
NASA Ames uses Eclipse RCP for NASA Ames uses Eclipse RCP for

real-time situational awareness real-time situational awareness
of remote robotsof remote robots

Tamar Cohen
Intelligent Robotics Group
NASA Ames Research Center

Tamar Cohen
Intelligent Robotics Group
NASA Ames Research Center

3NASA Ames uses Eclipse RCP for real-time situational awareness of remote robots

Screenshot of VERVE

4NASA Ames uses Eclipse RCP for real-time situational awareness of remote robots

The Fun Parts: How we did it

This presentation will explore implementation details of the following:

• Java 3D View based on Ardor3D

• Communicating with robots

• Complex KML loading based on EMF

• Generating UI components with the databinding framework

• Real-time telemetry display

5NASA Ames uses Eclipse RCP for real-time situational awareness of remote robots

Java 3D View Built on Ardor3D

The “VERVE 3D View” is an
Eclipse view with contents
rendered by the Java
Ardor3D libraries which we
have wrapped in a plug-in.

Ardor3D provides user
interface support within the
view, eg the compass rose.

Ardor3D provides hooks for
mouse control and keyboard
input, along with typical
controls for a 3D graphics
library (ie cameras, scene,
lighting, etc)

A model of K10Black

6NASA Ames uses Eclipse RCP for real-time situational awareness of remote robots

Robots in the Scene Graph

Ardor3D scene graph is comprised of
Spatials, which define geometry
and rendering settings

 Nodes, which are spatials with
parents and children

For each type and instance of a robot,
we create a RobotNode (extends
Node) which contains nodes that
represent its model (3D object) and
child nodes for representation of
scientific data

We have a reference between our
conceptual representation of a
robot and each of its parts, and the
Ardor3D nodes which represent
each concept.

A model of K-REX

7NASA Ames uses Eclipse RCP for real-time situational awareness of remote robots

The Scene Graph Tree View

We have a standard Eclipse view
which includes a tree populated
with the contents of the scene
graph. This tree can be
extremely deep.

Since elements are dynamically
added to and removed from the
3D scene, this tree is actually
populated with WeakReferences,
to support garbage collection.

When various events happen, the
tree refreshes asynchronously.

Checkboxes show and hide 3D
models in the Ardor3D view

Scene Graph View

8NASA Ames uses Eclipse RCP for real-time situational awareness of remote robots

Connecting the Canvas to Ardor3D

Within our createPartControl for the VERVE 3D View, we make explicit calls to
use Ardor3D to render the contents of the canvas

public void createPartControl(Composite parent) {

 VerveScene scene = getScene(getSceneName()); // an Ardor3D scene graph

 LwjglCanvasRenderer canvasRenderer = new LwjglCanvasRenderer(scene); // an LWJGL Ardor3D renderer

 final GLData glData = new GLData(); //SWT class

 m_a3dCanvas = new Ardor3dCanvas(canvasRenderer, parent, SWT.NONE, glData);

 // Ardor3dCanvas extends GLCanvas implements com.ardor3d.framework.Canvas, which defines the
Ardor3D “View,” owns the rendering phase, controls all interactions with renderer

 Ardor3D.getFrameHandler().addCanvas(m_a3dCanvas);

 // get Ardor3D frame handler from singleton to do the work needed in a given frame

 Ardor3D.getLogicalLayerUpdater().registerLogicalLayer(m_a3dCanvas.getLogicalLayer());

 // register for triggers for updates to scene

 scene.addScenePickListener(this);

 // our own construct for pick delegation handling – we set the camera to look at what was picked

 }

9NASA Ames uses Eclipse RCP for real-time situational awareness of remote robots

Rendering

We have data coming in too fast to render, so we throttle that back:

 timer = new Timer(); // an Ardor3D timer which uses System.nanoTime

 frameHandler = new FrameHandler(timer);

 frameHandler.addUpdater(new LogicalLayerUpdater());

 frameHandler.addUpdater(new CameraControlUpdater()); // we expose camera controls in the Eclipse UI

 renderUpdateThread = new RenderUpdateThread(applicationPlugin, frameHandler, timer);

 renderUpdateThread.start();

Our very simple render update thread runs as follows:

 Once the system and display are ready (until the display is disposed)

 Check the time that the last change occurred;

 if the elapsed time is enough, asynchronously run an update

 frameHandler.updateFrame();

10NASA Ames uses Eclipse RCP for real-time situational awareness of remote robots

Communicating With Robots

We use CORBA (Common Object Request Broker Architecture, a standard)
to communicate with our robots. While we could command the robots,
we primarily monitor them from VERVE.

CORBA uses IDL (Interface Definition Language) to express classes and
interfaces. Via IDL, we have compatible classes passed between the
robots and our Java classes.

CORBA uses ORBs (Object Request Brokers) to connect to and
communicate with the robots.

We expose CORBA settings through a preferences page, and have a CORBA
status view to support reconnecting and showing status.

With CORBA we can communicate with more than one robot at a time.

CORBA Preferences

Multiple CORBA channels

11NASA Ames uses Eclipse RCP for real-time situational awareness of remote robots

Managing CORBA Events

CORBA Events come over the CORBA channel.

We have enumerated the types of events we expect (KnEvent)
public class KnEvent {
 public enum Type {
 Battery ("Battery.SBattery", Sbattery.class, SbatteryHelper.class),
 PoseEstimate ("Pose.SPoseEstimate", SPoseEstimate.class, SPoseEstimateHelper.class);

 public String type_name;
 public final Class dataType;
 public final Class eventHelper;
 ...

