
Stable Grounded Inference in Flexible Resource Scheduling

Paul Morris and John Bresina
NASA Ames Research Center

Moffett Field, California, U.S.A.

Javier Barreiro
SGT Inc.

NASA Ames Research Center
Moffett Field, California, U.S.A.

Abstract

Systematic temporally flexible solving has proved use-
ful in scheduling with temporal and resource con-
straints. However, determining resource flaws in a flex-
ible framework is a complex task even for activities
with instantaneous resource impacts, and becomes more
daunting for linear or more complex impacts. Plan sta-
bility is also important for many applications; as new
constraints arise, the changes to an existing plan to ac-
commodate them should be minimized to a degree con-
sistent with rapid solving. In this paper we present a
method that uses an evolving grounded solution to guide
a flexible resource solving process. To promote stabil-
ity, the successive grounded solutions satisfy a minimal
perturbation criterion. We also discuss an encoding of
state constraints as numeric resource transactions and
some theoretical implications for state reasoning.

Introduction
Combining inference and search in the most effective way is
a critical aspect of solving combinatorial problems. In many
cases there is a trade-off regarding how much emphasis to
put on inference versus search when solving a problem. In-
ference can support a more intelligent search, but it comes
with an overhead cost. Thus, the effectiveness of searching
a smaller space more slowly must be weighed against that
of searching a larger space more quickly. As a consequence,
effective inference mechanisms must be fast in relation to
the complexity of the search being conducted.

Performance is not the only consideration when design-
ing algorithms for diverse applications. Extensibility is also
important. Thus, we would like inference mechanisms to be
straightforward so that they can be easily extended to han-
dle more complex problem environments. Robustness is an-
other consideration. We would like solutions to have built-in
flexibility to cope with execution uncertainty. There is an-
other potential tradeoff here because obtaining flexible so-
lutions may require more elaborate inference mechanisms.
Fortunately, these conflicts are not inevitable; sometimes it
is possible to find approaches that simultaneously achieve
several of these objectives.

These considerations apply to resource scheduling prob-
lems with flexible temporal constraints. For these problems,
activity start times, end times, and durations are represented

as numerical intervals instead of definite (also described as
”grounded”) numeric values. Temporal flexibility is useful
for dealing with execution uncertainty (Muscettola 2004);
therefore, for many problems a flexible solution is preferred
over a grounded one. Flexible solutions can be generated
as follows: the temporal variables and constraints are rep-
resented as a Simple Temporal Network (STN) (Dechter,
Meiri, and Pearl 1991); temporally flexible resource levels
are computed using the resource envelope algorithm devel-
oped in (Muscettola 2004); and a search algorithm, using
the envelopes to check feasibility, imposes precedence con-
straints to generate flexible solutions.

However, operating completely in flexible space using
these mechanisms is costly and complicated. In particu-
lar, computing the resource envelopes requires maximum
flow calculations. The complexity is magnified if the re-
source model is extended to activities that have linear re-
source impact (Frank and Morris 2007), where only a
pseudo-polynomial algorithm is known for computing the
envelopes, and it is unclear how the envelope method could
be extended beyond that to complex nonlinear resources,
such as the power from solar panels on a Mars rover, which
follows a sine curve with respect to time of day. As a conse-
quence, when confronted with these problems, practitioners
often resort to reformulating the problem as a grounded one,
without temporal flexibility.

In this paper, we explore an approach that generates flex-
ible schedules within a framework that uses simple resource
calculations. We do this by performing grounded inference
on resources in the context of flexible temporal reasoning.
Thus, the resource calculations are simple, but we still end
up with a flexible solution.

