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Abstract—The National Airspace System (NAS) is a are well determined. The observed characterisiicare
highly complex dynamical system that is regularly sensitive representive of the flight behavior and hold a complex
to faulty aeronautical decision-making and risk manage- relationship with the inpul/. Such a system that can be

ment skills. In order to ensure a healthy system with safe functi v d ibed by the followi fi )
flights a systematic approach to anomaly detection is very unctionally described by the Tollowing equations:

important when evaluating a given set of circumstances h, = D(h!,)
and also simultaneously determine the best possible course t t—1
of action. Given the fact that the NAS is a vast and loosely x; = W(x;_i,hyu)
integrated network of systems, it requires improved safet
g Yy q p y v o= Qx) (1)

assurance capabilities to maintain an extremely low acci-

dent rate under increasingly dense operating conditions. Equation 1 describes a system with as the observed

Data mining based tools and techniques are required to . .
support and aid operators’ (such as pilots, management, system input, andy, is the observed system output

or policy makers) overall decision-making capacity. The Which can take any form of discrete, categorical, and
ability to analyze fleetwide data autonomously is still continuous features.Here we assume that the fundtion
considered a significantly challenging task. Here, in this and & are unknown. The functiol® and ¥ determines
Fff(irr]tf we aim at dev(;eéopingtﬁ SyStemb'.‘l?;’e'fa”?}yfis t?Che”;je-the evolution of the hidden system stateand governs

n this paper we address the capability for detection o . . .
fleetwide anomalies as they occur, which itself is an impor- the evolution of the Contlnuqus state ,VeCtorl respectively.
tant initiative towards the safety of the real-world flight Ve assume that the vectaris an.NV dimensional state
operations. The flight data recorders archive millions of vector, andx;_, is its history for the lastD time steps:
data points with valuable information on flights everyday. x¥ |, = [x; p,%; pi1,..,X¢_1]. The hidden stath, is

The operational parameters consist of both continuous a55ymed to correspond to different mode configurations

and discrete (binary & categorical) data from several S
critical sub-systems and numerous complex procedures. In within the system and each mode affects the output

this paper, we discuss a systematic system level anomalydynamics®. Any malfunction in the SyStem}lt could
detection approach based on the theory of kernel learning move to an abnormal state, thus also changing the nature

to detect potential safety anomalies in a very large data of the observed output. Not necessarily always has
base of commercial aircraft. We also demonstrate that the {5 move to an abnormal state. it can very well reside

proposed approach uncovers some operationally significant . . - .
events due to environmental, mechanical, or human factors in some unfamiliar state within the normal operational

issues in high dimensional, multivariate Flight Operations e€gime. In practice a similar situation will arise when
Quality Assurance (FOQA) data. We present the results all pilots are attempting to follow the same standard
of our detection algorithms on real FOQA data from a operating procedures, while some of them may deviate
regional carrier. from these procedures which could lead to a different

|. INTRODUCTION input sequencd’, resulting in a different set of observed

Suppose the entire data that is available for a givdlight characteristic)” which may be unusual but not
system, covering both inputs and outputs, is given B cess'anly wrong. The problem that we address in this
the set(4, ). In real-world flight operations, the input aper is to develop a method to discover whether or not

U is provided by the pilot following some standargihe current observed vectgd/ along with the discrete

operating procedure: for a given airport, aircraft, weath@°t inlpu;s Z/Idrepr(;sentt)s oned Lhat Is ?t)r/]pical or an
conditions, instructions from air traffic control, and athe2no™Maly based on the observed history of the system. We

contextual elements of the flight, the flight procedure\g[ant to emphasis here that in this particular research we



don’t intend to model causal behaviour or relationship’s flexiblity to process a variety of heterogeneous data
between input and output variables of such systensources without reformulating the problem whenever
Rather the objective is to simultaneously identify unusu#tere is a change in information content or data structure.
patterns in any combinations of inp@/) and output The formulation we demonstrate in this paper is very
). simple and can easily be adopted for fleetwide analysis in