We have listeners for our events.
public interface KnEventListener {
 public void knEventReceived(KnRover.Name source, KnEvent.Type type, Object msg, String type_name);

We have an event collector for each robot
 collector = new KnEventCollectorAsapQueue(rover);
 Orb.addListener(collector);

We expose the possible events to subscribe to
in the preferences.

Event Subscription Preferences

12NASA Ames uses Eclipse RCP for real-time situational awareness of remote robots

Binding 3D Node Updates to Events

Example: connect events coming in with transformations for 3D nodes.
public class K10PoseProvider implements IPoseProvider, KnEventListener {
 final KnRover.Name m_knRoverName;
 Vector3 m_xyz = new Vector3();
 Vector3 m_rpy = new Vector3();

 public void connectToTelemetry() {
 KnEventCollector telemetry = KnEventCollector.instance(m_knRoverName);
 telemetry.addListener(this, new KnEvent.Type[{KnEvent.Type.PoseEstimate});
 }

 // when a new event is received, handle it; cache the latest information
 public synchronized void knEventReceived(KnRover.Name source, KnEvent.Type type, Object msg) {
 switch (type) {
 case PoseEstimate: m_poseEstimate = (SPoseEstimate)msg; break;
 …

// When it comes time to update the frame, our conceptual representation of a robot part will get the
latest information from the provider, and use it to update the 3D Model if it is visible and dirty.

public abstract class K10PartOrientationSensor extends AbstractRobotPart {
 public void handleFrameUpdate(long currentTime) {
 // if visible, update transform
 if(isActive()) {
 getK10Robot().getK10PoseProvider().getCenterXyz(m_xyz);
 m_ring.setTranslation(m_xyz);
 if(isDirty()) {
 synchronized(m_rpy) {
 m_ring.setRotation(K10PoseProvider.rotFromRpy(m_rpy, m_rot));
 }
 setDirty(false);
 }

13NASA Ames uses Eclipse RCP for real-time situational awareness of remote robots

Loading KML Files

KML is an XML file format to store geographic
data used by Google Earth. Our scientists
are used to working with KML; we support
it for base mapping and markup.

We have created an EMF (Eclipse Modeling
Framework) representation of the KML
format. After a file is loaded, we construct
the Ardor3D spatials

KML includes network links, which reference
external or remote files and reload at
specified intervals. We support this,
updating our 3D geometry based on newly
loaded KML.

14NASA Ames uses Eclipse RCP for real-time situational awareness of remote robots

Generating UI with Databinding

VERVE is designed to support different
robots, which will have different models
and instrumentation.

We generate user interface controls
bound to these models based the Java
classes representing robot concepts.

We use reflection to explore classes.
for (Method method : m_class.getMethods()){
 if (MethodUtil.isGetMethod(method) ||

MethodUtil.isIsMethod(method)){
 createField(method, container);

We have created custom Java
annotations to control generated
databound widgets, for example:
@ReadOnly
public Vector3 getVector3() {
 return m_vector3;
}

Changes made with these widgets
will automatically be reflected in
the Ardor3D view.

15NASA Ames uses Eclipse RCP for real-time situational awareness of remote robots

Real-time Telemetry Views

Huge amounts of telemetry are constantly streaming in from the robots.

VERVE presents this information in a clear way, so users can quickly
understand the information and know where to look for problems.

Warning and error thresholds and colors are set for each type of telemetry.

Robot Health – a high value can be good
(battery charge), or bad (CPU level)

Highlight when voltage = minimum
Show when a system is off or on

Artificial Horizon shows Pitch and Roll

16NASA Ames uses Eclipse RCP for real-time situational awareness of remote robots

Telemetry View Implementation

We have created a TableBarListener to handle drawing informative color
blocks in table cells

public class TableBarListener implements Listener {
 public void handleEvent(Event event) {
 GC gc = event.gc;

 // use reflection to get the percentage value for the data for the cell
 percent = (Number) getPercentMethod().invoke(getMethodContainer(), item.getData());

 // make the string pretty
 String percentString = getFormatter().format(percent);

 // look up the color based on thresholds set for this table bar listener
 Color barColor = getBarColor(percent);

 // figure out how wide the bar should be
 int width = (getBarColumn().getWidth() - 2) * (percent.intValue()) / m_spread;

 // use the graphics context to fill the rectangle
 gc.fillRectangle(event.x-1, event.y, width, event.height-2);

 // draw the text of the percentage
 gc.drawText(percentString, event.x+2, event.y+offset, true);

17NASA Ames uses Eclipse RCP for real-time situational awareness of remote robots

More Information

VERVE for Haughton Mars Project (HMP) 2010

http://www.youtube.com/watch?v=bA8GkyK0ZpQ

Intelligent Robotics Group at NASA Ames Research Center

http://irg.arc.nasa.gov

Blog about HMP 2010

http://lunarscience.nasa.gov/robots/2010/

HMP

http://www.marsonearth.org/

Ardor3D

http://ardor3d.com

http://irg.arc.nasa.gov/
http://lunarscience.nasa.gov/robots/2010/
http://www.marsonearth.org/

18NASA Ames uses Eclipse RCP for real-time situational awareness of remote robots

Questions?

Intelligent Robotics Group
Intelligent Systems Division

NASA Ames Research Center

http://irg.arc.nasa.gov

