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ABSTRACT
We present results for the ”Impact Project Focus Area” on
the topic of symbolic execution as used in software testing.
Symbolic execution is a program analysis technique intro-
duced in the 70s that has received renewed interest in recent
years, due to algorithmic advances and increased availability
of computational power and constraint solving technology.
We review classical symbolic execution and some modern
extensions such as generalized symbolic execution and dy-
namic testing. We also give a preliminary assessment of the
use in academia, research labs, and industry.

1. INTRODUCTION
The ACM-SIGSOFT Impact Project is documenting the im-
pact that software engineering research has had on software
development practice. In this paper, we present preliminary
results for documenting the impact of research in symbolic
execution for automated software testing. Symbolic execu-
tion is a program analysis technique that was introduced in
the 70s [9,16,26,30,39], and that has found renewed interest
in recent years [13,14,24,28,42–44], followed by many other
works [10,25,27,35,37,38,46,47] etc.

Symbolic execution is now the underlying technique of
several popular testing tools, many of them open-source:
NASA’s Symbolic (Java) PathFinder1, UIUC’s CUTE and
jCUTE2, Stanford’s KLEE3, UC Berkeley’s CREST4 and
BitBlaze5, etc. Symbolic execution tools are now used in in-
dustrial practice at Microsoft (PREfix [11], Pex6, SAGE [25]
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and YOGI7), IBM (Apollo [2]), NASA and Fujitsu (Sym-
bolic PathFinder), and also form a key part of the com-
mercial testing tool-suites from Parasoft and other compa-
nies [50].

Although we acknowledge that the impact of symbolic exe-
cution in software practice is still limited, we believe that the
explosion of work in this area over the past years makes for
an interesting story about the increasing impact of symbolic
execution since it was first introduced in the 1970s.

Software testing is the most commonly used technique for
validating the quality of software, but it is typically a mostly
manual process that accounts for half of the total cost of
software development and maintenance [6]. Symbolic ex-
ecution is one of the many techniques that can be used to
automate software testing. In particular, symbolic execution
can be used to automatically generate test cases that achieve
high code coverage. Symbolic execution is a program anal-
ysis technique that executes programs with symbolic rather
than concrete inputs and maintains a path condition that is
updated whenever a branch instruction is executed, to en-
code the constraints on the inputs that reach that program
point. Test generation is performed by solving the collected
constraints, using a decision procedure or constraint solver.
Symbolic execution can also be used for bug finding, where
it checks for run-time errors or assertion violations and it
generates test inputs that trigger those errors.

The original approaches to symbolic execution [9, 16, 26, 30,
39] addressed simple sequential programs with a fixed num-
ber of input data of primitive type. Modern approaches,
such as generalized symbolic execution (GSE) [28] and
jCUTE [43], address multi-threaded programs with complex
data structures as inputs. Much of the popularity of sym-
bolic execution is due to dynamic or concolic testing [24,44],
a variant of dynamic symbolic execution [31], where the sym-
bolic execution is performed at run-time, along concrete pro-
gram executions. A closely related approach is advocated
by Execution Generated Testing (EXE) [13], which performs
mixed concrete/symbolic execution. We discuss these tech-
niques in more detail in the next section.

Symbolic execution still suffers from scalability issues due to
the large number of paths that need to be analyzed and the
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complexity of the constraints that get generated (see also
Section 4). However, algorithmic advances, newly available
SMT solvers8 and more powerful computers have already
made it possible to apply such techniques to large programs
(with millions lines of code) and to discover subtle bugs in
commonly used software – ranging from library code to net-
work and operating systems code – saving millions of dollars
(see Section 3).

2. SYMBOLIC EXECUTION
2.1 “Classical” Symbolic Execution
The key idea behind symbolic execution [30] is to use sym-
bolic values, instead of actual data, as input values, and to
represent the values of program variables as symbolic ex-
pressions. As a result, the outputs computed by a program
are expressed as a function of the symbolic inputs.

Symbolic execution maintains a symbolic state, which maps
variables to symbolic expressions, and a symbolic path con-
straint PC, a first order quantifier free formula over sym-
bolic expressions. PC accumulates constraints on the in-
puts that trigger the execution to follow the associated path.
At every conditional statement if (e) S1 else S2, PC is
updated with conditions on the inputs to choose between
alternative paths. A fresh path constraint PC′ is created
and updated to PC ∧ ¬σ(e) (“else” branch) and PC is up-
dated to PC ∧ σ(e) (“then” branch). Note that unlike in
concrete execution, both branches can be taken, resulting
in two execution paths. If any of PC or PC′ becomes un-
satisfiable, symbolic execution terminates along the corre-
sponding path. Satisfiability is checked with an off-the-shelf
constraint solver.