Over the last few decades with improved sensing cap#Rrious domains including medical applications, airspace
bilities we have seen tremendous increase in informati§aety, business analysis etc.
flow, in terms of the volume and complexity, created at II. ANOMALY TRACKING ALGORITHMS

an unprecedented pace in several disciplines. Aviation . . . .
. : . . Since the theme of this paper is anomaly detection, we
industry is not an exception. A great example is the

Distributed National FOQA (Flight Operations QualityW'". mo§tly discuss in the cont.ext to anqmaly detectllon
Assurance) Archive (DNFA) data base established k\J/vhlch is also known as outlier detection or surprise
Nasa. DNFA contains millions of flight data from mosgattern detection. Outlier or anomaly detection refers
of thé major carriers in the U.S. Typical FOQA pa—0 _the _task of identifying new or unknown patterns
rameters consist of both continuous and discrete de\ﬁIQ'Ch’ N many cases, are abnormal or |ncor_15|stent. The
from the avionics, propulsion system, control surface rc_)blem of outlier detection has been extensively stu.d|ed
landing gear the, cockpit switch poéitions and otheuriSlng several approaches [14], [15], [16], [7]. Superwsed
critical systems. These data sets can have up to d ur)-superwsed are the tW.O brgader categprles. n
parameters and are sampled at 1 Hz. For a modergyeoerwsed _approach a model is built for detection pur-
sized fleet that operates 1000 flights per day theB9Se and this model assumes known class labels. Typical

' ssification based techniques such as Bayesian infer-

F.OQA data sets become very Igrge. Today, we are |¢ nce, decision trees, Support Vector Machines (SVMs)or
with the challenge of dealing with such a vast amourn

. . . . neural networks models are built on previously labeled
of heterogeneous information resources in varieties ﬁ\?stances of both normal and abnornF:aI data )i/nstances
semantic structures. Knowledge discovery from the X

. . owever class labels are expensive and they are not
heterogeneous resources is still a challenging task. Wit P y

this increased complexities of data sources there isei:?lISIIy available, especially for most of the historical

potential need of building intelligent refinement an(%ata' Given the fact that it is impossible to always

: . . . . ave prior knowledge about all possible classes or have
integration frameworks, focusing on information conterl( . X
and semantics nown data labels or have data representing all possible

) scenarios or classes, unsupervised techniques hold an
The key aspect of any data analysis method depengl§ye in many applications and play an important role

on how the input data was measured within the procegs igentifying “what is desired and what is roin a
and transformed into information. In aviation domaiyataset. Novelty detector is such a specialized tool that
the data sources are categorized as structured data gdsifies the members of a given set of objects into two
unstructured data. A typical example of unstructurégroups on the basis of whether the model have seen
data is free text data, for example reports or scriptfiose objects before or not. Kernel based classification
from pilots describing some events, experts feedback @fethods like single class SVMs, one-class kernel Fisher
the process etc. However in this paper we will restrighiscriminants etc fall under novelty detection category
our discussion to analysis using structured data Whiglyg are unsupervised in nature. In these techniques a
has two main categories, continuous and discrete daggdel is built on the normal data and the idea is to
Discrete attributes can be either binary, categorical @bme up with a threshold for determining abnormality
logical order i.e. sequential in nature. and using a distance based score for evaluating the extent
In our earlier research we have demonstrated tlo¢é abnormality. In nearest neighbor based approach, the
potential of the multiple kernel based anomaly detecticaim is to infer the outliers based on the data itself e.g. by
algorithm [9] in detecting anomalies. In this paper wéinding those points which are at a greater distance from
attempt to expand on the analysis by reporting a varietyost of the other data points or by finding those points
of different interesting anomalies that we have observechich are in low density region. Since in most cases
in a commercial aircraft data. Here we conduct thike-nn based solutions have quadratic time complexity,
analysis on a much large-scale data. In additional wesearchers like Angiulli and Pizzuti [3], Angiulli and
provide some useful insights in some disgnosis infoFassetti [2], Ramaswamy et al. [17], and Bay and
mation with a resonable explanations. We demonstraédehwabacher [5] have proposed promising techniques
the capability of the proposed methodology in terms afith improved run time.



