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Abstract—The National Airspace System (NAS) is a
highly complex dynamical system that is regularly sensitive
to faulty aeronautical decision-making and risk manage-
ment skills. In order to ensure a healthy system with safe
flights a systematic approach to anomaly detection is very
important when evaluating a given set of circumstances
and also simultaneously determine the best possible course
of action. Given the fact that the NAS is a vast and loosely
integrated network of systems, it requires improved safety
assurance capabilities to maintain an extremely low acci-
dent rate under increasingly dense operating conditions.
Data mining based tools and techniques are required to
support and aid operators’ (such as pilots, management,
or policy makers) overall decision-making capacity. The
ability to analyze fleetwide data autonomously is still
considered a significantly challenging task. Here, in this
effort, we aim at developing a system level analysis scheme.
In this paper we address the capability for detection of
fleetwide anomalies as they occur, which itself is an impor-
tant initiative towards the safety of the real-world flight
operations. The flight data recorders archive millions of
data points with valuable information on flights everyday.
The operational parameters consist of both continuous
and discrete (binary & categorical) data from several
critical sub-systems and numerous complex procedures. In
this paper, we discuss a systematic system level anomaly
detection approach based on the theory of kernel learning
to detect potential safety anomalies in a very large data
base of commercial aircraft. We also demonstrate that the
proposed approach uncovers some operationally significant
events due to environmental, mechanical, or human factors
issues in high dimensional, multivariate Flight Operations
Quality Assurance (FOQA) data. We present the results
of our detection algorithms on real FOQA data from a
regional carrier.

I. I NTRODUCTION

Suppose the entire data that is available for a given
system, covering both inputs and outputs, is given by
the set(U ,Y). In real-world flight operations, the input
U is provided by the pilot following some standard-
operating procedure: for a given airport, aircraft, weather
conditions, instructions from air traffic control, and other
contextual elements of the flight, the flight procedures

are well determined. The observed characteristicsY are
representive of the flight behavior and hold a complex
relationship with the inputU . Such a system that can be
functionally described by the following equations:

ht = Γ(h∗
t−1)

xt = Ψ(x∗
t−1,h

∗
t , ut)

yt = Ω(xt) (1)

Equation 1 describes a system withut as the observed
system input, andyt is the observed system output
which can take any form of discrete, categorical, and
continuous features.Here we assume that the functionΓ
andΨ are unknown. The functionΓ andΨ determines
the evolution of the hidden system stateht and governs
the evolution of the continuous state vector respectively.
We assume that the vectorx is anN dimensional state
vector, andx∗

t−1 is its history for the lastD time steps:
x
∗
t−1 = [xt−D,xt−D+1, ...,xt−1]. The hidden stateht is

assumed to correspond to different mode configurations
within the system and each mode affects the output
dynamicsΨ. Any malfunction in the system,ht could
move to an abnormal state, thus also changing the nature
of the observed output. Not necessarilyht always has
to move to an abnormal state, it can very well reside
in some unfamiliar state within the normal operational
regime. In practice a similar situation will arise when
all pilots are attempting to follow the same standard
operating procedures, while some of them may deviate
from these procedures which could lead to a different
input sequenceU ′, resulting in a different set of observed
flight characteristicsY ′ which may be unusual but not
necessarily wrong. The problem that we address in this
paper is to develop a method to discover whether or not
the current observed vectorY along with the discrete
pilot inputs U represents one that is atypical or an
anomaly based on the observed history of the system. We
want to emphasis here that in this particular research we



don’t intend to model causal behaviour or relationship
between input and output variables of such systems.
Rather the objective is to simultaneously identify unusual
patterns in any combinations of input(U) and output
(Y).