Whenever symbolic execution along a path terminates (nor-
mally or with an error), the current PC is solved and the
solution forms the test inputs—if the program is executed
on these concrete inputs, it will take the same path as the
symbolic execution and terminate. Symbolic execution of
code containing loops or recursion may result in an infinite
number of paths; therefore, in practice, one needs to put a
limit on the search (e.g., a timeout or a limit on the number
of paths or exploration depth).

2.2 Generalized Symbolic Execution
Generalized symbolic execution (GSE) [28] extends classi-
cal symbolic execution with the ability of handling multi-
threading and input recursive data structures. GSE im-
plements symbolic execution on top of a standard model
checker, whose built-in capabilities are used for handling
multi-threading (and other forms of non-determinism). GSE
handles input recursive data structures by using lazy initial-
ization. GSE starts execution of the method on inputs with
uninitialized fields and initializes fields when they are first
accessed during the method’s symbolic execution. This al-
lows symbolic execution of methods without requiring an a
priori bound on the number of input objects. Method pre-
conditions can be used to ensure that fields are initialized
to values permitted by the precondition. Partial correctness
properties are given as assertions in the program.

8
http://www.smtcomp.org/

Lazy Initialization: On the first access to an un-initialized
reference field, GSE non-deterministically initializes it to
null, to a reference to a new object with un-initialized fields
or to a reference to an object created during a prior initial-
ization step; this systematically treats aliasing. Once the
field has been initialized, the execution proceeds according
to the concrete execution semantics. The model-checker is
used to handle the non-determinism introduced when cre-
ating different heap configurations and when updating path
conditions.

2.3 Directed Automated Random Testing
Directed Automated Random Testing [24] (also known as
DART, concolic testing [44], or dynamic symbolic execu-
tion [47]) performs symbolic execution while the program is
executed on some concrete input values. DART maintains a
concrete state and a symbolic state simultaneously. DART
executes a program starting with some given or random in-
put, gathers symbolic constraints on inputs at conditional
statements along the execution, and then uses a constraint
solver to infer variants of the previous inputs in order to
steer the next execution of the program towards an alterna-
tive feasible execution path. This process is repeated sys-
tematically or heuristically until all feasible execution paths
are explored or a user-defined coverage criteria is met.

A key observation in DART is that imprecision in symbolic
execution can be alleviated using concrete values and ran-
domization: whenever symbolic execution does not know
how to generate a constraint for a program statement de-
pending on some inputs, one can always simplify this con-
straint using the concrete run-time values of those inputs.
In those cases, symbolic execution degrades gracefully by
leveraging concrete values into a form of partial symbolic
execution.

CUTE (A Concolic Unit Testing Engine) and jCUTE
(CUTE for Java) [42–44] extends DART to handle multi-
threaded programs that manipulates dynamic data struc-
tures using pointer operations. CUTE avoids imprecision
due to pointer analysis by representing and solving pointer
constraints approximately. In multi-threaded programs,
CUTE combines concolic execution with dynamic partial
order reduction to systematically generate both test inputs
and thread schedules.

2.4 Execution Generated Testing
Execution generated test cases (EXE) [13,14] optimizes sym-
bolic execution by making a distinction between the concrete
and the symbolic state of a program (i.e., by performing
mixed concrete/symbolic execution). A key advantage of this
approach is that the concrete state does not need to be ex-
plicitly maintained—it is maintained as part of the normal
execution state of the program.

EXE is designed for comprehensively testing complex soft-
ware, with an emphasis on systems code. EXE works on C
code, and can build constraints for all C expressions with
perfect bit-level accuracy, including those involving point-
ers, casting, unions, and bit-fields. (The main exception
is floating-point, which the current generation of constraint
solvers does not handle.) As importantly, EXE provides
the speed necessary to quickly solve many of these con-



straints, through a combination of low-level optimizations
implemented in its purposely designed constraint solver
STP [14,21], and a series of higher-level ones such as caching
and irrelevant constraint elimination.

To deal with the complexities of systems code, EXE models
memory with bit-level accuracy. This is because systems
code often treats memory as untyped bytes, and observes
a single memory location in multiple ways: e.g., by casting
signed variables to unsigned, or treating an array of bytes
as a network packet, inode, or packet filter through pointer
casting.

3. TOOLS AND IMPACT
In this section we present several recent tools that are based
on symbolic execution, together with a preliminary assess-
ment of their impact in practice. In the very limited scope
of this paper, it is impossible to review here all the rele-
vant tools. Instead, we focus on a few representative ones
that implement the different flavors of symbolic execution
presented in the previous section. Albeit incomplete, we
do hope that this list convinces the reader of the growing
impact of symbolic execution in practice.

