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Prognostics technologies center on determining the health (or damage) state of a com-
ponent or subsystem, and making end of life (EOL) and remaining useful life (RUL) predic-
tions. Such information enables system operators to make informed maintenance decisions
and streamline operational and mission-level activities. We develop a model-based prog-
nostics methodology for pneumatic valves used in ground support equipment for cryogenic
propellant loading operations. Such valves are used to control the flow of propellant, and
failures may have a significant impact on launch availability. Therefore, correctly predicting
when valves will fail enables timely maintenance that avoids launch delays and aborts. The
approach utilizes mathematical models describing the underlying physics of valve degrada-
tion, and, employing the particle filtering algorithm for joint state-parameter estimation,
determines the health state of the valve and the rate of damage progression, from which
EOL and RUL predictions are made. We also develop a prototype user interface for valve
prognostics. We demonstrate the prognostics approach using historical pneumatic valve
data from the Space Shuttle refueling system.

Nomenclature

ISHM Integrated Systems Health Management
EOL end of life
RUL remaining useful life
LH2 liquid hydrogen
t or k time
tP or kP time of prediction
x state vector
θ parameter vector
v process noise vector
y output vector
n measurement noise vector
TEOL EOL threshold
RMAD relative median absolute deviation
RA relative accuracy

I. Introduction

Within Integrated Systems Health Management (ISHM), technical advances in and increased acceptance
of automated diagnosis technologies is leading to a shift in research focus to the area of automated prognostics.
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Prognostics technologies center on determining the health (or damage) state of a component or subsystem,
and making end of life (EOL) and remaining useful life (RUL) predictions. Such information enables system
operators to make informed maintenance decisions and streamline operational and mission-level activities.

As a case study, we consider ground support equipment from the Space Shuttle cryogenic refueling system.
This system transfers cryogenic propellants from a storage tank to the vehicle tank through a network of
pipes and valves. Since the valves are used to control the flow of propellant, failures may have a significant
impact on launch availability. Hence, valve prognostics can provide significant value to launch operations
activities. We focus on one of the pneumatic transfer line valves in this system, and apply a model-based
prognostics approach.

For the selected valve, we develop a complete prognostics solution, including models, algorithms, and a
user interface. The prognostics algorithms are model-based, meaning that, unlike data-driven approaches,1

we use mathematical models describing the underlying physical principles of valve operation and how valves
fail.2–6 We construct a detailed physics-based model of a pneumatic valve that includes models of different
damage mechanisms and how they progress in time. Using this model, we employ the particle filtering
algorithm for joint state-parameter estimation to determine the health state of the valve and the rates of
damage progression, from which EOL and RUL predictions are made. Although we focus on a pneumatic
valve, the approach is general in that it may be applied to any component, given its model. We also develop
a prototype user interface to communicate the algorithm results, based on an analysis of what information
the algorithms provide and how the information should be made available to the user. We demonstrate the
prognostics approach as applied to a real-world case study using historical pneumatic valve data from the
Space Shuttle refueling system.

The paper is organized as follows. Section II formulates the prognostics approach. Section III describes
the valve model. Section IV describes the damage estimation algorithm, and Section V describes the pre-
diction algorithm. Section VI develops the prognostics interface. Section VII demonstrates the approach on
historical pneumatic valve data. Section VIII concludes the paper.

II. Prognostics Approach

The goal of prognostics is to predict the EOL and/or the RUL of a component. In this section, we first
formally define the problem of model-based prognostics. We then describe a general model-based architecture
within which a prognostics solution may be implemented.

II.A. Problem Formulation

We assume the system may be described by

ẋ(t) = f(t,x(t),θ(t),u(t),v(t))
y(t) = h(t,x(t),θ(t),u(t),n(t))

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the parameter vector, u(t) ∈ Rnu is the input vector,
v(t) ∈ Rnv is the process noise vector, f is the state equation, y(t) ∈ Rny is the output vector, n(t) ∈ Rnn
is the measurement noise vector, and h is the output equation. This form represents a general nonlinear
model with no restrictions on the functional forms of f or h. Further, the noise terms may be coupled in a
nonlinear way with the states and parameters. The parameters θ(t) evolve in an unknown way. In practice,
they are typically considered to be constant.