A. Production Level Implementations distance from centroids of the multivariate cluster. The
Fesults provide both the degree of the anomalous flight

In airline industry algorithms that are chosen fo th th ibuti hich b
production level implementation must be heavily teste?xlong with the contributing parameters, which can be
eful for the analysts. The algorithm was designed to

and developed to produce reliable and meaningful resufts > .
executed on a large set of flights overnight and return

before they are selected by the airlines for everyday use. its th ) h h Morni
The most widespread method for detecting operationaﬁ e results the next morning (hence the name Morning

significant anomalies is with domain expert define eport).
threshold exceedances. Methods for detecting unstable?) Orca: “Orca” [5] is a method used for detecting
and high energy approaches are commonly exceedamac®malies in both continuous and discrete (binary for-
based. Another very similar technique that is currentijat) data in vector space, using a nearest neighbors
in use is just detecting the min and max for a givebased approach to detect anomalous points. For con-
parameter. Any deviation from that range may be dinuous data, Orca takes a nominal reference data set
interest. These methods have been in use for as lomgd calculates the nearest neighbors’ using euclidean
as the FOQA program has been in existence and hdistance to all test points in the original vector space.
provided analysts with valuable results. This is in paftor binary data points the hamming distance [21] is used.
due to the fact that the exceedance events identified &@rca” is ak-nearest neighbor based algorithm adopting
easily interpretable since the user has defined what thested loop structure in conjunction with randomization
algorithm is looking for. Another attractive feature is theand simple pruning rule. Pruning used in this algorithm
highly scalable implementation of the algorithm on largbelps in achieving near linear time performance with
data sets. However, the drawback to exceedance bakéh dimensional data. This makes the algorithm scalable
analysis is the fact that typically only the anomalies thdor analyzing large data sets. The algorithm uses a
are defined are reported to the analyst, leaving the undistance-based metric for finding outlier by examining
fined anomalous events undetected. In other words tthe distance of any test point tb existing examples
method only answers the questions that someone thoutfise considered as nearest neighbors. If one looks at
to ask. Algorithms discussed in this paper address thee local neighborhood and finds that the test points
issue of detecting "unknown anomalies”. However, thegre relatively close, then the examples are considered
are still in the research level stage, but with gainingormal or else unusual. In this algorithm, each data point
interest by the airlines may one day be running in i@ scored independently and therefore anomalies in the
production level environment. temporal domain are undetectable. The pseudo code of
“Orca” is shown below.

3) IMS: The Inductive Monitoring System (IMS) [11]

In this section we will describe some anomaly deis a distance base anomaly detection tool that uses an
tection techniques that have been extensively used unsupervised clustering algorithm to build models of the
analyze FOQA data. Some of these algorithms includxpected operation of the system on a set of nominal
Morning Report, Orca, IMS, SequenceMiner, and onelata. The models are used to test new data to determine
class Support Vector Machines. These research levehether an anomaly is present or not. The underlying
algorithms help compliment the exceedance based metloncept states that if the system behaves similar to
ods by being able to identify the "unknown anomalies'the normal operating modes that the data was trained
Once the anomalies found are analyzed, new parameder, the distance scores will be lower than data that
exceedances can be developed and incorporated into itheyenerated from a system that is in an anomalous
airlines’ daily analysis to track future or past events. state. IMS evaluates each sample, which is a multivariate

1) Morning Report: Morning Report [20] & [1] is vector, by calculating the Euclidean distance to the
an algorithm designed to detect atypical flights over @uster bounds of each cluster in the model, and reporting
set of aircraft and identify the contributing anomalouthe distance to the closest cluster as the anomaly score.
parameters and phases of flight. The algorithm calculat&s2D representation in figure 11-B3 can be seen. The
statistical signatures across the parameters of a giveormal operating regions are defined by the two boxes,
flight and clusters the flights based on the multivariat@ith the distances computed to the edge of the nearest
signatures. Similar flights are grouped together and atyipex. In the context of flight data IMS will train on a set
ical flights are considered to be far away from a cluste&f nominal flights, either identified by domain experts
and therefore have higher scores. The distribution of another algorithm, and test on the remaining flights.
the anomaly scores are a function of the Mahalanolisach time point within the test flight will be evaluated,

