
Symbolic Execution with Mixed
Concrete-Symbolic Solving

Corina S. Păsăreanu
Carnegie Mellon/NASA Ames

M/S 269-2
Moffett Field, CA 94035, USA
corina.s.pasareanu@nasa.gov

Neha Rungta
SGT Inc./NASA Ames

Moffett Field, CA 94035, USA
neha.s.rungta@nasa.gov

Willem Visser
University of Stellenbosch

Private Bag X1
7602 Matieland, South Africa

willem@gmail.com

ABSTRACT
Symbolic execution is a powerful static program analysis
technique that has been used for the automated genera-
tion of test inputs. Directed Automated Random Testing
(DART) is a dynamic variant of symbolic execution that
initially uses random values to execute a program and col-
lects symbolic path conditions during the execution. These
conditions are then used to produce new inputs to execute
the program along different paths. It has been argued that
DART can handle situations where classical static symbolic
execution fails due to incompleteness in decision procedures
and its inability to handle external library calls.

We propose here a technique that mitigates these pre-
vious limitations of classical symbolic execution. The pro-
posed technique splits the generated path conditions into (a)
constraints that can be solved by a decision procedure and
(b) complex non-linear constraints with uninterpreted func-
tions to represent external library calls. The solutions gen-
erated from the decision procedure are used to simplify the
complex constraints and the resulting path conditions are
checked again for satisfiability. We also present heuristics
that can further improve our technique. We show how our
technique can enable classical symbolic execution to cover
paths that other dynamic symbolic execution approaches
cannot cover. Our method has been implemented within
the Symbolic PathFinder tool and has been applied to sev-
eral examples, including two from the NASA domain.1

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Symbolic execution

General Terms
Test Case Generation, Verification

Keywords
Symbolic Execution, DART, Constraint Solving

1This is an updated version of the ISSTA’11 paper where
we have added a clarification to Section 5.2.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’11, July 17-21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/05 ...$10.00.

1. INTRODUCTION
Modern software is becoming increasingly complex and

needs to be highly reliable. Testing is commonly used for
ensuring the reliability of software but it is still mostly a
manual, and therefore expensive process. Automating the
testing process can significantly reduce the cost of producing
software and it can increase software reliability by enabling
more thorough testing.

Symbolic execution techniques [15, 5, 6, 14, 29, 7] have
shown great promise in automatically generating test cases
that achieve high code coverage. Symbolic execution is a
program analysis technique that executes programs with
symbolic rather than concrete inputs and maintains a path
condition (PC). The PC is updated whenever a branch in-
struction is executed, to encode the constraints on the inputs
that reach that instruction. Test generation is performed by
solving the collected constraints, using an off-the-shelf deci-
sion procedure or constraint solver.

In previous work, we have developed a symbolic execution
framework [14, 19, 18] that uses a model checker to generate
and explore different symbolic execution paths. Whenever
a path condition is updated, it is checked for satisfiability
using an off-the-shelf solver; if the path condition becomes
unsatisfiable, it means that the corresponding branch condi-
tion is unreachable, and the model checker is instructed to
backtrack. The backtracking mechanism has the advantage
that it avoids the potentially expensive re-execution of large
parts of the code and it enables incremental decision pro-
cedure and constraint solving. Our approach further lever-
ages the model checker’s built-in search capabilities, such
as different search heuristics, generation and exploration of
different thread interleavings, partial order reductions, etc.

An alternative popular symbolic execution approach is im-
plemented in DART (Directed Automated Random Test-
ing) [12], CUTE [23], PEX [26], SAGE [11] and many other
related tools. DART2 and all these other tools perform a
concrete execution on random inputs and at the same time
they collect the path constraints along the executed paths.
The collected constraints are systematically negated and
solved to obtain new inputs that drive the program along
alternative concrete paths. The process is repeated until the
desired coverage criteria (or a timeout) have been reached.
The approach does not use backtracking and is instead based
on re-executing the program with different inputs.

2Although these tools are all subtly different they all use
the general techniques from the original DART paper and
as such we will refer only to DART in the rest of the paper

It has been argued [12, 9] that the main advantage of
DART is its ability to fall back on concrete run-time values
when“classical” symbolic execution would fail, i.e. when the
decision procedure can not handle the complex mathemat-
ical constraints that are generated or when analyzing code
that uses native or external libraries. Indeed, whenever sym-
bolic execution does not know how to generate a constraint
for a program statement depending on some inputs, DART
uses the concrete run-time values of those inputs to simplify
those constraints.

In this paper we propose a technique that enhances“classi-
cal” symbolic execution (as implemented in our framework)
to solve cases were it failed before (incomplete decision pro-
cedures and handling of native libraries) while still main-
taining its advantages. The technique performs satisfiability
checking with mixed concrete-symbolic solving. Similar to
DART, we use concrete values to simplify constraints that
can not be handled by the decision procedure directly. How-
ever, unlike DART, we do not use the run-time values of pro-
gram variables, but instead we use the concrete solutions of
the solvable constraints in the current path condition. As a
result we may use different concrete values (corresponding
to different conditions) along the same symbolic path, which
will correspond to multiple paths in DART. Our proposed
technique does not rely on re-execution, and therefore can be
used in conjunction with model checking and backtracking.

Our proposal has two ingredients: (1) use of uninterpreted
functions to represent calls to unknown or complex func-
tions during symbolic execution and (2) delayed (or lazy)
concretization of these functions, based on the concrete val-
ues obtained by solving the “simple”, solvable constraints
in the path condition (simplePC). The result of this con-
cretization is a set of simplified constraints that are solved
again, using an off-the-shelf solver, hence the name “mixed
concrete-symbolic solving” for our technique. If these new
constraints are satisfiable, then the original PC is also sat-
isfiable, and the symbolic execution continues on that path;
otherwise it backtracks.

Note that, similar to all the other related approaches [12,
3, 23, 26, 11], our technique is inherently incomplete, i.e.
there are cases where the collected path conditions are sat-
isfiable but our proposed technique fails to show that. In
such cases, symbolic execution will backtrack and will fail
to generate test inputs for paths that are feasible. We do
show however that our technique can be more powerful than
DART, i.e. it obtains full path coverage where DART fails
(see Section 2), but that in fact the two techniques are in-
comparable (see discussion in Section 3). We also show that
our technique is more powerful (in terms of both statement
and path coverage) than another related symbolic execution
technique, EXE [3], that relies on a simple concretization.

To alleviate the incompleteness problem, we also propose
two simple heuristics to enhance our technique. The intu-
ition behind these heuristics is that they force the solver to
generate “more interesting solutions” from simplePC in the
hope that these solutions will have a better chance at lead-
ing to satisfiability proofs when used to simplify the complex
part of the PC. The first heuristic uses incremental solving
to generate multiple solutions for simplePC. These solu-
tions are then used to systematically concretize the exter-
nal functions and perform iterative mixed concrete-symbolic
solving (up to a user specified limit).