Over the last few decades with improved sensing capa-
bilities we have seen tremendous increase in information
flow, in terms of the volume and complexity, created at
an unprecedented pace in several disciplines. Aviation
industry is not an exception. A great example is the
Distributed National FOQA (Flight Operations Quality
Assurance) Archive (DNFA) data base established by
Nasa. DNFA contains millions of flight data from most
of the major carriers in the U.S. Typical FOQA pa-
rameters consist of both continuous and discrete data
from the avionics, propulsion system, control surfaces,
landing gear, the cockpit switch positions, and other
critical systems. These data sets can have up to 500
parameters and are sampled at 1 Hz. For a moderate
sized fleet that operates 1000 flights per day, these
FOQA data sets become very large. Today, we are left
with the challenge of dealing with such a vast amount
of heterogeneous information resources in varieties of
semantic structures. Knowledge discovery from these
heterogeneous resources is still a challenging task. With
this increased complexities of data sources there is a
potential need of building intelligent refinement and
integration frameworks, focusing on information content
and semantics.

The key aspect of any data analysis method depends
on how the input data was measured within the process
and transformed into information. In aviation domain
the data sources are categorized as structured data and
unstructured data. A typical example of unstructured
data is free text data, for example reports or scripts
from pilots describing some events, experts feedback on
the process etc. However in this paper we will restrict
our discussion to analysis using structured data which
has two main categories, continuous and discrete data.
Discrete attributes can be either binary, categorical or
logical order i.e. sequential in nature.

In our earlier research we have demonstrated the
potential of the multiple kernel based anomaly detection
algorithm [9] in detecting anomalies. In this paper we
attempt to expand on the analysis by reporting a variety
of different interesting anomalies that we have observed
in a commercial aircraft data. Here we conduct the
analysis on a much large-scale data. In additional we
provide some useful insights in some disgnosis infor-
mation with a resonable explanations. We demonstrate
the capability of the proposed methodology in terms of

it’s flexiblity to process a variety of heterogeneous data
sources without reformulating the problem whenever
there is a change in information content or data structure.
The formulation we demonstrate in this paper is very
simple and can easily be adopted for fleetwide analysis in
various domains including medical applications, airspace
safety, business analysis etc.

II. A NOMALY TRACKING ALGORITHMS

Since the theme of this paper is anomaly detection, we
will mostly discuss in the context to anomaly detection
which is also known as outlier detection or surprise
pattern detection. Outlier or anomaly detection refers
to the task of identifying new or unknown patterns
which, in many cases, are abnormal or inconsistent. The
problem of outlier detection has been extensively studied
using several approaches [14], [15], [16], [7]. Supervised
and un-supervised are the two broader categories. In
supervised approach a model is built for detection pur-
pose and this model assumes known class labels. Typical
classification based techniques such as Bayesian infer-
ence, decision trees, Support Vector Machines (SVMs)or
neural networks models are built on previously labeled
instances of both normal and abnormal data instances.
However class labels are expensive and they are not
easily available, especially for most of the historical
data. Given the fact that it is impossible to always
have prior knowledge about all possible classes or have
known data labels or have data representing all possible
scenarios or classes, unsupervised techniques hold an
edge in many applications and play an important role
in identifying “what is desired and what is not” in a
dataset. Novelty detector is such a specialized tool that
classifies the members of a given set of objects into two
groups on the basis of whether the model have seen
those objects before or not. Kernel based classification
methods like single class SVMs, one-class kernel Fisher
Discriminants etc fall under novelty detection category
and are unsupervised in nature. In these techniques a
model is built on the normal data and the idea is to
come up with a threshold for determining abnormality
and using a distance based score for evaluating the extent
of abnormality. In nearest neighbor based approach, the
aim is to infer the outliers based on the data itself e.g. by
finding those points which are at a greater distance from
most of the other data points or by finding those points
which are in low density region. Since in most cases
k-nn based solutions have quadratic time complexity,
researchers like Angiulli and Pizzuti [3], Angiulli and
Fassetti [2], Ramaswamy et al. [17], and Bay and
Schwabacher [5] have proposed promising techniques
with improved run time.
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A. Production Level Implementations