Our goal is to predict EOL at a given time point tP using the discrete sequence of observations up to
time tP , denoted as y0:tP . EOL is defined as the time point at which the component no longer meets a
functional requirement (e.g., a valve does not open in the required amount of time). This point is often
linked to a damage threshold, beyond which the component fails to function properly. In general, we may
express this threshold as a function of the system state and parameters, TEOL(x(t),θ(t)), which determines
whether EOL has been reached, where

TEOL(x(t),θ(t)) =

{
1, if EOL is reached
0, otherwise.
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Using this function, we can formally define EOL with

EOL(tP ) , arg min
t≥tP

TEOL(x(t),θ(t)) = 1,

and RUL with

RUL(tP ) , EOL(tP )− tP .

Due to process noise, measurement noise, and uncertainty in the future inputs of the system, a probability
distribution of the EOL or RUL should be computed instead of a single prediction point. The goal, then, is
to compute, at time tP , p(EOL(tp)|y0:tP ) and/or p(RUL(tP )|y0:tP ).

II.B. Prognostics Architecture

We adopt a model-based approach, wherein we develop detailed physics-based models of components and
systems that include descriptions of how faults evolve in time. These models depend on unknown and
possibly time-varying wear parameters, θ(t). Therefore, our solution to the prognostics problem takes the
perspective of joint state-parameter estimation. In discrete time k, we estimate xk and θk, and use these
estimates to predict EOL and RUL at desired time points.

We employ the prognostics architecture in Fig. 1. The system is provided with inputs uk and provides
measured outputs yk. Prognostics may begin at t = 0, with the damage estimation module determining
estimates of the states and unknown parameters, represented as a probability distribution p(xk,θk|y0:k).
The prediction module uses the joint state-parameter distribution, along with hypothesized future inputs, to
compute EOL and RUL as probability distributions p(EOLkP |y0:kP ) and p(RULkP |y0:kP ) at given prediction
times kP . In parallel, a fault detection, isolation, and identification (FDII) module may be used to determine
which damage mechanisms are active, represented as a fault set F. The damage estimation module may
then use this result to limit the space of parameters that must be estimated. Alternatively, prognostics may
begin only when diagnostics has completed. In this paper, we focus on the damage estimation and prediction
modules, and assume a solution to FDII.

Figure 1. Prognostics architecture.

III. Valve Modeling

Pneumatic valves are gas-actuated valves used in many domains. A normally-closed valve with a linear
cylinder actuator is illustrated in Fig. 2. The valve is opened by filling the chamber below the piston with
gas up to the supply pressure, and evacuating the chamber above the piston down to atmospheric pressure.
The valve is closed by filling the chamber above the piston, and evacuating the chamber below the piston.
The return spring ensures that when pressure is lost, the valve will close due to the force exerted by the
return spring, hence it is a normally-closed valve.

We develop a physics model of the valve based on mass and energy balances. The system state for the
nominal model includes the position of the valve, x(t), the velocity of the valve, v(t), the mass of the gas in
the volume above the piston, mt(t), and the mass of the gas in the volume below the piston, mb(t):

x(t) =
[
x(t) v(t) mt(t) mb(t)

]T
.
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Figure 2. Pneumatic valve.

The position when the valve is fully closed is defined as x = 0, and when fully open is defined as x = Ls,
where Ls is the stroke length of the valve.

The derivatives of the states are described by

ẋ(t) =
[
v(t) a(t) ft(t) fb(t)

]T
,

where a(t) is the valve acceleration, and ft(t) and fb(t) are the mass flows going into the top and bottom
pneumatic ports, respectively.

The inputs are considered to be

u(t) =
[
pl(t) pr(t) ut(t) ub(t)

]T
,

where pl(t) and pr(t) are the fluid pressures on the left and right side of the plug, respectively, and ut(t)
and ub(t) are the input pressures to the top and bottom pneumatic ports, which will alternate between the
supply pressure and atmospheric pressure depending on the commanded valve position.