The second heuristic leverages user annotations that parti-
tion the domains of the uninterpreted functions into subsets
that are deemed interesting by the user. Such partitions can
be simple abstractions (e.g. partition the inputs between
positive and negative values) or they can come from some
form of black-box analysis of the complex functions (e.g.
margin analysis [17]). The extra constraints are systemati-
cally added to the current PC and mixed concrete-symbolic
solving is called systematically for each newly obtained PC.

Other similar heuristics can be added easily, as we main-
tain a clear separation between the path exploration and the
mixed constraint solving in our algorithms. Furthermore,
similar to DART, we have added an option to use random
values for all the inputs that are unconstrained in the path
condition.

We have implemented all the proposed techniques in the
Symbolic PathFinder tool [18] and have applied them to
test generation for Java code. The implementation and the
examples are available at [13]. We note however that our re-
sults are not particular to Java or to Symbolic PathFinder,
as they can apply to any “classical” symbolic execution ap-
proach and associated tools.

The rest of the paper is organized as follows. Section 2
illustrates our techniques on an example and compares them
with the related approaches DART and EXE. Section 3 de-
scribes in detail satisfiability checking with mixed solving,
the two heuristics and the random solving option, that is
the default for our techniques. That section also provides a
more in-depth comparison with DART. Section 4 describes
the implementation of the proposed techniques in the Sym-
bolic PathFinder tool and Section 5 describes the experience
of applying the implementation to several examples, includ-
ing two from the NASA domain. Finally we provide more
related work in Section 6 and conclusions and future work
in Section 7.

2. EXAMPLE
We use the example in Figure 1 to illustrate our pro-

posed techniques and to compare it to the related approaches
DART [12] and EXE [3].

Figure 1(a) shows a simple program using Java-like syn-
tax. We analyze method test that invokes another method
hash. Assume that hash is a complex mathematical func-
tion that our off-the-shelf constraint solver can not handle
or a function whose code is simply unavailable for analysis
(e.g. native method in Java). For illustrative purposes, let
us assume that hash(x) = 10 ∗ x, for 0 ≤ x ≤ 10 and 0 oth-
erwise. “S0”, “S1”, “S3” and “S4” denote statements that we
wish to cover with our automated testing techniques (their
exact content does not matter for our purposes here).

Figures 1 (b), (c), and (d) show the program executions
that are generated as a result of analyzing method test

with our method, EXE, and DART, respectively, using the
same depth-first search order of exploration3. DART and
our technique cover all the program statements, while EXE
does not; the example also shows that DART and EXE do
not cover all the paths through the code, while our technique
does.

Let us look at this example in more detail. The path
condition PC to reach the execution of “S0” at line #4 has

3Assume for simplicity that the constraint solver always re-
turns the smallest possible solution.

@Concrete("true")
@Partition({"x>3.0","x<=3.0"})
double hash(double x) {...}

void test(int x, int y) {
1: if (x > 0) {
2: if (y == hash(x))
3: S0;
4: else
5: S1;
6: if (x > 3 && y > 10)
7: //if (y > 10)
8: S3;
9: else
10: S4;

}
}

PC: true

S1

PC: X>3 & Y>10

& Y!=hash(X)

PC: X<=0

Solve: x>3 & y>10
hash(4)=40
check:

x>3 & y>10 & y=40

& Y!=hash(X) & Y!=hash(X)

PC: X>0 & X<=3PC: X>0 & X<=3

S3 S4

PC: X>0

& Y!=hash(X)

S4S3 S4

PC: X>0

& Y=hash(X)

PC: X>3 & Y>10

& Y=hash(X) & Y=hash(X)

PC: X>0 & X<=3

Solve x>0
hash(1)=10
check x>0 & y=10

S0

PC: X>0

x: X, y: Y

(a) (b)

S0

S4

PC: Y==10

PC: Y==10

PC: X<=0

x: X, y: Y

PC: true

PC: X>0Solve x>0
Fix x=1
hash(1)=10

S1

PC: Y!=10

PC: Y!=10

S4 Divergence!

PC: X<=0

x=0, y=0

PC: X<=0 PC: X>0

PC: X>0 & Y!=10

S1

PC: X>0 & Y!=10

& X<=3

S4

x=1, y=0

Solve x>0

hash(1)=10

PC: X>0

S1

PC: X>0

S1

PC: X>0

S0 S1

S4 S3 S3

S4

hash(4)=40

x=4, y=0

& x>3

Solve x>0 & y!=10

hash(4)=40

Solve x>0 & y!=40

x=4, y=11

& x>3 & y>10 x=4, y=40

Solve x>3 & y=40

hash(4)=40

x=1, y=40

hash(1)=10

Solve x>0 & y=40 & x<=3

PC: X>0 & Y!=40 PC: X>0 & Y!=40 PC: X>0 & Y!=10

PC: X>0

PC: X>0 & Y=40

PC: X>0 & Y!=40

& X>3 & Y<=10

PC: X>0 & Y!=40

& X>3 & Y>10 & X>3 & Y>10

PC: X>0 & Y=40

(c) (d)

Figure 1: (a) An illustrative example program. (b) Paths explored using our technique; all the statements
and paths are covered. (c) Paths explored using EXE; statement “S3” is not covered. (d) Paths explored
using DART; all statements are covered but path “S0, S4” is not covered.

the value X>0 & Y=hash(X), where X and Y denote the two
input symbolic values for method test. Note that we use
upper case letters to denote the symbolic representation of
the equivalent variables defined in lower cases letters. “Clas-
sical” symbolic execution would get stuck given our assump-
tion that the constraint solver cannot handle hash directly
so it cannot generate two values for the inputs x and y that
drive the execution of test through the then branch of the
conditional at line #3. On the other hand, DART starts
execution by generating random values for inputs x and y.
If the concrete value of x, v, satisfies X>0; then DART can
easily generate a value for y that is equal to hash(v). The
value of hash(v) is known at run-time. If v does not satisfy
X>0, then DART performs an extra iteration where it first
solves X>0 and sets the value of x to the solution. DART
then re-executes the program and finds a value for y that
is equal to the run-time value of hash(x). By first picking
randomly and then fixing the value of x, DART can drive
the execution of test through different program paths.

Our goal is to achieve something similar to DART in the
context of “classical”, static symbolic execution. We want
to fall back on concrete values when the symbolic execution
encounters functions of the form hash, while still allowing
backtracking.

One simple solution is to first solve the simple, “solvable”,
part of the PC, i.e. constraint X>0, and to use the obtained
solution (e.g. 1 for X) to “concretize” the value of x, i.e.
to fix the value of the input x to be 1 for the rest of the
execution. From that point on, execution involving concrete
values follows standard semantics, hence hash(1) will be
executed concretely and its result, hash(1)=10, will be used
for updating PC to Y=104, corresponding to the execution of
the then branch of the conditional at line #3. The negation
of the constraint, corresponding to the else branch, can also
be analyzed easily, so one can generate test cases to cover
the execution of both “S0” and “S1”.