One way of approaching this is demonstrated by a previ-
ous paper (Cesta, Oddi, and Smith 1998). It is known that
an assignment of lower-bound values to each of the vari-
ables in a Simple Temporal Network (STN) constitutes a
grounded schedule that satisfies the temporal constraints. In
the Cesta et al. paper, this solution is used to compute a re-
source profile, and the flexible solving is restricted to adding
STN constraints to remove flaws observed within the pro-
file. The outcome is an augmented STN. However, only the
lower-bound schedule is guaranteed to be free of resource
flaws. By contrast, using the envelope approach (Muscettola
2004) to detect flaws results in an STN where every sched-



ule is free of resource flaws. The (Cesta, Oddi, and Smith
1998) paper compensates for this by a post-processing step:
it chains the activities that use a resource according to their
order in the lower-bound schedule. The result is a flexible
solution (Cesta, Oddi, and Smith 1998).

However, there is an issue with respect to using lower-
bounds for grounded inference. In many applications, es-
pecially in a mixed-initiative setting (Bresina and Morris
2007) where plans are evolved, and in plan repair (Yoon,
Fern, and Givan 2007), plan stability is an important con-
sideration. That is, it is desirable that a plan change as little
as practicable when accommodating modifications and new
constraints. In this framework, the mixed-initiative opera-
tor sees only a grounded schedule, called a reference sched-
ule. Initially, this is provided by the user and reflects general
preferences. As planning proceeds, the user may make addi-
tional changes. The schedule may also need modifications to
satisfy constraints, but these should try to minimize disrup-
tions to the previous settings. The lower-bound schedule has
no memory of previous schedules, so it does not meet this re-
quirement. In particular, it does not reflect direct changes to
the schedule made by the operator.

In previous work (Bresina and Morris 2007), a solution
grounding algorithm was used to provide the evolving ref-
erence schedule according to a minimum perturbation crite-
rion. However, this was applied after full runs of a flexible
solver doing mutual exclusion reasoning; it was not used for
flaw detection. In this paper we report on a new approach
that solves resource problems using the reference schedule
for detecting resource flaws. This requires that the refer-
ence schedule be recomputed after each flaw resolution step.
However, the solution grounding algorithm used in (Bresina
and Morris 2007) involved O(N) calls to Dijkstra’s Algo-
rithm (Cormen, Leiserson, and Rivest 1990), which is too
costly for our present purpose. In this paper we present a
new solution grounding algorithm with minimum perturba-
tion properties that has aspects in common with upper and
lower bounds, and needs only one Dijkstra call. Another
difference is that the (Bresina and Morris 2007) algorithm
was a greedy one whose results were dependent on the order
in which timepoints were considered. The new algorithm is
order-independent and has a global minimality property.

This work uses the more general producer/consumer re-
source model of (Muscettola 2004) rather than the reusable
resource model of (Cesta, Oddi, and Smith 1998). This per-
mits the grounded solution to be extended to a flexible so-
lution in a way that retains less rigid constraints than the
method of extracting chains. It also supports an encoding of
state requirements and effects as resource transactions.

Local search algorithms also typically search in a
grounded framework, but they are unable to show a prob-
lem is unsolvable. The approach here combines a complete
systematic search with the simplicity and extendability of
grounded reasoning.

In summary, we present an approach that
• Generates flexible solutions more efficiently by using

lower complexity grounded inference on a reference
schedule to detect resource flaws within a flexible tem-
poral solving process.

• Addresses plan stability by using a novel grounding al-
gorithm to derive the reference schedules while meeting
minimum perturbation criteria.

• Can be extended to to other kinds of constraints; we will
use state constraints as an example.

• Combines some of the benefits of local search with those
of systematic search.

Background and Solver
Laborie (Laborie 2003) describes a simple but expressive
formalism for scheduling problems called Resource Tempo-
ral Networks (RTNs). In brief, RTNs consist of a Simple
Temporal Network (STN) as described in (Dechter, Meiri,
and Pearl 1991), fixed instantaneous resource impacts (ei-
ther production or consumption) for each timepoint, and
constant upper and lower resource limits. Timepoints rep-
resent the start and end of activities. Instantaneous resource
impacts are useful for modelling reusable resources that are
allocated at the beginning of an activity and released at the
end, such as power load on a planetary rover, or open-ended
resource production and consumption by separate activities
(e.g., switch-on, switch-off). Of particular interest, they can
also be used to model state requirements and effects us-
ing the resource encoding described in (Morris and Bresina
2008).

