, and M. Goodrich. An
approach to quantify workload in a system of agents.
In Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems,
AAMAS ’15, pages 1041–1050, Richland, SC, 2015.
International Foundation for Autonomous Agents and
Multiagent Systems.

[17] A. Susi, A. Perini, J. Mylopoulos, and P. Gi. The
tropos metamodel and its use. Informatica, 29(4),
2005.

[18] H. N. Swenson, J. Thipphavong, A. Sadovsky,
L. Chen, C. Sullivan, and L. Martin. Design and
evaluation of the terminal area precision scheduling
and spacing system. ATM 2011, NASA Ames
Research Center, NASA Ames Research Center,
Moffett Field, CA, 2011.

[19] S. Tisue and U. Wilensky. Netlogo: A simple
environment for modeling complexity. In in
International Conference on Complex Systems, pages
16–21, 2004.