While very simple, this approach can work well in practice
and it was used for example in the EXE tool [3]. However,
it has the drawback that by fixing some symbolic inputs to
concrete values, it may be overly restrictive so it may miss
covering some large parts of the code under analysis. For
example, by fixing x to be 1, the condition at line #7 can
not be satisfied, so EXE will fail to generate test inputs
that cover statement “S3” (see Figure 1 (c) that shows the
statements and paths covered by EXE).

4For simplicity we ignore here extra constraints that are due
to casting from int to double

DART solves this problem by re-execution: assume DART
starts by first executing test on inputs x=0 and y=0, it will
then collect X<=0 in the PC, negate the constraint, solve
it, so that next time it will execute, it will use the solution
X=1 to re-run the program. In this way, by repeated re-
execution, all the statements in test get covered (see Fig-
ure 1(d)). Note however that some paths (e.g. “S0, S4”)
remain un-covered, due to divergence, meaning that the
“predicted” path (“S0, S4”) is different from the one that
is actually taken (“S1, S4”) [12]. Various tools that imple-
ment the DART algorithm handle divergence differently, e.g.
the original DART implementation would re-start with new
random values, that is not of too much help here.

In contrast, we propose here a technique that does not rely
on re-execution, and therefore can be used in conjunction
with backtracking. We propose to use uninterpreted func-
tions to represent calls to unknown or complex functions
during symbolic execution. For our example, this means
that when symbolic execution reaches the invocation of hash,
it will not actually execute it (concretely or symbolically)
but rather collect it and add it to the path condition. A
special annotation @Concrete(“true”) is used to mark the
methods that are to be kept uninterpreted. Whenever sym-
bolic execution needs to decide feasibility of alternate paths,
we first solve the simple part of PC, we use those values to
concretize hash, and then we solve again the path condition
that was thus simplified.

For example, in Figure 1(b), in order to execute the path
corresponding to “S0, S3” (marked with bold lines in the fig-
ure), we need to decide if PC: X>0 & Y=hash(X) is satisfi-
able. We first split PC into simplePC : X>0 and complexPC :
Y=hash(X) and solve simplePC . The obtained solution X=1

is used to compute hash(1)=10 and to simplify complexPC
into Y=10. This constraint is conjoined back with simplePC
and the result is newPC: X>0 & Y=10 which is satisfiable.

Similarly, the second PC along the path “S0, S3” is PC:
X>0 & X>3 & Y>10 & Y=hash(X), which is equivalent to PC:
X>3 & Y>10 & Y=hash(X). Our mixed concrete-symbolic solv-
ing technique will first solve simplePC : X>3 & Y>10, it will
use solution X=4 to compute hash(4)=40 and will then solve
again the simplified constraints newPC: X>3 & Y>10 & Y=40.
Note that, to ensure soundness, we need some extra equal-
ity constraints that for simplicity we omitted here but we
will discuss in detail in Section 3. In this way, our tech-
nique can cover all the paths through the code. Note that
unlike DART, we do not use the run-time values of program
variables but instead we use the solutions of the collected
constraints. As a result we may use different concrete val-
ues along the same symbolic path; this would correspond to
multiple concrete paths in DART; e.g., we considered two
different concrete values for X along the path “S0, S3”.

Assume now that in the code of Figure 1(a), we replace
line #6 with line #7. Then it becomes harder to cover the
paths through test. For example, DART would not be able
to generate a test input that covers“S0, S3”(which it covered
before). The reason is that it can only progress based on
(the negation of) constraints that it has seen so far, and
now that we have removed the condition x>3, DART would
not be able to generate an input for x that satisfies X>0 &

Y=hash(X) & Y>10, which is the PC corresponding to “S0,
S3”. For a similar reason, our technique will not be able to
cover that path, since it does not have enough information

in simplePC to decide the satisfiability of the overall PC.
EXE will behave as before.

To overcome the problem, we developed some simple heuris-
tics that allow us to cover “S0, S3” as well. The first heuris-
tic uses iterative solving to generate multiple solutions for
the simplePC : X>0 & Y>10 and then uses these solutions to
repeatedly concretize hash and to perform mixed concrete-
symbolic solving. Thus, after running for two iterations, so-
lution X=2 is found and this is good enough for making X>0

& Y>10 & Y=hash(X) true, since Y=hash(2)=20 and X>0 &

Y>10 & Y=20 is satisfiable.
The second heuristic uses extra constraints provided by

the user via a @Partition annotation to help finding solutions
(see Figure 1(a) that defines two partitions x>3 and x<=3).
For the example, applying the heuristic entails adding the
constraints describing the partitions to PC. As a result,
we obtain two new path conditions: PC & x>3 and PC
& x<=3 and we apply mixed concrete-symbolic solving for
each resulting path condition. For PC & X>3 equal to X>0

& Y=hash(X) & Y>10 & X>3, we are able to find a solution
so we stop.

3. SATISFIABILITY CHECKING WITH
CONCRETE-SYMBOLIC SOLVING

In this section we describe our proposed method that uses
mixed concrete-symbolic solving to check the satisfiability of
the path conditions that are generated using symbolic exe-
cution. We also discuss the potential for unsoundness in
our method and how we remedy it using extra equality con-
straints. As mentioned, our method is incomplete, which
may lead to missing the execution of feasible paths. We
describe two simple heuristics that help alleviate this in-
completeness problem. Furthermore, we describe how we
use random values for the unconstrained inputs. Finally,
we provide a discussion that compares our mixed concrete-
symbolic solving technique with DART.

The method shown in Figure 2 checks the satisfiability of a
path condition using a combination of concrete and symbolic
solving. The input to the method mixedIsSatisfiable is
the path condition that is being solved (workingPC), while
the outputs are: a result of the satisfiability check and a set
of extra constraints (extraPC) that are described in more
detail below. The method assumes that there are certain
constraints in the path condition that can be solved by a
constraint solver and it simplifies the rest using concrete val-
ues. The combinations of the symbolic and concrete solving
determines the satisfiability of the path condition.