The acceleration is defined by the combined mass of the piston and plug, m, and the sum of forces acting
on the valve, which includes the forces from the pneumatic gas, (pb(t)− pt(t))Ap, where pb(t) and pt(t) are
the gas pressures on the bottom and the top of the piston, respectively, and Ap is the surface area of the
piston; the forces from the fluid flowing through the valve, (pr(t) − pl(t))Av, where Av is the area of the
valve contacting the fluid; the weight of the moving parts of the valve, −mg, where g is the acceleration due
to gravity; the spring force, −k(x(t) − xo), where k is the spring constant and xo is the amount of spring
compression when the valve is closed; friction, −rv(t), where r is the coefficient of kinetic friction, and the
contact forces Fc(t) at the boundaries of the valve motion,

Fc(t) =


kc(−x), if x < 0,

0, if 0 ≤ x ≤ Ls,
−kc(x− Ls), if x > Ls,

where kc is the (large) spring constant associated with the flexible seals.
The pressures pt(t) and pb(t) are calculated as:

pt(t) =
mt(t)RgT

Vt0 +Ap(Ls − x(t))

pb(t) =
mb(t)RgT
Vb0 +Apx(t)

where we assume an isothermal process in which the (ideal) gas temperature is constant at T , Rg is the gas
constant for the pneumatic gas, and Vt0 and Vb0 are the minimum gas volumes for the gas chambers above
and below the piston, respectively.
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The gas flows are given by:

ft(t) = fg(pt(t), ut(t))
fb(t) = fg(pb(t), ub(t)),

where fg defines gas flow through an orifice for choked and non-choked flow conditions.7 Non-choked flow
for p1 ≥ p2 is given by fg,nc(p1, p2) =

CsAsp1

√
γ

ZRgT

(
2

γ−1

)((
p2
p1

) 2
γ −

(
p2
p1

) γ+1
γ

)
,

where γ is the ratio of specific heats, Z is the gas compressibility factor, Cs is the flow coefficient, and As is
the orifice area. Choked flow for p1 ≥ p2, which occurs when p1/p2 exceeds

(
γ+1

2

)γ/(γ−1)
, is given by

fg,c(p1, p2) = CsAsp1

√
γ

ZRgT

(
2

γ+1

) γ+1
γ−1

.

The overall gas flow equation is then given by

fg(p1, p2) =


fg,nc(p1, p2) if p1 ≥ p2 and p1

p2
<
(
γ+1

2

) γ
(γ−1) ,

fg,c(p1, p2) if p1 ≥ p2 and p1
p2
≥
(
γ+1

2

) γ
(γ−1) ,

−fg,nc(p2, p1) if p2 > p1 and p2
p1
<
(
γ+1

2

) γ
(γ−1) ,

−fg,c(p2, p1) if p2 > p1 and p2
p1
≥
(
γ+1

2

) γ
(γ−1) ,

.

We select our complete measurement vector as

y(t) =
[
x(t) pt(t) pb(t) fv(t) open(t) closed(t)

]T
,

where fv is the fluid flow through the valve:

fv(t) =
x(t)
Ls

CvAv

√
2
ρ |pfl − pfr|sign(pfl − pfr),

Cv is the (dimensionless) flow coefficient of the valve, ρ is the liquid density, and we assume a linear flow
characteristic for the valve. The open(t) and closed(t) signals are from discrete sensors which output 1 if
the valve is in the fully opened or fully closed state:

open(t) =

1, if x(t) ≥ Ls
0, otherwise

closed(t) =

1, if x(t) ≤ 0

0, otherwise.

Fig. 3 shows a nominal valve cycle. The valve is commanded to open at 0 s. The top pneumatic port
opens to atmosphere and the bottom opens to the supply pressure. When the force on the underside of the
piston is large enough to overcome the opposing forces, the valve begins to move upward as the pneumatic
gas continues to flow into and out of the valve actuator. In a little over 1 s, the valve is completely open.
The valve is commanded to close at 10 s. The bottom pneumatic port opens to atmosphere and the top
opens to the supply pressure. When the force balance becomes negative, the valve starts to move downward,
and completely closes within 1 s. The valve closes faster than it opens due to the return spring.

III.A. Damage Modeling

From valve documentation and historical maintenance records, we have identified friction damage, spring
damage, internal valve leaks, and external valve leaks as faults that lead to EOL. The variables that describe
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Figure 3. Nominal valve operation.

the magnitude of damage augment the state vector x(t), and the parameters defining their progression form
the unknown parameter vector θ(t).