In airline industry algorithms that are chosen for
production level implementation must be heavily tested
and developed to produce reliable and meaningful results
before they are selected by the airlines for everyday use.
The most widespread method for detecting operationally
significant anomalies is with domain expert defined
threshold exceedances. Methods for detecting unstable
and high energy approaches are commonly exceedance
based. Another very similar technique that is currently
in use is just detecting the min and max for a given
parameter. Any deviation from that range may be of
interest. These methods have been in use for as long
as the FOQA program has been in existence and has
provided analysts with valuable results. This is in part
due to the fact that the exceedance events identified are
easily interpretable since the user has defined what the
algorithm is looking for. Another attractive feature is the
highly scalable implementation of the algorithm on large
data sets. However, the drawback to exceedance based
analysis is the fact that typically only the anomalies that
are defined are reported to the analyst, leaving the unde-
fined anomalous events undetected. In other words the
method only answers the questions that someone thought
to ask. Algorithms discussed in this paper address the
issue of detecting ”unknown anomalies”. However, they
are still in the research level stage, but with gaining
interest by the airlines may one day be running in a
production level environment.

B. Research Level Implementations

In this section we will describe some anomaly de-
tection techniques that have been extensively used to
analyze FOQA data. Some of these algorithms include
Morning Report, Orca, IMS, SequenceMiner, and one-
class Support Vector Machines. These research level
algorithms help compliment the exceedance based meth-
ods by being able to identify the ”unknown anomalies”.
Once the anomalies found are analyzed, new parameter
exceedances can be developed and incorporated into the
airlines’ daily analysis to track future or past events.

1) Morning Report: Morning Report [20] & [1] is
an algorithm designed to detect atypical flights over a
set of aircraft and identify the contributing anomalous
parameters and phases of flight. The algorithm calculates
statistical signatures across the parameters of a given
flight and clusters the flights based on the multivariate
signatures. Similar flights are grouped together and atyp-
ical flights are considered to be far away from a cluster
and therefore have higher scores. The distribution of
the anomaly scores are a function of the Mahalanobis

distance from centroids of the multivariate cluster. The
results provide both the degree of the anomalous flight
along with the contributing parameters, which can be
useful for the analysts. The algorithm was designed to
be executed on a large set of flights overnight and return
the results the next morning (hence the name Morning
Report).

2) Orca: “Orca” [5] is a method used for detecting
anomalies in both continuous and discrete (binary for-
mat) data in vector space, using a nearest neighbors
based approach to detect anomalous points. For con-
tinuous data, Orca takes a nominal reference data set
and calculates the nearest neighbors’ using euclidean
distance to all test points in the original vector space.
For binary data points the hamming distance [21] is used.
“Orca” is ak-nearest neighbor based algorithm adopting
nested loop structure in conjunction with randomization
and simple pruning rule. Pruning used in this algorithm
helps in achieving near linear time performance with
high dimensional data. This makes the algorithm scalable
for analyzing large data sets. The algorithm uses a
distance-based metric for finding outlier by examining
the distance of any test point tok existing examples
those considered as nearest neighbors. If one looks at
the local neighborhood and finds that the test points
are relatively close, then the examples are considered
normal or else unusual. In this algorithm, each data point
is scored independently and therefore anomalies in the
temporal domain are undetectable. The pseudo code of
“Orca” is shown below.

3) IMS: The Inductive Monitoring System (IMS) [11]
is a distance base anomaly detection tool that uses an
unsupervised clustering algorithm to build models of the
expected operation of the system on a set of nominal
data. The models are used to test new data to determine
whether an anomaly is present or not. The underlying
concept states that if the system behaves similar to
the normal operating modes that the data was trained
on, the distance scores will be lower than data that
is generated from a system that is in an anomalous
state. IMS evaluates each sample, which is a multivariate
vector, by calculating the Euclidean distance to the
cluster bounds of each cluster in the model, and reporting
the distance to the closest cluster as the anomaly score.
A 2D representation in figure II-B3 can be seen. The
normal operating regions are defined by the two boxes,
with the distances computed to the edge of the nearest
box. In the context of flight data IMS will train on a set
of nominal flights, either identified by domain experts
or another algorithm, and test on the remaining flights.
Each time point within the test flight will be evaluated,
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Algorithm 1 Orca Algorithm
1: Input:

Apq : Matrix with q dimensional dataset havingp
instances arranged in a random order
k : Number of nearest neighbors (default 5)
n : Number of outliers used (default:n = p)