B. Research Level Implementations



Algorithm 1 Orca Algorithm

1:

10:

11:
12:
13:

Input:

A, - Matrix with ¢ dimensional dataset having
instances arranged in a random order

k : Number of nearest neighbors (default 5)

n : Number of outliers used (default: = p)

. Output:

O(n) : Set of outliers
Sglobal - Global scores

- Argument:

a : Entries in A

B : Block of examples from A

b : Entries in B

C : Cut-off threshold

wy - Weight of discrete parameters

. Definitions:

T e (l'c,l'd)

De (Dc;Dd)

Hd(l‘d, Dd) = W4, (]7611! = Dd1) + W, (‘rdzl =
Dd2) + ...+ wdn(xdn! = an)
d(z,D) =/(xe, — Dey)2 + ... + (2,
Hg(wq, Dg)

d(x, D): maximum distance betweenand an
example inD

M} |, :k closest example i) to x
S(D,z)=-L3"" d(z,D) distance based score

—m

_ DCn)Q +

. Initialize:

Let p instances of4,, be divided inNg blocks

and K,,,,(z) be the matrix that keeps track of the

nearest neighbors/examplesaafAnd C' = 0 and
O = @, where® is a null vector

- Forblock =1: Np {

B = A(:,block); Ky (b) = @

: For eacha in A, {
: For eachb in B andb # a {
: If Length(K,, (b)) < k or

d(b, CL) < dm(b, K’rm(b)) {
Knn(b) — ]V[liKnn(b)Ua
Remove examplé from setB
HH

O=0UB

Sglobal - SCO’I’G(O)

C + min(sglobal(o))

Ae

Cluster One Cluster Two
C De
B
Fig. 1. A conceptual diagram to describe the working prilecipf

IMS.

producing a profile of anomaly scores for each flight.
The anomaly scores for each flight can be combined in
many different ways, however, typically the scores are
averaged for each flight and the flights with the highest
average score are ranked most anomalous. As with Orca
IMS evaluates each point independently and therefore
suffers from the same drawback of not being able to
detect anomalies in the temporal domain. The pseudo
code for IMS is shown in figure8? & ??.

4) SequenceMiner:SequenceMiner [6] was devel-
oped to address the problem of detecting and describing
anomalies in large sets of high dimensional symbol
sequences such as recordings of switch sensors in the
cockpits of commercial aircraft. SequenceMiner works
by first using an unsupervised clustering algorithm to
cluster the sequences using the normalized longest com-
mon subsequence (LCS) as a similarity metric. Once the
clusters are defined anomalies can be detected using the
LCS as the distance measure. In this context anomalies
are determined to have low similarities between the
clusters of other sequences and are defined to be far
away from a cluster. Once anomalies are identified,
SequenceMiner applies a genetic algorithm to modify
the sequence to draw it closer to the cluster. Keeping
track of the changes made to the sequence the algorithm
reports back the missing and extra symbols giving the
user some context of the anomaly. Since SequenceMiner
focuses on the sequential nature of the anomalies it
can find anomalies that other algorithms such as Orca
and IMS are unable to detect, however it is ineffective
at handling continuous parameters without somehow
drastically changing the nature of the data.

5) Multiple Kernel Anomaly Detection:The main
concept of kernel-based theory can be illustrated using
the conceptual diagram as shown in 7. In fig.??,
the left side shows that the data is non-linearly separa-



Algorithm 2 IMS: Train

1: Input: X; (nominal system data vectors)

2: for each input vectoX; normalize the values
of X; and find the cluster with the closest
centroid toX;.

¢ (initial tolerance percent)

e (expansion percent)

m (max distance from cluster centroid to
input vector)

3 if no clusters exist, create a new cluster T8 8 I e e I showes that even finsiors
. el | | | | . \W. Vi I

centered onX, addmg initial tolerance are nonlinearly separable in input space, it is possible tp theam in
percenti to each vector value to create upperigher dimensional feature space where they may be lineapiyrable.
and lower bounds. Here ¢ (.) is the mapping function.