One damage mechanism present in valves is sliding wear, which results in an increase in friction.8 We
characterize friction damage as change in the friction coefficient, and model the damage progression in a
form similar to the sliding wear equation:2

ṙ(t) = wr|Ff (t)v(t)|

where wr is the wear coefficient, and Ff (t) is the friction force. Friction damage causes the valve to both
open and close more slowly. The valve is considered to be at EOL when it cannot open or close within
required timing limits. We define r+ as the maximum value of the friction parameter at which the valve still
behaves within these limits. So, TEOL(x(t),θ(t)) = 1 if r(t) > r+.

We assume a similar equation form for spring damage:2

k̇(t) = −wk|Fs(t)v(t)|,

where wk is the spring wear coefficient and Fs(t) is the spring force. The more the spring is used, the
weaker it becomes, characterized by the change in the spring constant. Spring damage causes the valve to
open faster and close slower. The spring must also remain strong enough to close the valve against system
pressure when the actuating pressure is lost, and the loss of this function also defines EOL. We define k− as
the smallest value of k at which the valve will both close within the timing limit and fully close upon loss of
supply pressure. So, TEOL(x(t),θ(t)) = 1 also if k(t) < k−.

An internal leak in the valve can appear at the seal surrounding the piston as a result of sliding wear.
The pneumatic gas is then able to flow between the volumes above and below the piston, decreasing the
response time of the valve. We parameterize this leak by its equivalent orifice area, Ai(t), described by:2

Ȧi(t) = wi|Ff (t)v(t)|,

where wi is the wear coefficient. We define A+
i as the maximum internal leak area at which the valve opens

and closes within the functional limits. So, TEOL(x(t),θ(t)) = 1 also if Ai(t) > A+
i .

External leaks may also form at the actuator connections to the pneumatic gas supply, due to corrosion
and other environmental factors. We assume the growth of the area of the leak holes, Ae,t(t) and Ae,b(t), is
linear:

Ȧe,t(t) = we,t

Ȧe,b(t) = we,b,
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Algorithm 1 SIR Filter
Inputs: {(xik−1,θ

i
k−1), w

i
k−1}Ni=1,uk−1:k,yk

Outputs: {(xik,θik), wik}Ni=1

for i = 1 to N do
θik ∼ p(θk|θik−1)
xik ∼ p(xk|xik−1,θ

i
k−1,uk−1)

wik ← p(yk|xik,θik,uk)
end for

W ←
N∑
i=1

wik

for i = 1 to N do
wik ← wik/W

end for
{(xik,θik), wik}Ni=1 ← Resample({(xik,θik), wik}Ni=1)

where the t and b subscripts denote a leak at the top and bottom pneumatic ports, respectively, and we,t and
we,b are the wear coefficients. A leak at the top pneumatic port causes the valve to open more quickly and
close more slowly, whereas a leak at the bottom pneumatic port causes the valve to open more slowly and
open more quickly. We define the maximum leak hole areas at which the valve still opens and closes within
the functional limits as A+

e,t and A+
e,b . So, TEOL(x(t),θ(t)) = 1 also if Ae,t(t) > A∗e,t or Ae,b(t) > A∗e,b.

IV. Damage Estimation

In model-based prognostics, damage estimation reduces to joint state-parameter estimation, i.e., compu-
tation of p(xk,θk|y0:k).2 Particle filters offer a general solution to this problem for nonlinear systems with
non-Gaussian noise terms,9,10 and have become a popular within prognostics.2,3, 11,12 As described in Sec-
tion III, for the pneumatic valves, both the state equation f and the output equation h are highly nonlinear,
and, further, h contains the discrete measurements open and closed, necessitating the use of particle filters.

In particle filters, the state distribution is approximated by a set of discrete weighted samples, called
particles. The particle approximation to the state distribution is given by

{(xik,θ
i
k), wik}Ni=1,

with N denoting the number of particles. For particle i, xik denotes the state estimates, θik denotes the
parameter estimates, and wik denotes the weight. The posterior density is approximated by

p(xk,θk|y0:k) ≈
N∑
i=1

wikδ(xik,θik)(dxkdθk),

with δ(xik,θik)(dxkdθk) denoting the Dirac delta function located at (xik,θ
i
k).