2: Output:
O(n) : Set of outliers
Sglobal : Global scores

3: Argument:
a : Entries in A
B : Block of examples from A
b : Entries in B
C : Cut-off threshold
wd : Weight of discrete parameters

4: Definitions:
x ∈ (xc, xd)
D ∈ (Dc, Dd)
Hd(xd, Dd) = wd1

(xd1
! = Dd1

) + wd2
(xd2

! =
Dd2

) + . . .+ wdn
(xdn

! = Ddn
)

d(x,D) =
√

(xc1 −Dc1)
2 + . . .+ (xcn −Dcn)

2 +
Hd(xd, Dd)
d(x,D): maximum distance betweenx and an
example inD
Mk

x,D :k closest example inD to x

S(D,x) = 1
m

∑m
i=1 d(x,D) distance based score

5: Initialize:
Let p instances ofApq be divided inNB blocks
andKnn(x) be the matrix that keeps track of the
nearest neighbors/examples ofx. And C = 0 and
O = Φ, whereΦ is a null vector

6: For block = 1: NB {
B = A(:, block);Knn(b) = Φ

7: For eacha in A, {
8: For eachb in B andb 6= a {
9: If Length(Knn(b)) < k or

d(b, a) < dm(b,Knn(b)) {
Knn(b)←Mk

b,Knn(b)∪a

10: If S(Knn(b), b) < c {
Remove exampleb from setB
}}}}

11: O = O ∪B

12: Sglobal = score(O)
13: C ← min(Sglobal(0))
}

Cluster TwoCluster One

A

B

C D

Fig. 1. A conceptual diagram to describe the working principle of
IMS.

producing a profile of anomaly scores for each flight.
The anomaly scores for each flight can be combined in
many different ways, however, typically the scores are
averaged for each flight and the flights with the highest
average score are ranked most anomalous. As with Orca
IMS evaluates each point independently and therefore
suffers from the same drawback of not being able to
detect anomalies in the temporal domain. The pseudo
code for IMS is shown in figures?? & ??.

4) SequenceMiner:SequenceMiner [6] was devel-
oped to address the problem of detecting and describing
anomalies in large sets of high dimensional symbol
sequences such as recordings of switch sensors in the
cockpits of commercial aircraft. SequenceMiner works
by first using an unsupervised clustering algorithm to
cluster the sequences using the normalized longest com-
mon subsequence (LCS) as a similarity metric. Once the
clusters are defined anomalies can be detected using the
LCS as the distance measure. In this context anomalies
are determined to have low similarities between the
clusters of other sequences and are defined to be far
away from a cluster. Once anomalies are identified,
SequenceMiner applies a genetic algorithm to modify
the sequence to draw it closer to the cluster. Keeping
track of the changes made to the sequence the algorithm
reports back the missing and extra symbols giving the
user some context of the anomaly. Since SequenceMiner
focuses on the sequential nature of the anomalies it
can find anomalies that other algorithms such as Orca
and IMS are unable to detect, however it is ineffective
at handling continuous parameters without somehow
drastically changing the nature of the data.

5) Multiple Kernel Anomaly Detection:The main
concept of kernel-based theory can be illustrated using
the conceptual diagram as shown in fig.??. In fig.??,
the left side shows that the data is non-linearly separa-
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Algorithm 2 IMS: Train
1: Input: Xt (nominal system data vectors)

i (initial tolerance percent)
e (expansion percent)
m (max distance from cluster centroid to

input vector)
2: for each input vectorXt normalize the values

of Xt and find the cluster with the closest
centroid toXt.

3: if no clusters exist, create a new cluster
centered onXt, adding initial tolerance
percenti to each vector value to create upper
and lower bounds.

4: else if a closest cluster is found andXt is
within distancem of the centroid of that
cluster, expand the cluster parameter
boundaries as necessary to includeXt

adding the expansion percente to each
parameter bound that is changed.

5: else if a closest cluster is found andXt is
beyond distancem of the centroid of that
cluster, create a new cluster centered onXt,
as in step3.