4: else ifa closest cluster is found anXl; is
within distancem of the centroid of that .
cluster, expand the cluster parameter ble (or sometimes non-seperable) 2+0) data space
boundz;lries as necessary to inclu whereas on the right hand side the same data is mapped
adding the expansion grcefﬂto eaih into higher dimensional3(-D) feature space where the

aran?eter boEnd that ?s chanaed features are seperable. In the input spReesuppose we

par ) gec. are given the dat®d = {(#;)};_,, whereZ; € R¢. We

5: else ifa closest cluster is found ar¥; is . =10 .
bevond distancen of the centroid of that define a feature spacg&, assuming that there exists a
cluyster create a new cluster centered function ¢ that can be used to map any variaklérom
as in s’te 8 the input space to the feature space ie. R¢ — F

6 end if ' and ¥ — ¢(Z). Here Z is an input vector £; € RY)

7: end for which has been mapped into a much higher dimensional

8: Output: B, (parameter boundaries for each

feature space. The mapping the data usiig) into 7
can be beneficial in defining a similarity measure using

cluster) the dot product inF in terms of a function operating

on the input data space and thus computing the inner
products more efficiently which is commonly referred

Algorithm 3 IMS: Test

as the kernel trick in machine learning literatures. This

1 Input: x; (test input) results in a kernel matrixk which gives a relative
2: for eachx; normalize the values similarity between objects ranging between maximum
of x, and find the closest nominal similar and maximum dissimilar. Unsupervised anomaly
cluster inB. to x;. detection technique like one-class SVM builds on this
3 if all x, parameter values fall within the kernel.

bounds of a cluster, the distance from
to the cluster is zero.

4: else if no cluster containg; locate the cluster
with the hyper-box boundary that is closest
to x;. Calculate the distance between a _
vector ofx, and a cluster hyper-box by Separating \ e & 5 % e .
summing the squares of the differences ~ "yperplane
between eaclx, parameter and the nearest
cluster boundary value for that dimension, ©Non=Svs = % “%/ "~ Tl
then find the square root of that sum. ® Marginal SVs
5 end if # Non-marginal SVs Ofigin
6: end for

7: Output: D (distance of vector to nearest cluster)

. Fig. 3. This figure illustrates the geometric interpretatidroptimal
d, (distance of each parameter to hyperplane for one class SVMs.

cluster bounds)

One-class SVMs builds a model on single (known)



class data and then finds a set of outliers using a decisimay be a mixture of both. The other source heterogeneity
boundary.The idea is to draw a separating hyperplanan be the behavioral or functional properties of these
that can separate these outliers from the rest of the traattributes. Not only is aviation data extremely large in
ing examples. Sdilkopf [18] showed that in the high size, it also has many aspects that create natural sources
dimensional feature space it is possible to construct af heterogeneity. Some examples include flights that
optimal hyperplane by maximizing the margin betweehave common: origin or destination airports, city pair
the origin and the hyperplane in the feature space bgutes, tail numbers, aircraft models, as well as seasonal
solving the following dual problem, aspects such as flights within a month. Even within a
flight there exists several phases like take offs, landings

R 1 and cruise. It is important to note that in order to enable
minimize Q = = a;0;(>_ K} - - ; -
T 9 L Qi AN knowledge discovery, algorithms in general require an
J . A integrated and merged view of the data available across
subjectto 0 < a; < —, Zo‘i -1 various resources.
127 -

Once an “appropriate” kernel function is chosen and

Z A=1,p>0, vel0,1] (2) thekernel matrix< isformed, it can be incorporated into
. o ._any kernel based classification, regression, or anomaly
where v is an user specmec_J _parameter that dencln%etection methods where the kernel matrix is the suffi-
the upper bound on the_ tramlng_ error, z_and also tnﬁent representation of the input data. In another word, by
lower bound on th(_e fractlon.of training points tha_t arekernelizing" any method we encode knowledge about
support vectorsﬁ.A Is the weights to kernels and, is the data, expressed in terms of pairwise similarities.