More formally, an RTN defines a problem for a specific
resource as a tuple <T, Q, l, u>, where T is an STN, Q is
a mapping from the timepoints of T to real numbers that
specifies the incremental resource impact (positive for a pro-
duction and negative for a consumption), and l and u are ex-
tended real numbers representing the lower and upper limits.
Multiple resources can be modelled by separate RTNs.

Given an RTN, a schedule is a mapping S from the time-
points to real numbers that specifies the time S(x) at which
each timepoint x occurs. A schedule has a flaw if the cu-
mulative resource level at some time is outside the limits.
The solver seeks to find a schedule that satisfies the temporal
constraints and is free of flaws. Our solver has a basic cycle
that (1) detects flaws in the current flexible plan, (2) selects
a flaw to fix, (3) chooses a way of resolving the flaw, and (4)
backtracks if the flaw cannot be fixed. Multiple RTNs can
be solved together by interleaving the flaw resolution steps.

In our grounded inference approach, a reference sched-
ule that satisfies the current temporal constraints is used to
detect flaws in the flexible plan in step (1). These flaws con-
stitute only a subset of all the flexible flaws, but are easy to
calculate. The reference schedule is used in a forward sim-
ulation to construct a profile of the resource levels over time
and collect the flaws. The selection in step (2) is based on
heuristics. Step (3) adds a new constraint to the STN that
may resolve the flaw. We describe this in more detail in the
remainder of this section. Step (4) uses chronological back-
tracking to revise a previous choice from (3) if possible.

To facilitate the discussion, we assume that all flaws are
lower-level flaws; upper level flaws can be handled symmet-
rically. We will refer to a timepoint whose resource impact
is a consumption as a consumer, and one whose impact is a



production as a producer. We will sometimes use time(x) in
place of S(x) when a particular schedule S is understood.

Given an RTN and a reference schedule S, a flaw occurs
at a time t if the cumulative resource level dips below the
lower limit at that time. A consumer c is said to be a cul-
prit with respect to the flaw if S(c) ≤ t. The culprits are
the timepoints that contribute to the resource shortfall at the
flaw. A producer p is said to be a savior with respect to the
flaw if S(p) > t. A producer that is not a savior is called
a helper. Helpers mitigate the shortfall by positively con-
tributing to the resource level at the flaw.

The basin of a flaw is the interval between the latest cul-
prit and the earliest savior. Intuitively, to try to remove a
flaw, we should move some culprit later and/or some sav-
ior earlier. To fully address the flaw, these movements need
to cover the basin. We make that precise in the following
fundamental lemma.

Lemma 1 Suppose S1 and S2 are two schedules where S1

has a flaw but S2 has no flaws. Then there is a culprit time-
point c and a savior timepoint s for the flaw in S1 such that
S2(c) ≥ S2(s).

Proof:
Consider some flaw in S1 at time t1. Let C and S be the

respective culprit and savior sets. Let tc = max{S2(c) :
c ∈ C} and ts = min{S2(s) : s ∈ S}. Suppose tc < ts.
Then S2(c) ≤ tc for every c ∈ C and S2(s) ≥ ts > tc for
every s ∈ S. It follows that the resource value at tc in S2 is
no greater than the flawed value at t1 in S1, which implies
a flaw in S2 contrary to the statement of the theorem. Thus,
tc ≥ ts and so S2(c) ≥ S2(s) for some culprit c ∈ C and
savior s ∈ S. 2

From Lemma 1, we see that flaws can only be eliminated
by schedule changes that result in time(c) ≥ time(s) where
c is some culprit and s is some savior. Thus, some c ≥ s con-
straint needs to be added in step (3), resulting in a new refer-
ence schedule where the culprit occurs at or after the savior.
Other timepoints may also move because of constraints. The
updating of the reference schedule will be discussed in more
detail in the section on solution grounding.