3.1 Main Method
The constraints whose satisfiability can be checked by the

constraint solvers (the constraints that can be symbolically
solved) are added to the simplePC, while all the other con-
straints are added to the complexPC, e.g. non-linear inte-
ger constraints, complex mathematical constraints and con-
straints containing calls to external libraries. The simplePC
and complexPC are initialized to null at the beginning of the
method. Next, the workingPC is split into simplePC and
complexPC. If simplePC is un-satisfiable, then it means
that the original workingPC is also un-satisfiable, so the
method returns false on line #5, together with null for the
extraPC. If simplePC is satisfiable and complexPC is null,

procedure mixedIsSatisfiable(workingPC)
1: simplePC := null;
2: complexPC := null;
3: split workingPC into simplePC and complexPC;
4: if solve(simplePC) == false then
5: return 〈false,null〉;
6: if complexPC == null then
7: return 〈true,null〉;
8: use solutions of simplePC to simplify complexPC;
9: extraPC := extra EQ constraints from solutions;

10: newPC := simplePC ∧ simplified complexPC ∧ extraPC;
11: return 〈isSatisfiable(newPC), extraPC 〉;

Figure 2: Mixed Concrete-Symbolic Solving

1: void test(int x, int y) {
2: if(x >= 0 && x > y && y == x*x)
3: S0;
4: else
5: S1;
6: }

Figure 3: Example illustrating potential for un-
soundness

the method returns true (and null). If, however, complexPC
is not null, the solution generated for the simplePC is used
to simplify the complexPC , meaning that the concrete so-
lutions are used to execute all the uninterpreted functions
in complexPC and the concrete returned values are then
used instead for these functions. The result of simplifica-
tion is assigned to simplified complexPC . The values of
the solution are used to create extra equality constraints
on line #9 of Figure 2. These additional equality constraints
need to be added to ensure soundness for our technique (see
next sub-section). Furthermore, these extra equality con-
straints are used in our incremental solving heuristic, de-
scribed later in this section. A newPC that is a conjunction
of the simplePC , simplified complexPC , and extraPC is gen-
erated. This newPC can then be solved using the constraint
solver at hand, and the result is returned, together with the
equality constraints from extraPC .

3.2 Potential for Unsoundness
The example in Figure 3 illustrates the reason for ad-

ditional equality constraints that are needed to ensure the
soundness of our method. The path condition correspond-
ing to the execution of “S0” is X>=0 & X>Y & Y=X*X. Note
however that “S0” is unreachable, i.e. the path condition
is not satisfiable. If we split this path condition into the
part we can solve, namely simplePC: X>=0 & X>Y, and the
part we cannot solve5, namely complexPC: Y=X*X, then we
can obtain a result for the first part that suggests we should
use X=0 in the non-linear part. This will simplify the non-
linear side to Y=0. In turn this will lead to a simplified
combined constraint of X>=0 & X>Y & Y=0 which is satisfi-
able with X=1 and Y=0; which could lead us to believe that
S0 is reachable. The problem here is that we introduced
unsoundness when we ignored the solutions obtained from

5Assuming here our solver cannot deal with non-linear inte-
ger arithmetic

the solvable side when using the simplified result from the
non-linear side.

We therefore always add extra equality constraints on the
solutions that we use to simplify complexPC. These ex-
tra constraints are stored in extraPC. For this example,
extraPC is X=0 and the final constraint becomes X>=0 &

X>Y & Y=0 & X=0 which is not satisfiable. The constraint
on the solution for X, namely X=0, that we used to simplify
Y=X*X is thus added back into the final constraint.

In our setting omitting these solution constraints can cause
unsoundness, but an analogous situation can occur in DART.
However, the unsoundness in the DART approach will not
lead to analyzing unreachable code as it could in our case,
but will instead lead to divergence, i.e. DART will produce
inputs to cover code that it will then not cover. To the best
of our knowledge the DART approach doesn’t address this
problem by recording constraints on the concrete values, as
we are doing, but instead just checks if the paths it is trying
to cover are indeed covered by the inputs. If a divergence is
detected, DART is restarted anew with random input val-
ues.

3.3 Incremental Solving Heuristic
The incremental solving heuristic tries multiple solutions

for simplePC in an attempt to find a solution that leads
to the satisfiability of the overall path condition. The al-
gorithm for the incremental solving is shown in Figure 4.
When the technique is run with the incremental heuristic
isSat_Incremental, the workingPC is provided as input to
the method. In a loop bounded by MAX TRIES (user de-
fined) the method mixedIsSatisfiable (shown in Figure 2)
is invoked with the current workingPC . The method returns
true if the mixed path condition is satisfiable at lines 3--5

in Figure 4.
The heuristic comes into play when the mixed path con-

dition is not satisfiable. As mentioned, the additional path
condition, extraPC , returned by mixedIsSatisfiable con-
tains the equality constraints that represent solutions to the
simplePC and were used for simplifying the complexPC .
We negate these constraints and add them to workingPC
to force the solver to generate new solutions, in the hope
of exercising the different behaviors from the complex func-
tions encoded in complexPC.

3.4 Partitioning Heuristic
The partitioning heuristic uses additional constraints de-

fined in code annotations to partition the domain of the
external (un-interpreted) functions when searching for solu-
tions in simplePC. The goal is to generate inputs to exer-
cise the external functions on some interesting values. The
method for the partitioning heuristic is shown in Figure 5.
From lines #1 to #5, a call to mixedIsSatisfiable is made
with the workingPC, if it is satisfiable we return true, oth-
erwise we check the partitionPCs. The partitionPCs is a
set of path constraints on the parameters of the complex
functions that appear in the PC; they are collected during
the first run of mixedIsSatisfiable. Each partitionPC
in partitionPCs is then added to the workingPC one at
a time. Whenever the new workingPC is satisfiable the
heuristic returns true.

For example, assume that the current working PC is Z+1>0
& Y=hash(Z+1) & Y>10. And assume that the @Partition
annotation for method hash(double x) defines two parti-

procedure isSat Incremental(workingPC)
1: tries := 0;
2: while tries < MAX TRIES do
3: 〈result , extraPC 〉:=mixedIsSatisfiable(workingPC);
4: if result == true then
5: return true;
6: if extraPC == null then
7: return false;
8: workingPC := workingPC ∧ ¬extraPC ;
9: tries := tries +1;

10: return false;

Figure 4: Incremental Solving Heuristic

procedure isSat Partitioning(workingPC)
1: 〈result , extraPC 〉 := mixedIsSatisfiable(workingPC);
2: if result == true then
3: return true;
4: if partitionPCs == null then
5: return false;
6: for each partitionPC in partitionPCs do
7: new workingPC := workingPC ∧ partitionPC;
8: result := mixedIsSatisfiable(new workingPC);
9: if result == true then

10: return true;
11: return false;

Figure 5: Partitioning Heuristic

tions: x>3 and x<=3. During the first call to mixedIsSat-

isfiable, the partition constraints are instantiated with the
symbolic parameters of hash and collected into partitionPCs;
thus for our example, partitionPCs will contain Z+1>3 and
Z+1<=3. Since the result of mixedIsSatisfiable is false,
we try to add each one of these partition constraints back
to workingPC and solve again. The result of mixedIsSat-
isfiable on Z+1>0 & Y=hash(Z+1) & Y>10 & Z+1>3 is true
so we stop (the result being true).

3.5 Random Solving
We also discuss here an option that we have added to our

approach. Whenever the simplePC contains no constraints

public static void test(int x, int y) {
if (x*x*x > 0) {

if (x>0 && y==10)
abort();

} else {
if (x>0 && y==20)

abort();
}

}

public static void abort() {
assert(false);

}

Figure 6: Example Illustrating Random Solving.

on some input variables, we have the freedom to choose any
solution for those inputs. We have added the option of using
random values for such un-constrained inputs. Similar to the
incremental solving heuristics, these random solutions can
be generated iteratively in a loop bounded by a user speci-
fied limit. These solutions are used to simplify complexPC
as before. This option, together with SPF’s ability to gen-
erate and explore paths in random order, give us a random
execution capability similar to DART. We had made this
option the default.