We utilize the sampling importance resampling (SIR) particle filter, given as Algorithm 1. Each particle
is propagated forward to time k by sampling new parameter and state values. The particle weight is assigned
using yk. The weights are then normalized, and then the particles are resampled, e.g., using the systematic
resampling algorithm.13

The parameters θk evolve by some unknown random process that is independent of the state xk. To
perform parameter estimation within a particle filter framework, we assign a random walk evolution, i.e., for
parameter θ, θk = θk−1 +ξk−1, where ξk−1 is a noise term. During the sampling step, particles are generated
with parameter values that will be different from the current values of the parameters. The particles with
parameter values closest to the true values should match the outputs better, and therefore be assigned
higher weight. Resampling will cause more particles to be generated with similar values. The particle filter
converges to the true values as the process is repeated over each step of the algorithm.

The selected variance of the random walk noise determines both the rate of this convergence and the
estimation performance once convergence is achieved. Therefore, this parameter should be tuned to obtain
the best possible performance, but the optimal value is dependent on the value of the hidden wear parameter,
which is unknown. We use the variance control method presented in,6 shown as Algorithm 2. In this
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Algorithm 2 ξ Adaptation
Inputs: {(xik,θik), wik}Ni=1, ξk−1

State: a
Outputs: ξk
if k = 0 then

a← 0
end if
for all j ∈ {1, 2, . . . , nθ} do
vj ← RMAD({θik(j)}Ni=1)
if a(j) = 0 and vj < T then

a(j)← 1
end if
if a(j) = 0 then
v∗j ← v∗j0

else
v∗j ← v∗j∞

end if
ξk(j)← ξk−1(j)

(
1 + P

vj−v∗j
v∗j

)
end for

approach, the variance of the hidden wear parameter estimate is controlled to a user-specified range by
modifying the random walk noise variance. We assume that the ξ values are tuned initially based on the
maximum expected wear rates. The algorithm uses relative median absolute deviation (RMAD) as the
measure of spread, defined as:

RMAD(X) = 100
Mediani (|Xi −Medianj(Xj)|)

Medianj(Xj)
,

where X is a data set and Xi is an element of that set. The adaptation scheme resembles a proportional
control law, where the error between the actual RMAD of a parameter θ(j), denoted as vj in the algorithm,
and the desired RMAD value (e.g., 10%), denoted as v∗j in the algorithm, is normalized by vj . The error is
then multiplied by a factor P (e.g., 1× 10−3), and the corresponding variance ξ(j) is increased or decreased
by that percentage. There are two different setpoints. First, we allow for a convergence period, with setpoint
v∗j0 (e.g., 50%). Once vj reaches T (e.g., 1.2v∗j0), we mark it using the a(j) flag, and begin to control it to a
new setpoint v∗j∞ (e.g., 10%).

V. Prediction

Prediction is initiated at a given time kP . Using the current state estimate, p(xk,θk|y0:k) the goal is to
compute p(EOLkP |y0:kP ) and p(RULkP |y0:kP ). The particle filter computes

p(xkP ,θkP |y0:kP ) ≈
N∑
i=1

wikP δ(xikP ,θ
i
kP

)(dxkP dθkP ).

We can approximate a prediction distribution n steps forward as14

p(xkP+n,θkP+n|y0:kP ) ≈
N∑
i=1

wikP δ(xikP+n,θ
i
kP+n)(dxkP+ndθkP+n).

So, for a particle i propagated n steps forward without new data, we can simply take its weight as wikP .
Similarly, we can approximate the EOL as

p(EOLkP |y0:kP ) ≈
N∑
i=1

wikP δEOLikP
(dEOLkP ).