6: end if
7: end for
8: Output : Bc (parameter boundaries for each

cluster)

Algorithm 3 IMS: Test
1: Input : xt (test input)
2: for eachxt normalize the values

of xt and find the closest nominal
cluster inBc to xt.

3: if all xt parameter values fall within the
bounds of a cluster, the distance fromxt

to the cluster is zero.
4: else if no cluster containsxt locate the cluster

with the hyper-box boundary that is closest
to xt. Calculate the distance between a
vector ofxt and a cluster hyper-box by
summing the squares of the differences
between eachxt parameter and the nearest
cluster boundary value for that dimension,
then find the square root of that sum.

5: end if
6: end for
7: Output : Dt (distance of vector to nearest cluster)

dtp (distance of each parameter to
cluster bounds)

(R)

φ(.)

(F )

Fig. 2. In this figure we privide the illustration of higher dimensional
mapping for linear separation fields. It shows that even if thepatterns
are nonlinearly separable in input space, it is possible to map them in
higher dimensional feature space where they may be linearly separable.
Hereφ (.) is the mapping function.

ble (or sometimes non-seperable) in (2−D) data space
whereas on the right hand side the same data is mapped
into higher dimensional (3−D) feature space where the
features are seperable. In the input spaceR, suppose we
are given the dataD = {(~xi)}

n
i=1, where~xi ∈ R

d. We
define a feature spaceF , assuming that there exists a
functionφ that can be used to map any variablex from
the input space to the feature space i.e.φ : Rd → F
and ~x → φ(~x). Here ~x is an input vector (~xi ∈ R

d)
which has been mapped into a much higher dimensional
feature space. The mapping the data usingφ(~x) into F
can be beneficial in defining a similarity measure using
the dot product inF in terms of a function operating
on the input data space and thus computing the inner
products more efficiently which is commonly referred
as the kernel trick in machine learning literatures. This
results in a kernel matrixK which gives a relative
similarity between objects ranging between maximum
similar and maximum dissimilar. Unsupervised anomaly
detection technique like one-class SVM builds on this
kernel.

Separating 

Origin

Marginal SVs

Non−SVs

Non−marginal SVs

hyperplane
ξi

ρ

‖w‖
w

‖w‖

Fig. 3. This figure illustrates the geometric interpretationof optimal
hyperplane for one class SVMs.

One-class SVMs builds a model on single (known)
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class data and then finds a set of outliers using a decision
boundary.The idea is to draw a separating hyperplane
that can separate these outliers from the rest of the train-
ing examples. Scḧolkopf [18] showed that in the high
dimensional feature space it is possible to construct an
optimal hyperplane by maximizing the margin between
the origin and the hyperplane in the feature space by
solving the following dual problem,

minimize Q =
1

2

∑

i,j

αiαj(
∑

λ

βλK
λ
i,j)

subject to 0 ≤ αi ≤
1

ℓν
,
∑

i

αi = 1

∑

λ = 1, ρ ≥ 0, ν ∈ [0, 1] (2)

where ν is an user specified parameter that defines
the upper bound on the training error, and also the
lower bound on the fraction of training points that are
support vectors,βλ is the weights to kernels andαi is
Lagrange multiplier. Once this problem is solved at least
νℓ training points with non-zero Lagrangian multipliers
(~α) are obtained and these points{xi : i ∈ [ℓ] , αi > 0}
are called support vectors. The selected points can be
marginal Im = {i : 0 < αi < 1} and non-
marginalInm = {i : αi = 1} support vectors. Once
~α is obtained, SVMs compute the following decision
function.

f(~xz, α, β, ρ) = sign(
∑

i∈I

αi(
∑

λ

βλK
λ
i,z)− ρ) (3)

whereI = Im + Inm. If the decision function predicts
a negative label for a given test pointz, then it is
classified as an outlier. Test examples with positive labels
are classified normal. The pseudo code of one class
SVMs is shown below.