Consider the example shown in Figure 6. The example is
taken from the DART paper [12] where it was used to show
a weakness of “classical” symbolic execution. Note that only
the first abort is reachable. The workingPC corresponding
to the then branch of the first if statement is X*X*X>0 that
is split into the simplePC as null and the complexPC as
X*X*X>0 since it is a non-linear constraint. The random
solving option assigns a random value to X and obtains the
cubed value of X greater than zero with a probability of
0.5. The path condition corresponding to the execution of
the first abort is X>0 & Y=10 & X*X*X>0 which can then be
solved easily with our mixed concrete-symbolic solving

Similarly, the path condition for the else branch tries to
find a value less than equal to zero. In summary random
values are used to solve the complexPC when simplePC
under-constraints the inputs.

A more sophisticated heuristic would be to sample random
values from the space of solutions of simplePC. This could
be done in the cases when the constraint solver provides
ranges for the solutions (such as the Choco solver [4]); we
plan to explore this option in future work.

3.6 Discussion
In this section we provide a more in-depth comparison

of our technique with DART. As for our technique, we con-
sider here the main method (mixedIsSatisfiable) with the
random solving option.

Incompleteness. As mentioned, both techniques are in-
complete. Our technique can miss a path when the solution
to simplePC cannot be used to simplify complexPC and
generate a satisfying assignment for newPC (even when one
exists). Recall that simplePC encodes the constraints that
can be solved by a decision procedure, while complexPC
has all the other constraints.

DART on the other hand may miss covering a path due
to unsound concretization and divergence. The additional
equality constraints used in our approach can be similarly
used in DART to get rid of the unsound concretization.
However, this would result in severely under-constraining
the analysis. This restriction comes into play because any
additional constraints added in DART would be kept not
just for the current path, but also for the future paths (until
the constraint is negated).

We have seen in Section 2 that “classical” symbolic exe-
cution with mixed concrete-symbolic solving can be “more
powerful” than DART in some cases, meaning it covers more
feasible paths than DART under those cases. We show here
that in fact the two techniques are incomparable in power.

public void test (boolean b, int x, int y) {
if (b) {

if(y <= 0)
{ ... }

else
{ ... }

}
else {

// identityF returns the input
if(x <= 0 && identityF(y) == 1)

{ ... }
else

{ ... }
}
}

Figure 7: Example illustrating “residual solving”

Our technique vs. DART. Let us revisit the example in
Section 2. The reason that DART fails to cover path“S0, S4”
is that the constraints for the predicted path x>0 & y=40 &

x<=3 give a solution that leads to a different path (“S1, S4”).
The culprit is constraint y=40 which is used for predicting
the execution of “S0”; it comes from negating a constraint
that was previously created during a concretization of hash
(when the concrete value of x was 4 and hash(x) was 40).
In reality the constraint y=10 would have been useful, since
x=1 is used for the current path and hash(1)=10. The prob-
lem here is that DART tries to satisfy a constraint that
was specific to a previous run. Both constraints y=40 and
y=10 correspond to the same condition in the code, namely
y=hash(x). On the other hand, our technique does not
have that problem, since it maintains explicitly the condi-
tion y=hash(x) in the PC. Furthermore, our technique may
use different concrete values to solve different PCs along
the same symbolic path and it does not need to carry along
the additional constraints that result from concretization.
Therefore solving a PC is not affected by the additional
constraints that arise from solving previous PCs.

Let us consider now the cases where DART can poten-
tially cover a path p that our approach cannot. Remember
that our approach misses a path p when the solutions to
simplePC can not be used to render newPC satisfiable.
There are two cases to consider: (1) Some additional in-
formation is available that can in essence further constrain
simplePC and (2) p is generated using the initial random
input values. We discuss both cases.

(1) Additional information is available to DART. It
may well happen that the additional “artificial” constraints
discussed above and created in previous runs may have the
opposite, beneficial effect that they can actually help in fur-
ther constraining the simplePC. An alternative is that for
the variables that are unconstrained on the current path,
solutions created from previous runs are used. We refer to
this phenomenon as “residual solving”.

An example in Figure 7 is used to illustrate how residual
solving can aid DART. For this example, DART generates
the following program paths:
(1) b=true,y=0,x=0 with these values it will generate the
constraint b & y <=0 where the last term is negated to have
(2) b=true, y=1, x=0 and generate the constraint b & y >

0; there are no more paths for y so it now negates b

(3) b=false, y=1, x=0 This will follow the true branch for
(x<=0 & identityF(y) == 1). Here it just happened that
the last value DART solved for y on a different path is equal
to the one that is needed to make identityF(y)==1. Us-
ing our technique, y is not constrained in the corresponding
simplePC, so we can pick any value for it, but that will not
necessarily satisfy identityF(y)==1. Assuming DART fol-
lowed the same search order it will execute the true branch
of (x <=0 & identityFunction(y) == 1) every time.

We believe, however, that the advantage to DART illus-
trated by the example above is rather a low level implemen-
tation detail that could be easily added to our technique.
We could provide a setting in our method to pick the last
stored solution in the case of unconstrained variables, and a
random value if no solution was previously stored.

(2) Random execution vs. random solving Random-
ization is an important and powerful technique in DART
and it can lead to the discovery of path p. On the other
hand, random solving is used within our method when there
are no constraints within simplePC on variables that need
to be concretized. Hence random solving enables our tech-
nique to harness some of the power of randomization. Com-
bined with a randomized search order in SPF, our technique
could potentially reap similar benefits from randomization
as DART. Such a claim is, however, hard to prove theoreti-
cally. A careful experimental comparison would need to be
done between the two approaches. Such an empirical study
is beyond the scope of this paper and we leave it for future
work.

Finally, we remark that our proposed technique is appli-
cable only in the cases of “pure”, side-effect free functions,
or functions whose side effects are deemed unimportant for
the analysis. On the other hand DART is more widely ap-
plicable, although it is likely to diverge in those cases.

4. IMPLEMENTATION
In this section we describe the implementation of our pro-

posed methods in the Symbolic PathFinder (SPF) tool [18],
in the context of symbolic execution of Java programs. Note
however that our proposed methods are not particular to the
Java language or the SPF tool and they are applicable to any
technique or tool that performs symbolic execution.

4.1 Symbolic PathFinder (SPF)
SPF is a symbolic execution tool for Java bytecode. SPF

is part of the Java PathFinder verification tool-set [13] which
includes JPF-core, an explicit-state software model checker,
and several extension projects, one of them being SPF. JPF-
core implements an extensible custom Java Virtual Machine
(VM), state storage and backtracking capabilities, different
search strategies, as well as listeners for monitoring and in-
fluencing the search. By default, JPF-core executes the pro-
gram concretely based on the standard semantics of the Java
and uses a large collection of models for native libraries.