To compute EOL, then, we propagate each particle forward to its own EOL and use that particle’s weight
at kP for the weight of its EOL prediction.
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Algorithm 3 EOL Prediction
Inputs: {(xikP ,θ

i
k), w

i
kP
}Ni=1

Outputs: {EOLikP , w
i
kP
}Ni=1

for i = 1 to N do
k ← kP
xik ← xikP
θik ← θikP
while CEOL(xik,θ

i
k) = 0 do

Predict ûk
θik+1 ∼ p(θk+1|θik)
xik+1 ∼ p(xk+1|xik,θik, ûk)
k ← k + 1
xik ← xik+1

θik ← θik+1

end while
EOLikP ← k

end for

The pseudocode for the prediction procedure is given as Algorithm 3.2 Each particle i is propagated
forward until TEOL(xik,θ

i
k) evaluates to 1, at this point EOL has been reached for this particle. Prediction

requires hypothesizing future inputs of the system, ûk. For the valve, this problem is simplified, because
each valve cycle corresponds to the same set of inputs, because the fluid pressures pL and pR can safely be
assumed to be constant in our application domain, and, further, have an almost negligible effect on valve
behavior because the forces they produce are very small compared to the other forces acting on the valve.
So, the future inputs for each valve cycle are deterministic. We can simply provide repeated valve cycles as
input, and the prediction algorithm will determine EOL in the number of valve cycles.

Fig. 4 shows results from the prediction of internal leak damage for N = 100. Initially, the particles have
a very tight distribution of internal leak area values, Ai(t), but the distribution of the wear parameter, wi,
is relatively large. As a result, the individual trajectories for the different wear parameter values are easily
distinguishable as EOL is approached. The different EOL values along with particle weights form an EOL
distribution approximated by the probability mass function shown in the figure. The internal leak damage
accrues step-wise as the valve moves, but over large time scales the damage progression appears linear, as
shown in the figure.

VI. Prognostics Interface Design

Since prognostics is still a nascent field, there are no real examples of successful prognostics interfaces.
Therefore, in this section, we try to establish some fundamental guidelines and principles for the design of
prognostics interfaces, based on our experience developing a prototype interface for our case study. We first
describe the information available from prognostics algorithms that may be presented to a user, then provide
some design guidelines, followed by a description of the interface we designed.

VI.A. Information Provided by Prognostics

A prognostics interface must present the results of prognostics algorithms to a user and allow the user to
interact with the algorithm to obtain additional results, view information in a variety of ways, and access
long-term historical information. In contrast to most systems interfaces, e.g. diagnostics interfaces, in which
information is viewed only over short time scales, such as the duration of a mission, prognostics interfaces
cope with information over very large time scales, such as sequences of missions. Therefore it is important to
distinguish these two time scales clearly. Further, it is more useful to an operator for results to be presented
in an operational or missions context, e.g., how many missions a component will survive as opposed to how
much time or how many cycles it will last.

Prognostics algorithms are capable of presenting a wealth of information to the user. Foremost, algorithms
generate predictions of EOL and RUL, i.e., p(EOL(kp)|y0:kP ) and/or p(RUL(kP )|y0:kP ) at given prediction
times kp. Predictions may be computed automatically by the algorithm, but also on request from a user.
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Figure 4. Prediction of internal leak damage.

As described in Section IV, model-based prognostics algorithms also compute supportive information, such
as state and parameter estimates, p(xk,θk|y0:k), which includes estimates of the amount of damage and the
rates of damage progression. Note that these predictions and estimates are all represented as probability
distributions. From these, several quantities may be computed, such as means or medians, confidence
intervals, measures of spread, and higher-order statistical moments.

As shown in Algorithm 3, the state estimates are used directly to compute EOL. Using the same basic
procedure, other predictions can be made as well, which may be useful to the user. Future state, parameter,
and output trajectories can be computed and displayed to the user, which can show how the component
is expected to perform in the future, and how damage is expected to progress. Note also that a number
of health or damage indices may be computed from the state estimates, e.g., that a valve is at 50% health
or its spring is at 75% health. Therefore, predictions of these health indices may also be obtained from
the predictions of the state trajectories. This type of information is useful to the user because it helps in
understanding the EOL and RUL predictions made by the algorithm.

Once a component has failed, and ground truth is hence known, the outputs of the algorithm over the
life of the component can be used to evaluate the performance of the algorithm. Various offline performance
metrics may be used for this purpose, such as relative accuracy, convergence, prognostics horizon, and α-λ
performance.15 This higher-level information is also beneficial to a system operator.