A particular c ≥ s constraint addition is not allowed if it
is inconsistent with the existing STN constraints. If there are
no allowed culprit/savior constraints, then the flaw is unfix-
able, and backtracking occurs in step (4).

Even if a culprit/savior constraint is allowed, there is no
guarantee that the flaw shortfall is reduced in the new ref-
erence schedule; it may even be increased! The reason is:
when a culprit is moved, a helper may be forced to move
also because of constraints, which can negate the benefit of
moving the culprit. It is necessary in general to allow such
seemingly counterproductive moves for the sake of com-
pleteness of this simple solver strategy. Consider, for ex-
ample, a case where two culprits c1 and c2, each of resource
value 3, are constrained to strictly precede a helper h with
resource value 4. Since only one of these culprits can be
moved in a single solver step, the first move will also move
the helper and will increase the flaw shortfall by 1, but the
second move will then decrease it by 3. A maximum flow
calculation (Muscettola 2004) could be used to formulate

Boolean procedure solveFlaws(stn)
Compute flaws in reference schedule;
if no flaws then return true
else choose a flaw;
for each culprit/savior pair <c,s>

if c >= s is consistent then
Add constraint c >= s to stn;
Update reference schedule;
if solveFlaws(stn) then return true;
Remove c >= s and add c < s to stn;

Remove above added c < s constraints;
return false;

Figure 1: Grounded Solver Algorithm

smarter compound moves, but we are trying to avoid that
with the grounded approach.

To assure non-redundancy in the search, we need the con-
straint choices in step (3) to be mutually exclusive; other-
wise, multiple paths in the backtracking search could lead
to the same search state. The c ≥ s constraints are not a
priori exclusive, but we can make them so by the simple ex-
pedient of adding the complementary c < s constraints as
an alternative on backtracking.

For the step (3) choice, we order the culprit/savior pairs
lexicographically with respect to closeness to the flaw, i.e.,
<c1, s1> precedes <c2, s2> if time(c1) > time(c2), or
time(c1) = time(c2) and time(s1) < time(s2). This is in
accord with the plan stability criterion.

The flaw solving algorithm described above is summa-
rized in Figure 1, where stn is the temporal network in-
cluding all added constraints. In the algorithm, the update of
the reference schedule takes as input the original reference
schedule (before the toplevel call to solveFlaws()), since this
is what we wish to minimally perturb. The backtracking
search is expressed as a combination of a for loop and a
recursive call to solveFlaws.

If the algorithm terminates with success (true), the fi-
nal reference schedule is output as the grounded solution.
A failure termination (false) indicates there is no solu-
tion. Theorem 1 shows completeness and correctness. We
note that completeness is not obvious because the algo-
rithm only searches through producer/consumer orderings
that arise from flaws in the successive reference schedules,
not through all orderings consistent with the flexible plan.
First we prove a lemma that is essentially a useful reformu-
lation of lemma 1.

Lemma 2 Consider two schedules S1 and S2. Suppose for
each consumer c, the set of producer predecessors of c in S2

is a superset of those in S1. Then if S1 is without flaws, so is
S2.

Proof:
Suppose S2 has a flaw. By Lemma 1, there is a culprit c

and a savior s with respect to this flaw such that S1(c) ≥
S1(s). But then c has an extra producer predecessor s in S1

that it does not have in S2, contrary to the condition of this
lemma. 2



Theorem 1 The solveFlaws procedure terminates with a
correct solution if one exists, otherwise with failure.
Proof:

Termination follows since: each step adds an ordering
constraint; a particular ordering constraint cannot be added
more than once; and the number of potential ordering con-
straints is bounded. If it terminates with success, then the
reference schedule satisfies the temporal constraints and has
no resource flaws; thus it is a correct solution.