III. F LEETWIDE ANALYSIS OF HETEROGENEOUS

DATA

Besides Orca, rest of the algorithms described above
have been explored either in context to continuous real-
valued data attributes or on discrete domain. Having said
that, with increasing number of data sources, there is a
need of developing intelligent knowledge refinement and
integration techniques, focusing on the descriptions of
underlying heterogeneous data sources. In aviation safety
data heterogeneity may result due to the presence of
multiple attributes as compared to single attribute at each
data observation. In multivariate data, the attributes may
or may not belong to the same data type. For example
the attributes can be either continuous or discrete or it

may be a mixture of both. The other source heterogeneity
can be the behavioral or functional properties of these
attributes. Not only is aviation data extremely large in
size, it also has many aspects that create natural sources
of heterogeneity. Some examples include flights that
have common: origin or destination airports, city pair
routes, tail numbers, aircraft models, as well as seasonal
aspects such as flights within a month. Even within a
flight there exists several phases like take offs, landings
and cruise. It is important to note that in order to enable
knowledge discovery, algorithms in general require an
integrated and merged view of the data available across
various resources.

Once an “appropriate” kernel function is chosen and
the kernel matrixK is formed, it can be incorporated into
any kernel based classification, regression, or anomaly
detection methods where the kernel matrix is the suffi-
cient representation of the input data. In another word, by
“kernelizing” any method we encode knowledge about
the data, expressed in terms of pairwise similarities.
This provides us with the opportunity to incorporate vast
amount of knowledge from heterogeneous sources using
particular kernel functions. This field of research is know
as Multiple Kernel Learning (MKL) [?], [4], [13]. MKL
takes advantage of the mathematics of kernels allowing
us to derive new kernels from kernels, provided each
kernel satifies Mercer condition which states that the ker-
nel function must be continuous, symmetric, and positive
definite. There are several class of kernels those coincide
with Mercer kernel. There are several existing literatures
describing many different types of data with various
types of features such as graphs and multiple feature
types in computer vision such as color, shape, texture,
and graphs based on image segmentations. Interested
readers can explore literature [8], [10], [12], [19], [22]
that look into various other classes of kernels like rbf,
polynomical, bag-of-word, sigmoid, spline, graph based,
tree based, mismatch based functions etc. A common
practice is to use a convex combination (i.e.

∑

λ βλ = 1)
of various kernels which may be constructed on very
different feature sets.

When analyzing FOQA data the concept of a system
level analysis is paramount. The flight data consists of
many parameters that monitor the various subsystems
within a plane. Given a single flight this is not a
simple task, and when considering additional flights and
multiple aircraft the task can quickly grow beyond the
classical timeseries analysis problem. With this increased
complexity it is important to understand the hierarchical
system structure and design algorithms to address this
paradigm. Another challenging aspect is the sheer size
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of the data that must be consumed by the algorithm.
Typically flights are recorded at 1 Hz and may last any-
where from a couple hours for some regional flights and
up to 10 to 19 hours for some international flights. This
is compounded by the number of parameters that are
recorded, which is typically hundreds of measurements.
Some airlines are flying thousands of flights a day and
millions of flights a year, which soon can add up to
terabytes of data very quickly. To address this in the
system level approach the algorithm must treat the flights
as a fleet of aircraft with some sort of intelligent way of
compressing the important features of each flight, and
identifying the anomalies at the flight level.

IV. FOQA DATA ANALYSIS

The real world data set chosen for analysis is from
a U.S. regional carrier. All aircraft analyzed were of
the same fleet and type (narrow body jet), over a one
year period resulting in over 176,000 flights. Each flight
consists of 160 parameters sampled at 1 Hz with the
average flight length between 1.5 to 2 hours. Due to
privacy reasons, each pilot’s identity and the exact date
of the flight is kept confidential by the airline industry.

A. Data Preparation

Data analysis was focused on the approach portion of
the flight below 10,000 ft. Mean Sea Level (MSL) to
landing, using the deployment of the thrust reversers as
a means to determine touchdown. Flights that were not
found to reach 10,000 ft. or did not have thrust reversers
deloped were removed from the data sets. For parameter
selection a domain expert provided a list of 26 relevant
continuous parameters that were extracted for analysis.
Using information from the domain expert in conjuction
with the statistics from the data, the flap parameter,
which is categorical in nature, was decomposed into 3
binary state variables and then combined with landing
gear and ground spoilers for sequence analysis.