SPF replaces the concrete execution semantics of JPF-
core with a non-standard symbolic interpretation of byte-
codes. For example, when adding two symbolic integers
sym1 and sym2 (by executing the IADD bytecode) the re-
sult is a symbolic expression representing sym1 + sym2 .
The symbolic values and expressions computed by symbolic

execution are stored in data “attributes” associated with the
program variables, fields and stack operands. SPF uses JPF-
core to explore the different symbolic execution paths, as
well as different thread interleavings.

The symbolic execution of conditional instructions (such
as if statements) involves exploration of paths correspond-
ing to the branch condition evaluating to both true and false.
These choices are generated non-deterministically by a “PC
choice generator”. Each generated choice is associated with
a path condition encoding the condition or its negation re-
spectively. The path conditions are checked for satisfiability
using off-the-shelf decision procedures or constraint solvers.
If the path condition is satisfiable, the search continues; oth-
erwise, the search backtracks, meaning that the branch is
unreachable.

4.2 Mixed Concrete-Symbolic Solving and Un-
interpreted Functions

We have implemented the procedure described in Fig-
ure 2 and the three heuristics described in Section 3 as ad-
ditional procedures for checking satisfiability of path condi-
tions within SFP.

By default, all the non-linear integer constraints and the
constraints involving java.lang.Math methods are left un-
interpreted (i.e. are added to complexPC). In addition,
all the Java methods (native or not) that are annotated by
the user (see below) can now be handled with the newly
implemented technique.

To represent uninterpreted functions, we created a new
class FunctionExpression whose instances record the sig-
natures of the external methods. The main elements of
a FunctionExpression are: (a) the fully qualified method
name, (b) a set of symbolic arguments and their respec-
tive types to the method, (c) list of conditions—if they are
specified by the @Partitions(..) annotation, and (d) the re-
turn type of the method. We use Java reflection to perform
the actual invocation of the methods during the concretiza-
tion and simplification of the generated PCs. Reflection in
Java enables dynamic retrieval of classes and methods de-
fined within the classes; it also provides the mechanism for
invoking the retrieved methods.

Using reflection we are able to concretely execute the
method within the FunctionExpression on the host VM.
This allows us to concretely execute native methods with-
out providing a model class for the native class as is required
within the JPF tool-kit to handle native code. The value re-
turned after the execution of the method is used to check the
satisfiability of the newPC. Note that our approach works
only for the external methods that are “pure”, side-effect
free, or for methods whose side effects are deemed uninter-
esting for the analysis (e.g. printing statements). All the
other methods still need models. Alternatively, one can use
a simpler concretization approach, similar to the one dis-
cussed in Section 2 and implemented in the EXE tool.

4.3 User Annotations and Listener
The only input required from the user is in the form of

annotations, that specify which methods to leave uninter-
preted. We use a Java annotation (@Concrete(“true”)) to
indicate methods that we are unable to execute symboli-
cally, for e.g, a native method or a method that generates
non-linear constraints that an underlying constraint solver is
unable to solve. Another annotation (@Partition(..)) pro-

class Bessel
{

@Concrete("true")
public static native double bessely0(double x);

public static void main(String[] args)
{

run_bessel(0.0);
}

public static void run_bessel(double x) {
System.out.println("Calls of bessely0");
double y = bessely0(x);

if(x>=1.25 && y > 0.2)
System.out.println("Br1");

else
System.out.println("Br2");

}
}

Figure 8: Example containing native method

vides a list of conditions that is used in the partitioning
heuristic (as discussed in Section 3).

We provide a listener, ConcreteExecutionListener, that
monitors the symbolic execution of the program and detects
when a method invoked during execution contains the an-
notation @Concrete(“true”). In that case, the listener gen-
erates an uninterpreted function (instance of FunctionEx-

pression) for that method.
After generating the FunctionExpression, the listener

sets a concrete random value as the return value (this value
is never used) and its corresponding symbolic attribute as
the generated FunctionExpression. The listener finally sets
the instruction following the invoke instruction as the next
instruction to be executed, thus omitting to execute the
method either concretely or symbolically.

5. EXPERIENCE
All the examples presented in this paper have been an-

alyzed using the implementation of our technique; the ex-
amples and the implementation are available from the JPF
repository6. In this section we discuss the application of
our technique to (a) an example that uses native method
calls and (b) two larger examples from the NASA domain:
TSAFE and the Apollo lunar autopilot.

5.1 Native Method Example
An example that invokes a native method that is anno-

tated with @Concrete is shown in Figure 8. The example
is taken from the NAG C Library from the Numerical Al-
gorithms Group (www.nag.com). This is a mathematical
and statistical library containing routines for linear algebra,
optimization, quadrature, differential equations, regression
analysis, and time-series analysis. The example calls a C
library routine directly from Java using the Java Native In-
terface (JNI). There is a two fold advantage of reusing the
native libraries; one it avoids the arduous task of rewrit-
ing the library in Java and two the CPU intensive oper-
ations run much faster as machine dependent native code

6http://babelfish.arc.nasa.gov/trac/jpf, see jpf-
symbc/src/examples/concolic

compared to interpreted Java bytecode. Our method now
provides an easy way to invoke these native methods using
the @Concrete annotation. Classical symbolic execution in
SPF requires a model implementation of the native method
and cannot analyze the example in Figure 8 without it.

The native method, bessely0, shown in Figure 8 has a
single argument and a single return value. The bessely0 is
part of the Standard C Math Library. The various Bessel
functions, of which this is one, are named for 18th-century
German astronomer Friedrich Wilhelm Bessel.

The main method invokes the run_bessel method with
an input parameter that is treated as a symbolic variable.
The symbolic variable x is used to invoke a native function
bessely0. Since the method has the @Concrete annotation
it returns an uninterpreted function: bessely0(D xsym)D.
The method signature indicates that it takes xsym of type
double as input and returns a double. As the symbolic exe-
cution continues after skipping the native method, it reaches
the conditional branch. The workingPC for the true branch
of the path is:

xsym >= 1.25∧ bessely0(D xsym)D > 0.2
The workingPC is split into xsym >= 1.25, the simplePC,
and bessely0(D xsym)D >0.2, the complexPC. The concrete
value generated from the solution of the simplePC is used
to invoke bessely0 using reflection. Thus, with the help of
a simple annotation, SPF is able to handle native methods
without modeling them. There are 11 states generated in or-
der to explore both the branch statements in the run_bessel
method.

5.2 TSAFE
Tactical Separation Assisted Flight Environment (TSAFE)

seeks to predict and resolve loss of separation between two
or more air crafts in the time horizon between 30 seconds
to 3 minutes. The separation assurance prototype contains
inputs that include real values for position, velocity, and di-
rection of the multiple air crafts. The inputs also encompass
the conditions whether the air crafts are eligible for change
in course as directed by air traffic controllers. Confidence
in the system depends on how it reacts to unexpected sce-
narios. We present the analysis results for the conflict probe
class in TSAFE. The conflict probe computes whether a loss
of separation can occur. TSAFE has been analyzed exten-
sively in recent work [8], where SPF was tried but could not
be used because the TSAFE component contains complex
mathematical functions that could not be handled by the
constraint solvers.