LS . . i o Fhis provides us with the opportunity to incorporate vast
vt training p_omts with non-zero Lagrgnglan mUItIpIIerSamount of knowledge from heterogeneous sources using
(o) are obtained and these poinfs; : i € [(],a; > 0} panicylar kernel functions. This field of research is know
are galled support vectors. The selected points can ?Multiple Kernel Learning (MKL) 7], [4], [13]. MKL
marg!na:IIm - li o E 1< & < . 1 ?nd rgm— takes advantage of the mathematics of kernels allowing
rPa}rglngt 'nmd_S{\Z/M ¥ = }t Sltfpc}r ”veg orsa pge us to derive new kernels from kernels, provided each
fo‘ |st_o ained, S compute the Tollowing deciSIon o el satifies Mercer condition which states that the ker-
unction. nel function must be continuous, symmetric, and positive
definite. There are several class of kernels those coincide
f(Z.,a,pB,p) = Sign(z 0@(2 ngz) —p) (3) Wwith Mgrcer kernel. _There are several existing IiteraFures
et N describing many different types of data with various
types of features such as graphs and multiple feature
types in computer vision such as color, shape, texture,

a negative label for a given test point then it is qu graphs based on image segmentations. Interested
classified as an outlier. Test examples with positive labe . )
" L Xxampies With Positiv readers can explore literature [8], [10], [12], [19], [22]

are classified normal. The pseudo code of one cIat ¢ 100k int . h | f i Is like rbf
SVMs is shown below. at look into various other classes of kernels like rbf,

polynomical, bag-of-word, sigmoid, spline, graph based,

I1l. FLEETWIDE ANALYSIS OF HETEROGENEOUS  tree based, mismatch based functions etc. A common
DATA practice is to use a convex combination (}€, 5\ = 1)

gvarious kernels which may be constructed on very

whereZ =7, + Z,,,. If the decision function predicts

Besides Orca, rest of the algorithms described abo
have been explored either in context to continuous rezﬂ'—ﬁerent feature sets.
valued data attributes or on discrete domain. Having saidWhen analyzing FOQA data the concept of a system
that, with increasing number of data sources, there isevel analysis is paramount. The flight data consists of
need of developing intelligent knowledge refinement andany parameters that monitor the various subsystems
integration techniques, focusing on the descriptions w@fithin a plane. Given a single flight this is not a
underlying heterogeneous data sources. In aviation safsiynple task, and when considering additional flights and
data heterogeneity may result due to the presence rofiltiple aircraft the task can quickly grow beyond the
multiple attributes as compared to single attribute at eaclassical timeseries analysis problem. With this incrdase
data observation. In multivariate data, the attributes mapmplexity it is important to understand the hierarchical
or may not belong to the same data type. For exammgstem structure and design algorithms to address this
the attributes can be either continuous or discrete orgaradigm. Another challenging aspect is the sheer size



of the data that must be consumed by the algorithmarking the on and off transitions between switch states
Typically flights are recorded at 1 Hz and may last anywith unique symbols and concatinating the symbols,
where from a couple hours for some regional flights anghile preserving the time ordering, into a sequence
up to 10 to 19 hours for some international flights. Thisector.

is compounded by the number of parameters that are

recorded, which is typically hundreds of measurements.

Some airlines are flying thousands of flights a day arl Experimental Details

millions of flights a year, which soon can add up to , )

terabytes of data very quickly. To address this in the " Multiple Kernel Anomaly Detection (MKAD) al-
system level approach the algorithm must treat the flighg9rithm, since we want to model switching sequences
as a fleet of aircraft with some sort of intelligent way ofor @ given process and where the order of the switching

compressing the important features of each flight, arfgiimPortant, normalized Longest Common Subsequence
identifying the anomalies at the flight level. (NLCS) based kernel was chossen as a potential candi-

date. Given two sequence§ and Z;, if z denotes a
IV. FOQA DATA ANALYSIS subsequence of them it means that removing some sym-

The real world data set chosen for analysis is frofols froma; producest; or vice versa. The longest such
a U.S. regional carrier. All aircraft analyzed were osubsequence af; and; is called the longest common
the same fleet and type (narrow body jet), over a osibsequence (LCS) and is denoted/lyS(x;, 7;) and
year period resulting in over 176,000 flights. Each flight.C'S(;, Z;)| is its length. Such a kernel over discrete
consists of 160 parameters sampled at 1 Hz with tisequences, when normalized, takes the form of,
average flight length between 1.5 to 2 hours. Due to

privacy reasons, each pilot's identity and the exact date o |LCS(Z;, Z5)|
of the flight is kept confidential by the airline industry.  k(%, ;) = nLCS(%;, %) = BNV (4)