The working data set consists of approximately
174,000 flights with varying lengths with each of these
flights multidimensional heterogeneous time series. A
random set of 2048 flights were chosen for training
and the remainig used for testing. For continuous data,
the mean and standard deviation are calculated for each
parameter across all training flights. These statistics are
then used in both training and testing to z-score normal-
ize each parameter and flight to maintain consistency.
Once the continuous parameters are normalized they are
converted into the SAX representation (details can be
found in [9]1). The discrete parameters are handled by

1The source code of SAX can be obtained from the authors’ website
at http://www.cs.ucr.edu/ eamonn/SAX.htm.

marking the on and off transitions between switch states
with unique symbols and concatinating the symbols,
while preserving the time ordering, into a sequence
vector.

B. Experimental Details

In Multiple Kernel Anomaly Detection (MKAD) al-
gorithm, since we want to model switching sequences
for a given process and where the order of the switching
is important, normalized Longest Common Subsequence
(nLCS) based kernel was chossen as a potential candi-
date. Given two sequences~xi and ~xj , if z denotes a
subsequence of them it means that removing some sym-
bols from~xi produces~xj or vice versa. The longest such
subsequence of~xi and~xj is called the longest common
subsequence (LCS) and is denoted byLCS(~xi, ~xj) and
|LCS(~xi, ~xj)| is its length. Such a kernel over discrete
sequences, when normalized, takes the form of,

k(~xi, ~xj) = nLCS(~xi, ~xj) =
|LCS(~xi, ~xj)|

√

l~xi
l~xj

, (4)

where l~x is the number of symbols in sequence~x.
Each sequence of switches is compared against other
sequences by using the longest common subsequence
(LCS) as the metric for comparison. Sequences that
are similar are bound to hold high nLCS values, while
dissimilar sequences will hold very low nLCS values.For
the MKAD algorithm, once the sequences are gener-
ated the discrete kernel is computed pairwise across all
possible flight combinations in the training set. For the
continuous data, each time series was SAX transformed.
In the original version of SAX, the z-score normal-
ization is an integral part of the algorithm. However
in this research, we normalized each time series (only
once) before it is SAX transformed. We are able to
maintain consistency in choosing the alphabet size for
both reference and test sets. The window size was also
kept fixed throughout the analysis. The window size
and alphabet size were both set to10. Once the SAX
representations are obtained, another kernel is computed
pairwise across for all possible flight combinations. Each
element of this kernel is the average of the pairwise
comparison across the parameters of any two flights.
In the optimization, we have set theν parameter of
one-class SVMs to0.1. For testing, the support vectors
are used to calculate the pairwise similarity between
all testing flights. The discrete and continuous kernels
for test data were generated in a similar fashion as the
training.
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C. Flight Analysis

Out of 174,000 flights the algorithm identified over
4,700 flights as anomalous. This paper will present two
flights identified by a domain expert to be operationally
significant.

The first flight can be categorized as a high energy
approach. There are basically two conditions which
result in a high energy approach - the aircraft may be
too high or too fast or both. Each of these conditions can
be converted into the other in a process called ”trading
altitude for airspeed” or vice versa. But ultimately, drag
devices such as flight spoilers, gear or flaps must be
deployed to permit a return to the ideal flight profile.
However, complicating this effort, most of the drag
devices have a maximum speed for deployment, limiting
corrective options in the ”too fast” scenario, and airlines
and aircraft have rate of descent limits which affect
the ”too high” situation. Finally, Air Traffic Control
(ATC) is responsible for traffic separation, which may
limit the maneuvering needed to dissipate excess energy.
The flight shown in figures IV-C & IV-C managed to
encounter every one of these issues. Techniques were
employed, rather competently, which enabled the aircraft
to ”go down and slow down”, a supposed dichotomy.
It was both too high and too fast to make a stabilized
approach, so drag devices; in this case flaps and gear
were deployed. The landing gear was extended just be-
low the maximum allowable airspeed for that operation.
This helped some, but it was still too fast to deploy
flaps beyond an initial setting, so the pilot did something
entirely counterintuitive when too high - he climbed for a
few moments, bleeding off sufficient airspeed to permit
him to extend the flaps further, which in turn enabled
him to descend more rapidly. But even all this was
insufficient to permit a return to an ideal flight profile, so
the pilot presumably obtained an ATC clearance to make
a 360 degree turn which enabled him to lose sufficient
altitude to return to the approach in a much better
position for a stabilized approach. Due to considerations
of conflicting traffic this is always something which must
be coordinated with ATC, and sometimes a simple 360
is not an option, resulting in the performance of a go
around maneuver.