JPF–SE and Symbolic (Java) PathFinder. The orig-
inal GSE framework was developed for Java programs and
used NASA’s Java PathFinder (JPF) model checker as an
enabling technology (see JPF–SE [1]), although GSE can
be made to work with other model checkers and imperative
languages. Since JPF is a general purpose model checker,
GSE benefits from its collection of built-in state space explo-
ration capabilities, such as different search strategies (e.g.,
heuristic search) as well as partial order and symmetry re-
ductions; (abstract) state matching can be used to avoid
performing redundant work [49]. A similar tool [20] uses
the Bogor model checking framework, instead of JPF, while
yet another approach uses SPIN [45], for checking parallel
numeric applications.

SPF can analyze both Java bytecode and statechart models,
e.g., Simulink/Stateflow, Standard UML, Rhapsody UML,
etc., via automatic translation into bytecode. SPF can han-
dle mixed integer and real constraints, and complex mathe-
matical constraints, via heuristic solving. A parallel version
also exists [46].

SPF is part of the JPF project9 (open-sourced since 2003)
and it has been applied at NASA in various projects, such
as test case generation for the Orion control software (where
it helped uncover subtle bugs [38]), fault tolerant protocols,
NextGen (TSAFE) aviation software or robot executives.
SPF has been extended with a symbolic string analysis at
Fujitsu, where it is being used for testing web applications10.
MIT’s tool JFuzz [27], a concolic whitebox fuzzer for Java,
has been built on top of SPF and it is freely available from
the JPF web site.

DART. The DART tool implements Directed Automated
Random Testing [24], which was presented in Section 2.3.
DART aims at systematically executing all (or as many as
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possible) feasible paths of a program, while checking each
execution for various types of errors. In practice, such a
directed search typically cannot explore all the feasible paths
of large programs in a reasonable amount of time, but it
usually does achieve much better coverage than pure random
testing and, hence, find new program bugs.

DART was originally developed at Bell Labs and targeted
C code. This style of systematic dynamic test generation
has been implemented in many other tools over the last
few years, including Pex [47], SAGE [25], CREST [10] and
SPLAT [36].

CUTE and jCUTE. CUTE and jCUTE were developed
in University of Illinois at Urbana-Champaign for C and
Java programs, respectively. They implement concolic test-
ing and handle input data structures and multi-threading.
Both tools have been applied to test several open-source
software including java.util library of Sun’ JDK 1.4 and
bugs detected by these tools have been made available to
the developers. Concolic testing has also been studied in
different courses at several universities including Stanford,
Berkeley, UIUC, CMU, Georgia Tech, Purdue, UC Santa
Barbara, North Carolina State University, UC Santa Cruz,
UC San Diego.

CREST. CREST [10] is an open-source tool for concolic
testing of C programs. CREST is an extensible platform
for building and experimenting with heuristics for selecting
which paths to test for programs with far too many exe-
cutions paths to exhaustively explore. Since being released
as an open source in May 2008 11, CREST has been down-
loaded 1500+ times and has been used by several research
groups. For example, CREST has been used to build tools
for augmenting existing test suites to test newly-changed
code [52] and for detecting SQL injection vulnerabilities [40],
has been modified to run distributed on a cluster for testing
a flash storage platform [29], and has been used to experi-
ment with more sophisticated concolic search heuristics [4].
CREST has also been used in teaching courses at few uni-
versities.

SAGE: Automated Whitebox Fuzzing Whitebox
fuzzing [25] is a recent approach to security testing which ex-
tends the scope of systematic dynamic test generation from
unit testing to whole-application testing. Whitebox fuzzing
is able to scale to large file parsers embedded in applications
with millions of lines of code and execution traces with bil-
lions of machine instructions, such as Microsoft Excel. Sev-
eral key technical innovations made this possible: new tech-
niques for symbolically executing very long execution traces
with billions of program instructions, for symbolic execu-
tion at the x86 assembly level, for compact representation
of path constraints, new embarassingly-parallel state-space
search algorithms like the generational search, and new sup-
port in SMT solvers (such as Z3 [19]) for test generation.