VI.B. Design Guidelines for a Prognostics Interface

With the wealth of information available from prognostics algorithms, a prognostics interface must avoid
overwhelming the user with too much technical information. In the early life of a component, prognostics is
not a concern, so the interface should indicate when damage has reached a threshold where EOL predictions
become relevant so that the user knows when to start bringing up the algorithm results for display. The most
critical information, which should be displayed most prominently, includes overall component health and the
life predictions. The predicted values should be shown over a large time window, so that users can see how the
RUL and EOL predictions have evolved in time. Because it takes time for prognostics algorithms to converge,
the interface should distinguish between predictions obtained before and after algorithm convergence, since
the results before convergence are unreliable.
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State, parameter, and output estimates provide additional supportive information that helps the user
to understand the current life predictions made by the algorithm. In particular, the evolution of damage
states (e.g., spring rate or leakage area) over time demonstrate how the component is degrading, especially
when shown against damage limits. It is equally important to show damage as it manifests in the functional
performance of the component. For example, with the valves, EOL is largely defined by valve opening
and closing times, so showing the progression of these values over time against the functional limits is also
useful. Since damage often manifests as nonlinear changes in the system outputs over time (e.g., expo-
nential degradation), showing the predicted future output values helps the user understand the connection
between functional performance and the life predictions with additional clarity. In the case of the valves,
this corresponds to showing the predicted valve opening and closing times up to the functional limits.

Since most prognostics algorithms provide results as probability distributions, there are multiple ways
to view the results. Histograms or probability density functions can be shown, as well as box plots, or
the life predictions at specified confidence levels. The choice of how to display the distribution depends
on the type of reasoning that the user is performing. It is then also useful to show summary statistics
for the various distributions, including measures of central tendency and statistical dispersion, as well as
higher-order moments such as skew and kurtosis.

Besides choosing how information should be displayed, the user may also interact directly with the
algorithm by setting assumptions about the future inputs of the component. For example, a user may be
interested only in worst-case performance, so will assume maximum loading on the component. Instead, a
user may be interested in average performance over a distribution of possible future loading profiles. Each
of these cases should be made available to the user.

VI.C. Valve Prognostics Interface

A prognostics interface for the pneumatic valve case study was developed for demonstration purposes, and
provides an implementation of the design concepts discussed in the previous sections. The interface is
organized in a hierarchical structure that presents prognostics information at various levels, allowing the
user to drill down into more detailed views when desired.

Figure 5. Top-level systems interface with prognostic indicators.

At the top level of the interface, shown in Fig. 5, is a system schematic integrated with sensor values.
The only prognostics information communicated to the user at this level is the component health, shown
using a simple color indicator with green indicating healthy, yellow indicating degraded health, and red
indicating near-failure. This indicator changes continuously from green to yellow to red, in order to indicate
the accumulation of component damage. When the indicator becomes yellow, this serves as a notification to
the operator to investigate more closely. The next level of the interface, which is a component-centric view
of prognostics results, allows this functionality.
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Figure 6. Lower-level prognostics interface.

Figure 7. Lower-level prognostics interface at component failure.

The lower-level prognostics interface, shown in Figs. 6 and 7, shows a summary of component health,
the current life predictions, and supportive information. A high-level summary of component health. The
number of fuelings the component has undergone, along with the overall health and RUL, are shown in text.
The RUL is plotted on the left side, with the mean with confidence intervals shown in the figure. Here,
multiple views are supported, including plots for the RUL at different confidence levels, the EOL mean with
confidence intervals, the RUL probability distribution, the EOL probability distribution, and an α-λ plot
that is available once the component has failed. Here, color is used to indicate the severity of the predictions,
as the colors of the points are selected based on operational RUL thresholds. For example, the points are
yellow when less than 15 remaining fuelings are predicted, as at this point an operator might start to plan
for future maintenance. The predictions up to the 10th fueling are shown in gray, as the algorithm has not
yet converged until then in this example.
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The interface provides supportive information to the right of the RUL plot. At the top of this portion
is shown the measured valve timing, which in this case is the only directly observable information for
the selected component. The opening and closing time requirements are shown with red dashed lines. The
expected future valve times are shown with the trajectories consisting of gray dots, with the mean, maximum,
and minimum timing vales shown. These timing predictions help to explain why the algorithm predicts EOL
at around 38 fuelings, because extrapolating the times linearly would yield a much larger EOL. Below the
timing plots, the operator may select a specific damage mode, and view the estimated amount of damage
and the estimated progression rate. Damage thresholds corresponding to EOL are shown with red dashed
lines.