The component that we analyzed contains approximately
400 SLOC, makes use of various complex math functions
such as sqrt, pow, sin etc. The component contains a
bounded loop that generates a large number of constraints
in the system during execution. Recall that random solving
is used when there are solutions from simplePC that can
be used. To capture the variations due to randomization
we execute ten trials of the method on the TSAFE example
and record the average number of states generated, aver-
age time taken in seconds, and maximum branch coverage
obtained across the different trials. Our method explores
12,683 states in 15 seconds on average. It manages to obtain
a 100% branch coverage where five out of the five branches
are covered, and it generates 6 test cases. One in about ev-
ery three trials obtained a 100% branch coverage while the
others obtained 80% branch coverage. The path conditions

generated during the process have at most 22 constraints.
Note that in order to obtain similar branch coverage using
black box testing thousands of tests were generated in [8].
Clarification: Please note however that the black-box tests
were generated at the level of a more complex system con-
taining the analyzed unit and therefore the two experiments
are not directly comparable.

5.3 The Apollo Lunar Autopilot
We have applied our techniques to the analysis of the

Apollo Lunar Autopilot, a Simulink model that was au-
tomatically translated to Java using the Vanderbilt tool-
set [20]. The translated Java code has 2.6 KLOC in 54
classes. The Simulink model was created by an engineer
working on the Apollo Lunar Module digital autopilot de-
sign team. The goal was to study how the model could have
been designed in Simulink, if it had been available in 1961.
The model is available from MathWorks7. It contains both
Simulink blocks and State flow diagrams and makes use of
complex Math functions (e.g. Math.sqrt). The model could
not be analyzed before using Choco [4] or the SMT solvers
incorporated in SPF, due to errors and omissions in capa-
bilities of the constraint solver.

In this experiment, the goal was to generate test sequences
that lead to certain values at the beginning of a Simulink
block. This process mimics what the developers often do:
try to generate test cases that stress certain blocks inside the
model under limit values. We wrote an Observer Automaton
that runs synchronously with the Autopilot Simulink model;
the automaton transitions to the error state when a certain
value in the model (tjcalc) is above a threshold. Since this
is a reactive model that is driven by sequences of time steps,
we ran the model for different time-step sequences and for
different thresholds. We used the main method mixedIsSat-

isfiable and the random solving option. We used Choco as
the off-the-shelf solver. As an example, for threshold value
10 and sequence size 5, we obtained a five step test sequence
that drives the model to the error (running for 6 m 1 s and
using 15 MB of memory). In contrast, for values below the
threshold, the technique generates easily a two step sequence
(running for 1 s and using 15 MB of memory).

5.4 Discussion
For all the examples presented in this section, we used

the main method, with the random solving option to gener-
ate both test inputs and test sequences to drive the execu-
tion of the example programs. All these examples show the
feasibility of our main method and demonstrate that “clas-
sical” symbolic execution as implemented in SPF has been
enhanced to handle cases that could not be handled before.
The heuristics did not play any significant role in analyzing
these examples; the randomization in our technique provided
enough variation in the solution space. Further experimen-
tation is needed to assess the proposed heuristics.

We note that random values are only used for variables un-
constrained in simplePC . In the Apollo and TSAFE exam-
ples, simplePC is not empty and the solutions of simplePC
are successfully and extensively used to simplify complexPC .
An example PC in Apollo contains 37 constraints in simplePC

7http://www.mathworks.com/products/simulink/\\
demos.html?file=/products/demos/shipping/simulink/
\\aero_dap3dof.html

and 6 in complexPC ; a PC in TSAFE contains 14 con-
straints in simplePC and 8 in complexPC .

6. RELATED WORK
Our work is related to the large body of work on white-

box test-case generation and static bug-finding, but we focus
here on the more closely related works. “Classical” symbolic
execution has been introduced in the 70s [15, 5] and it has
since been explored in a large body of work [6, 24, 21, 7, 29,
14, 28, 19] in the context of test case generation. The work
presented here is enhancing all these classic symbolic execu-
tion approaches to handle incompleteness in decision proce-
dures and native library calls, by using concrete solutions to
simplify constraints that encode uninterpreted functions. In
addition a number of static bug-finding tools also use clas-
sic symbolic execution and can thus also benefit from these
techniques [27, 1].

In the preceding sections we have already highlighted the
close relationship between our work and two other algo-
rithms, EXE and DART, the latter being implemented in
many other tools, such as CUTE [23, 22], PEX [26], and
SAGE [11]. We will thus discuss here more on extensions of
these works.

Firstly, the KLEE [2] tool improves on EXE in an orthog-
onal direction to what we do, namely, they rather built mod-
els of external (unknown or unanalyzable) functions. This
approach allows them to therefore stay completely symbolic,
rather than concretize inputs for functions that cannot be
analyzed, as we do here. Note that such a modeling ap-
proach is standard practice in software model checking. The
approach however requires considerable manual effort.

Maybe the most closely related work to ours is that of
Godefroid in [10], which was independently and concur-
rently developed. The goal of the work in [10] is to improve
the current DART approach to address some of its limita-
tions that we have also discovered here. In contrast, our
goal is to improve “classical” symbolic execution to address
its limitations. Godefroid in [10] proposes to use a combi-
nation of validity checking and uninterpreted functions, and
to use the validity proofs to generate test cases. It is shown
that theoretically this approach is more general than DART,
but to make it work in practice one needs to capture input-
output pairs from observing execution of the functions. The
paper also addresses the unsoundness of the original DART
approach, and suggests a solution similar to that of EXE
where the concretization constraints are added to the PC for
the rest of the path. As we have shown, adding these con-
straints permanently will over-constrain the paths. In [10]
this point is also made, in the context, that sometimes tak-
ing the unsound route has its advantages in that it might by
accident discover useful inputs; in our approach, we can pick
different solutions on the same path, which cannot be done
in DART. Furthermore, we do not rely on validity checking
which poses an implementation challenge. Instead we rely
on standard constraint solving, a widespread technology.

Orthogonal constraint solving techniques [25, 16] use ar-
tificial intelligence methods, such as genetic algorithms and
particle swarm optimizations, to help solving complex math-
ematical constraints in the context of symbolic execution.
Those works can not deal with native or external libraries
as we do here.

7. CONCLUSIONS

Symbolic execution is a powerful technique for the auto-
mated generation of test cases that achieve high code cover-
age. DART is a variant of symbolic execution that performs
iterative run-time symbolic execution along concrete paths,
starting with a random run. It has been argued that the
main advantage of DART is its ability to handle situations
where classical symbolic execution techniques fail, due to
incompleteness in decision procedures and handling of ex-
ternal library calls.