Whitebox fuzzing was first implemented in SAGE [25] and
since adopted in several other tools, such as CatchConv,
Fuzzgrind, Immunity, etc. Over the last couple of years,
whitebox fuzzers have found many new security vulnerabili-

11
Available at http://code.google.com/p/crest



ties (buffer overflows) in Windows [25] and Linux [37] appli-
cations, including codecs, image viewers and media players.
Notably, SAGE found roughly one third of all the bugs dis-
covered by file fuzzing during the development of Microsoft’s
Windows 7 [23], saving millions of dollars by avoiding ex-
pensive security patches for nearly a billion PCs worldwide.
Since 2008, SAGE has been continually running on an av-
erage of 100+ machines automatically “fuzzing” hundreds of
applications in a dedicated security testing lab. To date, this
represents the largest computational usage ever for any SMT
solver, according to the authors of the Z3 SMT solver [19].

Pex. Pex [47] implements Dynamic Symbolic Execution
to generate test inputs for .NET code, supporting languages
such as C#, VisualBasic, and F#. Pex extends the basic ap-
proach in several unique ways: While Pex can use concrete
values to simplify constraints, Pex usually faithfully repre-
sents the semantics of almost all .NET instructions symbol-
ically, including safe and unsafe code, as well as instructions
that refer to the object oriented .NET type system, such
as type tests and virtual method invocations. Pex uses the
SMT solver Z3 [19] to compute models, i.e. test inputs, for
satisfiable constraint systems. Pex uses approximations for
theories for which Z3 has no precise decision procedures, e.g.
for string [7] and floating point arithmetic [33]. Pex sup-
ports the generation of test inputs of primitive types as well
as (recursive) complex data types, for which Pex automati-
cally computes a factory method which creates an instance
of a complex data type by invoking a constructor and a se-
quence of methods, whose parameters are also determined
by Pex. Pex combines several search strategies which select
the order in which different execution paths are attempted,
in order to achieve high code coverage quickly [51]. In ad-
dition to the test case generation capabilities, Pex comes
with a mock and stub framework, which makes it easy to
write and reuse models for .NET libraries. [18]. Pex enables
Parameterized Unit Testing [48], an extension of traditional
unit testing.

Pex is a Visual Studio 2010 Power Tool12. It is used by
several groups within Microsoft. Externally, Pex is available
under academic and commercial licenses. The stand-alone
Pex tool has been downloaded more than 40,000 times. Any-
one can try out Pex in the browser13, where visitors let Pex
analyze more than 250,000 programs within the first five
months of the launch of the website.

KLEE. KLEE is a complete redesign of the EXE tool [13,
14], built on top of the LLVM [34] compiler infrastructure.
Like EXE, it performs mixed concrete/symbolic execution,
models memory with bit-level accuracy, employs a variety of
constraint solving optimizations, and uses search heuristics
to get high code coverage.

One of the key improvements of KLEE over EXE is its abil-
ity to store a much larger number of concurrent states, by
exploiting sharing among states at the object-, rather than
at the page-level as in EXE. Another important improve-
ment is its ability to handle interactions with the outside
environment — e.g., with data read from the file system
or over the network — by providing environment models,
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whose goal is to explore all possible legal interactions with
the outside world.

As a result of these features, KLEE and its predecessor EXE
were capable to automatically generate high-coverage test
suites, and to discover deep bugs and security vulnerabilities
in a variety of complex code, ranging from library code to
UNIX utilities, file systems, packet filters, device drivers and
network servers and tools [8, 12–14,53].

KLEE has been open-sourced in June 200914. Since then,
KLEE has been downloaded by a variety of groups from
both the academia and the industry. In particular, it has
been used and extended by several research groups, with
some of these extensions being contributed back to the main
branch. These users have applied KLEE to a variety of ar-
eas, ranging from wireless sensor networks [41] to automated
debugging [54], reverse engineering and testing of binary de-
vice drivers [15,32], exploit generation [3], online gaming [5],
and schedule memoization in multithreaded code [17].

4. CONCLUSION
In this paper we have focused on modern symbolic execu-
tion technique that have become popular in recent years;
we have also reviewed the associated tools and their im-
pact in practice. We outline here some of the challenges to
symbolic execution and its wider adoption in software engi-
neering practice.

A significant scalability challenge for symbolic execution is
how to handle the exponential number of paths in the code.
Significant advances in compositional techniques [22], prun-
ing redundant paths [8], and heuristics search [10, 35] are
needed. Parallelization should also help [46], since the paths
generated by symbolic execution can be analyzed indepen-
dently.

Real applications often require solving complex, non-linear
mathematical constraints that are undecidable or very hard
to solve; new heuristic techniques are necessary to solve such
problems. Test case generation for web applications and se-
curity problems requires solving string constraints and com-
binations of numeric and string constraints. Progress in
these areas would significantly extend the impact of sym-
bolic execution to new application domains.
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