The second flight falls under the category of a tur-
bulent approach. The amount of lift supplied by an
aircraft wing is a function of the speed of the air
flowing across it. In turbulent conditions, it is possible
to experience enough loss of lift that one or both wings
stall, possibly causing roll or pitch changes, which in
extreme cases could be dangerous. All of this has been
well known since the earliest days of flight, but recent

Fig. 4. Altitude plot showing when the drag devices were deployed.

crashes in the South Atlantic and in upper New York
State remind us that despite advanced aircraft design and
current operational procedures, the issue of turbulence,
especially clear air turbulence, remains a threat. Airline
flight data monitoring programs watch for excessive
aircraft attitudes and speeds, but generally downplay
environmental factors like wind speed and direction, as
well as throttle position and engine speed (N1). This
flight descended from about 5,000 ft to landing on a
fairly straight path, but the pilot had to work hard to
accomplish this (see figure 6(a)).

MKAD discovered atypical fluctuations in engine
speed, which is represented by an RPM parameter called
N1. Engine speed is normally fairly consistent during a
stabilized approach, increasing a bit each time flaps are
extended, to make up for the increased drag. On this
flight, N1 varied between 35% and 80% (maxium being
100%) in more than 14 cycles see figure 7(a). This is a
considerable amount of engine speed variation.

After some analysis, the reason for all this variation
was that the pilot had to cope with gusty wind conditions
which caused the airspeed to vary between 140 - 180
knots. Part of the reason for this variation, of course,
was the extension of drag devices (gear and flaps), but
an examination of the airspeed trace seen in figure 6(b)
shows about 9 cycles of acceleration and deceleration.
The headwind over this same time segment varied be-
tween 23 - 28 knots in about 8 cycles (see figure 7(b)),
not dangerous, but certainly not ideal.

It is important to note that the anomalies identified
by MKAD were determined to have contributions from
both the discrete and continuous parameters. In the high
energy approach the landing gear was statistically out
of order from the normal approaches in the data set and
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Fig. 5. Flight path plot showing when flaps and gear were deployed.
The arrows indicate the peak and trough occured.

when combined with the unusual altitude profile signaled
an anomaly. Additionally the preprocessing steps used
to discretize the continuous parameters preserved the
sequential nature of the data allowing the kernel function
to highlight an unusual parameter profile such as the
throttle changes in the turbulent approach flight. This
is different from other algorithms that treat each time
sample independantly and cannot detect events in this
way.

V. CONCLUSION

Parameter anomalies discovered by MKAD are fre-
quently like little windows into a larger reality. It will
frequently require analysis by a domain expert to ferret
out whether an anomaly stemmed from a hazardous
issue, or whether the condition, while atypical, was
safe and explainable. One thing is certain - while a
large amount of experience and expertise underlie the
current aviation data analysis programs, they only answer
questions that someone thought to ask. There will always
be value in the search for the unexpected, which is the
purpose of MKAD.

An interesting observation is that detection techniques
which involve a metric or distance related function, in
mathematical sense, to define the pairwise distances or
similarities between elements of the set somewhere in the
algorithm stage, are more versatile to address different
data structures. Choosing the rightmetric functionand
integrating knowledge from multiple sources must be
done judiciously.
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Fig. 6. Figure 6(a) shows straight altitude approach profile. The
arrows in figure 6(b) are shown to help visualize the frequentincrease
and decrease in air speed.
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