A. Data Preparation . . L
) _ where [z is the number of symbols in sequenge
Data analysis was focused on the approach portion @f ., sequence of switches is compared against other

the flight below 10,000 ft. Mean Sea Level (MSL) 0seqyences by using the longest common subsequence
landing, using the deployment of the thrust reversers E’LSCS) as the metric for comparison. Sequences that
a means to determine touchdown. Flights that were nQt, <imilar are bound to hold high nLCS values, while
found to reach 10,000 ft. or did not have thrust reversefgssimilar sequences will hold very low nLCS values.For
deloped were removed from the data sets. For param MKAD algorithm, once the sequences are gener-
selection a domain expert provided a list of 26 relevagley the discrete kernel is computed pairwise across all
continuous parameters that were extracted for analy§iRegiple flight combinations in the training set. For the

Using information from the domain expert in conjuction,qiinous data, each time series was SAX transformed.
with the statistics from the data, the flap parametey, he original version of SAX, the z-score normal-

which is categorical in nature, was decomposed int0;3,4an is an integral part of the algorithm. However

binary state variables and then combined with landing g research, we normalized each time series (only
gear and ground spoilers for sequence analysis. once) before it is SAX transformed. We are able to
The working data set consists of approximately,qiniain consistency in choosing the alphabet size for
174,000 flights with varying lengths with each of thesg, reference and test sets. The window size was also
flights multidimensional heterogeneous time series. rﬁépt fixed throughout the analysis. The window size
random set of 2048 flights were chosen for training,q alphabet size were both set i, Once the SAX
and the remainig used for testing. For continuous dag,, esentations are obtained, another kernel is computed
the mean and standard deviation are calculated for eaglyise across for all possible flight combinations. Each
parameter.across aII_trlalmng fl|ght_s. These statistics AR ment of this kernel is the average of the pairwise
then used in both training and testing to z-score norm%bmparison across the parameters of any two flights.
ize each parameter and flight to maintain consistengy he optimization, we have set the parameter of
Once the c_ontinuous parameters are normaliz_ed they ate. lass SVMs t@.1. For testing, the support vectors
converted into the SAX representation (details can bge seq to calculate the pairwise similarity between
found in [9F). The discrete parameters are handled by testing flights. The discrete and continuous kernels

1The source code of SAX can be obtained from the authors’ mtebsifor_ t_eSt data were generated in a similar fashion as the
at http://www.cs.ucr.edu/ eamonn/SAX.htm. training.
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Out of 174,000 flights the algorithm identified over a0
4,700 flights as anomalous. This paper will present two 40
flights identified by a domain expert to be operationally !
significant. 100

The first flight can be categorized as a high energygmo,
approach. There are basically two conditions whichzZ
result in a high energy approach - the aircraft may be‘t380 I
too high or too fast or both. Each of these conditions can | = T
be converted into the other in a process called "trading ™| Trough =t 37371 ]
altitude for airspeed” or vice versa. But ultimately, drag
devices such as flight spoilers, gear or flaps must be 30
deployed to permit a return to the ideal flight profile. 3000200 290 280 270 280 280 240 220
However, complicating this effort, most of the drag Fine t6 Landing (&7
devices have a maximum speed for deployment, limitingy 4. itude plot showing when the drag devices were dygpd.
corrective options in the "too fast” scenario, and airlines
and aircraft have rate of descent limits which affect
the "too high” situation. Finally, Air Traffic Control crashes in the South Atlantic and in upper New York
(ATC) is responsible for traffic separation, which maytate remind us that despite advanced aircraft design and
limit the maneuvering needed to dissipate excess energyrrent operational procedures, the issue of turbulence,
The flight shown in figures IV-C & IV-C managed toespecially clear air turbulence, remains a threat. Airline
encounter every one of these issues. Techniques weélight data monitoring programs watch for excessive
employed, rather competently, which enabled the aircrafircraft attitudes and speeds, but generally downplay
to "go down and slow down”, a supposed dichotomyenvironmental factors like wind speed and direction, as
It was both too high and too fast to make a stabilizegell as throttle position and engine speed (N1). This
approach, so drag devices; in this case flaps and géiagfht descended from about 5,000 ft to landing on a
were deployed. The landing gear was extended just fairly straight path, but the pilot had to work hard to
low the maximum allowable airspeed for that operatiomaccomplish this (see figure 6(a)).