We have proposed a technique that helps classical sym-
bolic execution gain in power in the cases where it failed be-
fore. Our technique uses satisfiability checking with mixed
concrete symbolic solving. Similar to DART, we use con-
crete values to simplify constraints that can not be handled
by the decision procedure directly. However, unlike DART,
we do not use the run-time values of program variables, but
instead we use the concrete solutions of the solvable con-
straints in the current path condition. As a result we may
use different concrete values (corresponding to different con-
ditions) along the same symbolic path, which corresponds to
multiple paths in DART. Our proposed technique does not
rely on re-execution, and therefore can be used in conjunc-
tion with model checking and backtracking.

We have shown that our technique can be more powerful
than DART and a related approach, EXE, that performs a
simple concretization. We have further proposed two heuris-
tics to enhance our technique. We provide an implemen-
tation in the SPF symbolic execution tool. We have the
proposed techniques to a series of examples, including two
realistic ones from the NASA domains.

In the future, we plan to robustify our implementation and
to perform more experimentation to fully assess the merits
of the proposed technique. We also plan to fully evaluate
the two heuristics that we have proposed; fine-tuning them
is needed as they may become expensive in practice. We
also plan to devise more powerful heuristics and also explore
combinations of existing heuristics.

Our results show how mixed concrete-symbolic solving can
help “classical” symbolic execution in the cases it failed be-
fore, due to incomplete decision procedures, handling native
libraries, etc. The results presented here are generally appli-
cable; they not particular to the Java language or the SPF
tool. In order to apply the presented techniques to more re-
alistic Java programs, we will need to look into handling the
data structures that are executed outside symbolic execu-
tion. One can use JPF’s serialization mechanism for that.

Acknowledgments
We thank Patrice Godefroid and Koushik Sen for useful dis-
cussions on the DART algorithm, for confirming the paths
taken by DART on the example presented in Section 2 and
for explaining to us the divergence. We also thank Cristi
Cadar for his feedback on EXE. Finally, we thank Heinz
Erzberger at NASA Ames Research Center for allowing ac-
cess to the TSAFE example.

8. REFERENCES
[1] W. Bush, J. Pincus, and D. Sielaff. A static analyzer

for finding dynamic programming errors. Software:
Practice and Experience, 30(7):775–802, 2000.

[2] C. Cadar, D. Dunbar, and D. Engler. KLEE:
Unassisted and automatic generation of high-coverage
tests for complex systems programs. In OSDI, pages
209–224. USENIX Association, 2008.

[3] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and
D. Engler. EXE: automatically generating inputs of
death. TISSEC, 12(2):1–38, 2008.

[4] Choco Solver.
http://www.emn.fr/z-info/choco-solver/.

[5] L. A. Clarke. A program testing system. In
Proceedings of the 1976 annual conference, ACM ’76,
pages 488–491, 1976.

[6] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezzé.
Using symbolic execution for verifying safety-critical
systems. In ESEC/FSE, page 151. ACM, 2001.

[7] X. Deng, Robby, and J. Hatcliff. Kiasan/KUnit:
Automatic test case generation and analysis feedback
for open object-oriented systems. In
TAICPART-MUTATION, pages 3–12, 2007.

[8] D. Giannakopoulou, D. Bushnell, J. Schumann,
H. Erzberger, and K. Heere. Formal testing for
separation assurance. In To Appear, Annals of
Mathematics and Artificial Intelligence. Springer,
2011.

[9] P. Godefroid. Compositional dynamic test generation.
In POPL, pages 47–54. ACM, 2007.

[10] P. Godefroid. Higher-Order Test Generation. Proc.
PLDI, 2011.

[11] P. Godefroid, P. de Halleux, A. Nori, S. Rajamani,
W. Schulte, N. Tillmann, and M. Levin. Automating
software testing using program analysis. Software,
IEEE, 25(5):30–37, 2008.

[12] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
automated random testing. SIGPLAN Not.,
40(6):213–223, 2005.

[13] Java PathFinder Tool-set.
http://babelfish.arc.nasa.gov/trac/jpf.

[14] S. Khurshid, C. Păsăreanu, and W. Visser.
Generalized symbolic execution for model checking
and testing. Proc. TACAS, pages 553–568, 2003.

[15] J. C. King. Symbolic execution and program testing.
Comm. ACM, 19(7):385–394, 1976.

[16] K. Lakhotia, N. Tillmann, M. Harman, and
J. De Halleux. Flopsy: search-based floating point
constraint solving for symbolic execution. In ICTSS,
pages 142–157, Berlin, Heidelberg, 2010.
Springer-Verlag.

[17] T. Menzies and Y. Hu. Just enough learning (of
association rules): the tar2 “treatment” learner. Artif.
Intell. Rev., 25(3):211–229, 2006.

[18] C. Păsăreanu and N. Rungta. Symbolic PathFinder:
symbolic execution of Java bytecode. In ASE, pages
179–180. ACM, 2010.

[19] C. S. Păsăreanu, P. C. Mehlitz, D. H. Bushnell,
K. Gundy-Burlet, M. Lowry, S. Person, and M. Pape.
Combining unit-level symbolic execution and
system-level concrete execution for testing NASA
software. In Proc. ISSTA, 2008.

[20] C. S. Păsăreanu, J. Schumann, P. Mehlitz, M. Lowry,
G. Karsai, H. Nine, and S. Neema. Model based
analysis and test generation for flight software. In
Proceedings of the Third IEEE International
Conference on Space Mission Challenges for
Information Technology, pages 83–90, Washington,
DC, USA, 2009. IEEE Computer Society.

[21] R. Santelices and M. J. Harrold. Exploiting program
dependencies for scalable multiple-path symbolic
execution. In ISSTA, pages 195–206, 2010.

[22] K. Sen and G. Agha. A race-detection and flipping
algorithm for automated testing of multi-threaded
programs. In Proc. HVC, volume 4383 of LNCS, pages
166–182. Springer, 2007.

[23] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. In Proc. ESEC/FSE-13,
pages 263–272, New York, NY, USA, 2005. ACM.

[24] S. Siegel, A. Mironova, G. Avrunin, and L. Clarke.
Using model checking with symbolic execution to
verify parallel numerical programs. In ISSTA, pages
157–168. ACM, 2006.

[25] M. Souza, M. Borges, M. d’Amorim, and C. S.
Păsăreanu. CORAL: solving complex constraints for
Symbolic Pathfinder. Proc. NFM, 2011.

[26] N. Tillmann and J. De Halleux. Pex: white box test
generation for. NET. In TAP, pages 134–153.
Springer-Verlag, 2008.

[27] A. Tomb, G. Brat, and W. Visser. Variably
interprocedural program analysis for runtime error
detection. In Proc. ISSTA, pages 97–107, New York,
NY, USA, 2007. ACM Press.

[28] W. Visser, C. Păsăreanu, and R. Pelánek. Test input
generation for Java containers using state matching. In
ISSTA, pages 37–48. ACM New York, NY, USA, 2006.

[29] T. Xie, D. Marinov, W. Schulte, and D. Notkin.
Symstra: A framework for generating object-oriented
unit tests using symbolic execution. TACAS, pages
365–381, 2005.