To show completeness, assume the initial schedule I is
flawed and suppose there is a solution schedule S. We need
to show that the algorithm will then find some solution. Con-
sider the set P of consumer/producer pairs <c, p> such that
S(c) ≥ S(p) but I(c) < I(p).

For the initial flaw selected by the algorithm, by Lemma 1,
there must be at least one <c, p> pair in P such that c is a
culprit and p is a savior. Assuming the algorithm does not
otherwise find a solution, let <c1, p1> be the first such pair
reached in the for loop. Since S is a solution, and none of
the earlier rejected pairs in the for loop are in P , the c1 ≥
p1 constraint is consistent with the previously added c < p
backtrack constraints, and with the original constraints, so it
will be added.

If the reference schedule I ′ after adding the constraint is
still flawed, the same argument applies, and the algorithm
will add another c ≥ p constraint from the pairs in P . If no
other solution is found, the algorithm will eventually reach
some reference schedule S′ that respects all the precedences
for <c, p> pairs in P . By Lemma 2, S′ is a solution.

2

As discussed in the introduction, the reference schedule
is a grounded solution, not a flexible one. For the pro-
ducer/consumer resource model, extension of the grounded
schedule to a flexible solution involves the following steps.

1. Discard the added solver constraints (but keep the original
STN constraints).

2. For each time(p) ≤ time(c) precedence in the grounded
solution, where p is a producer and c a consumer, add a
p ≤ c constraint to the STN.

Thus, we extract the producer/consumer precedences and
add them to the STN constraints. The resulting STN is
the flexible extension. Since the grounded solution has no
flaws, it follows from lemma 2 that all the schedules for
the flexible extension are flawless. This method of ex-
tension extracts weaker constraints from the grounded so-
lution than the chain method of (Cesta, Oddi, and Smith
1998). For example, consider a grounded schedule where
producers p1, p2 and consumers c1, c2 occur in the order
time(p1) ≤ time(c1) ≤ time(p2) ≤ time(c2). The chain
method would require that every schedule obey that order-
ing, whereas the flexible extension here would permit ad-
ditional orderings where both producers precede both con-
sumers.

Solution Grounding
We turn now to the solution grounding algorithm that, given
a previous reference schedule and a set of temporal con-
straints, produces a new reference schedule that satisfies

those constraints. The idea is that as constraints are added,
the schedule is progressively modified to accommodate the
new constraints.

In (Bresina and Morris 2007), a solution grounding algo-
rithm is presented that requires O(N) propagations, where
N is the number of timepoints. Each propagation is car-
ried out using Dijkstra’s algorithm (Cormen, Leiserson, and
Rivest 1990), which has O(E+N log N) complexity, where
E is the number of edges. This is too costly for our current
purposes since the reference schedule needs to be recom-
puted after each solver step. In this section, we introduce a
new algorithm that needs only a single invocation of Dijk-
stra’s algorithm.

To facilitate the discussion, we will refer to the input refer-
ence schedule as the preferred time schedule, and the output
as simply the reference schedule. The objective is to have
the reference times be close to the preferred times within
the context of an efficient update algorithm. The preference
functions are convex, so one might consider using the ap-
proach of (Morris et al. 2004). However, that requires solv-
ing a linear programming problem, which is not as efficient
as the method presented here.

The new algorithm is inspired by an analogy with the
computation of upper/lower time bounds for each timepoint
in an STN (Dechter, Meiri, and Pearl 1991). There, to com-
pute upper/lower bounds, the STN is augmented with a new
virtual timepoint called the origin. Then the upper bounds
are calculated as distances from the origin, and the lower
bounds as negated distances to the origin. Both distance
calculations use Dijkstra’s algorithm. (See the discussion
on Johnson’s Algorithm in (Cormen, Leiserson, and Rivest
1990) for how Dijkstra’s algorithm can be used to calculate
distances in an STN where consistency has been verified.)