Figure 8. System report of prognostics information.

A summary of prognostics information for multiple components, shown in Fig. 8, is also available. For
each component, the overall health is shown, the RUL at the 95th percentile, and current opening and closing
times, as well as the timing requirements. For each valve, the amount of damage for each damage mode is
also shown. Damage modes with high damage percentages indicate where repairs will have to be performed.
Such a report may be used to track the health of various components after each fueling operation.

VII. Demonstration

We apply the prognostics methodology to our case study, the transfer line chillldown valve of the Space
Shuttle LH2 refueling system. We then apply the prognostics approach to historical valve degradation
data. Because the actual data consisted of only 7 valve cycles before maintenance was performed, we
extend the data with simulated valve data, based on the identified bottom external leak damage mode with
we.b = 3.0× 10−7 m2/cycle, up to EOL at 38 cycles, after which the valve fails to open within the 5 second
limit. Fig. 9 shows the valve timing data used for the demonstration. Note that only the open and closed
sensors are available here for prognosis, and we have established in previous work that prognostics may still
be performed under this constraint.2

We assumed that no FDII algorithm was present to limit the number of damage modes to estimate, and
therefore damage estimation was started immediately, jointly estimating all the damage modes of the valve.
Because of the large state space, we set N = 2000. The algorithm should converge to correct wear rates for
each damage mode, and, in this case, identify the bottom external leak as the dominant damage mechanism.

Estimation results are shown in Fig. 10. For the variance control algorithm, we used T = 60%, v∗0 = 50%,
v∗∞ = 10%, and P = 2× 10−4. The algorithm keeps the RMAD of the wear parameters controlled to within
10%. The estimation algorithm correctly identifies the bottom external leak as the dominant damage mode,
as shown by the convergence of its wear rate to the true value. The estimates for all other wear rates are
driven to zero, and so the corresponding damage modes do not grow significantly. During the first 7 cycles
(where measured data is available), the algorithm is still converging, and by the time this portion of the
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Figure 9. Real and simulated valve timing.
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Figure 10. Estimation of pneumatic valve damage modes.

data has ended, the algorithm estimates the wear parameter for the bottom external leak within 30% of the
true value, and the mean RUL prediction is within 25% of the true RUL. The predicted value of the RUL at
that time point is less than the true value, resulting in a conservative estimate. By 8 cycles, the mean RUL
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prediction has improved to within 5% of the true RUL. At this point the algorithm has converged and the
user may then begin to use the results in the decision-making process.

0 10 20 30 40
0

5

10

15

20

25

30

35

40

Time (cycles)

R
U

L
 (

cy
cl

es
)

 

 
RUL∗
RUL99%

Figure 11. RUL predictions at the 99% confidence level. Predictions before algorithm convergence are represented by
unfilled circles, and predictions after convergence by filled circles.

Fig. 11 shows the RUL predictions at the 99% confidence level, i.e., the value at which 99% of the
prediction distribution is greater than or equal to that value. The predictions at this confidence level always
lie below the true RUL, therefore, they serve as conservative estimates upon which risk-averse decisions can
be made. After algorithm convergence, the predictions are fairly smooth. The relative accuracy of the RUL,
using the mean values, averages 91% over all predictions, and the RMAD of the RUL averages 9.88%.

VIII. Conclusions

In this paper, we developed a model-based prognostics approach, using particle filters for joint state-
parameter estimation. The estimated damage state of the valve is propagated forward in time to predict
EOL and RUL distributions. We adopted a pneumatic valve from the Space Shuttle refueling system as
a case study. We developed a detailed physics-based model that includes damage progression, and applied
the algorithmic approach to historical valve degradation data augmented with simulation data to EOL. The
results here demonstrated the effectiveness of a model-based approach, and gave insight into the selection of
sensors for valve prognostics.
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