This helped some, but it was still too fast to deploy MKAD discovered atypical fluctuations in engine
flaps beyond an initial setting, so the pilot did somethingpeed, which is represented by an RPM parameter called
entirely counterintuitive when too high - he climbed for aN1. Engine speed is normally fairly consistent during a
few moments, bleeding off sufficient airspeed to perméitabilized approach, increasing a bit each time flaps are
him to extend the flaps further, which in turn enabledxtended, to make up for the increased drag. On this
him to descend more rapidly. But even all this waslight, N1 varied between 35% and 80% (maxium being
insufficient to permit a return to an ideal flight profile, sa.00%) in more than 14 cycles see figure 7(a). This is a
the pilot presumably obtained an ATC clearance to mak@nsiderable amount of engine speed variation.

a 360 degree turn which enabled him to lose sufficient After some analysis, the reason for all this variation
altitude to return to the approach in a much betteyas that the pilot had to cope with gusty wind conditions
position for a stabilized approach. Due to considerationghich caused the airspeed to vary between 140 - 180
of conflicting traffic this is always something which musknots. Part of the reason for this variation, of course,
be coordinated with ATC, and sometimes a simple 36fas the extension of drag devices (gear and flaps), but
is not an option, resulting in the performance of a gan examination of the airspeed trace seen in figure 6(b)
around maneuver. shows about 9 cycles of acceleration and deceleration.

The second flight falls under the category of a turffhe headwind over this same time segment varied be-
bulent approach. The amount of lift supplied by atween 23 - 28 knots in about 8 cycles (see figure 7(b)),
aircraft wing is a function of the speed of the ainot dangerous, but certainly not ideal.
flowing across it. In turbulent conditions, it is possible It is important to note that the anomalies identified
to experience enough loss of lift that one or both wingsy MKAD were determined to have contributions from
stall, possibly causing roll or pitch changes, which iboth the discrete and continuous parameters. In the high
extreme cases could be dangerous. All of this has beemergy approach the landing gear was statistically out
well known since the earliest days of flight, but recentf order from the normal approaches in the data set and
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when combined with the unusual altitude profile signaled 27

an anomaly. Additionally the preprocessing steps usec_s
to discretize the continuous parameters preserved thé
sequential nature of the data allowing the kernel functionf}1
to highlight an unusual parameter profile such as theg
throttle changes in the turbulent approach flight. This .,
is different from other algorithms that treat each time

sample independantly and cannot detect events in thic |

way. 140

130
5

V. CONCLUSION

Parameter anomalies discovered by MKAD are fre-
quently like little windows into a larger reality. It will
frequently require analysis by a domain expert to ferrgiy ¢,

O Flaps 22 Deg
O Landing Gear Dowl

Figure 6(a) shows straight altitude approach profilee
out whether an anomaly stemmed from a hazardoasows in figure 6(b) are shown to help visualize the freqmcrease

Ti:rsnogio Landing %ggc)
(b) Air Speed

issue, or whether the condition, while atypical, wa&nd decrease in air speed.

safe and explainable. One thing is certain - while a
large amount of experience and expertise underlie the

100

current aviation data analysis programs, they only answer
guestions that someone thought to ask. There will alwayg]
be value in the search for the unexpected, which is the

purpose of MKAD.

An interesting observation is that detection techniqueg]
which involve a metric or distance related function, in
mathematical sense, to define the pairwise distances
similarities between elements of the set somewhere in the
algorithm stage, are more versatile to address different

data structures. Choosing the righietric functionand

integrating knowledge from multiple sources must be

done judiciously.
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