It should be noted that the reference schedule behaves
a little differently from upper or lower bounds. As con-
straints are added, lower bounds can only increase while
upper bounds can only decrease. However reference times
may need to move in both directions. For example, suppose
a timepoint x can range from 0 to 20, but has a preferred
time of 10. If we add a constraint x ≥ 15, then the new
reference time should be 15, whereas if the added constraint
is x ≤ 5, the new reference time should be 5.

Nevertheless, we proceed by adding a new virtual time-
point to the STN called the refpoint. The refpoint is distinct
from the origin timepoint. Each preferred time value for a
timepoint becomes an upper bound constraint from the ref-
point to the timepoint (Figure 2). For example, suppose a
timepoint x has a preferred time of 10. We add a constraint
of the form x−refpoint ≤ 10. The preferred time for the ori-
gin is 0 by convention, so a constraint (origin−refpoint) ≤ 0
is always added. The STN with these added constraints is
the augmented STN. Note that in the distance graph of the
augmented STN the refpoint has edges leaving it, but none
entering it. It follows that the augmented STN is consistent
if the original STN is, since any new negative cycle would
need to pass through the refpoint. Similarly, the lower and
upper bounds, defined in terms of paths to and from the ori-
gin, are unaltered in the augmented STN.

We can then calculate shortest path distances from the



@
@

@
@

@I 6
��

�
�

�
�

��

R

O y x

0 20 10

5-18

Figure 2: Distance Graph with Refpoint

@
@

@
@

@I 6
��

�
�

�
�

��

R

O y x

0 20 13

5-18

Figure 3: Corrected Preferred Times

refpoint to each timepoint, including the origin, using Di-
jkstra’s algorithm in a similar way as for upper-bound cal-
culations. For example, suppose x has a preferred time of
10, while y has a preferred time of 20 and a lower bound of
18.. If y−x ≤ 5 is added as a new constraint, then the short-
est distance from the refpoint to x is 10, while the shortest
distance to y is 15, as seen in Figure 2, whereO is the origin
timepoint and R is the refpoint.

We would like to define the reference time (reftime) of a
timepoint x to be the shortest path distance from the refpoint
to x. This distance can be no greater than the distance from
the origin to x, i.e., the upper bound of x, because of the
0 edge from the refpoint to the origin. However, there is a
problem: this distance may lie below the lower bound of the
timepoint. In the example, the distance from R to y is 15
while its lower bound is 18. Note the distance from R to O
is -3, which is negative.

One might consider defining the reftime as
distance(refpoint, x)− distance(refpoint, origin). However,
this would mean the reftime of x could be affected by an
offset determined by constraints that are independent of x,
violating the stability criterion.

Note that any preferred time that is below the lower bound
of its timepoint has to be increased at least to the lower
bound in order to satisfy the constraints. This suggests cor-
recting the preferred times before calculating the (shortest
path) distances.

Definition 1 The corrected preferred time of x (called
the preftime for brevity) is defined by preftime(x) =
max{lower-bound(x), preferred-time(x)}.

Definition 2 The reference time of x (called the reftime for
brevity) is reftime(x) = distance(refpoint, x) where the aug-
mented STN has a constraint (y − refpoint) ≤ preftime(y)
for each timepoint y.

In the example, from y−x ≤ 5 and y ≥ 18, we can infer a
lower bound of 13 for x. Thus, preftime(x) = 13, giving the
corrected distance graph shown in Figure 3, which results in
reftime(x) = 13 and reftime(y) = 18.

The following results show some nice properties of these
definitions.

Theorem 2 The reference schedule satisfies the temporal
constraints.

Proof:
It is easy to show that the distance values from the ref-

point constitute a solution to the binary constraints in an
STN. (A similar result is shown for the origin in (Dechter,
Meiri, and Pearl 1991)). It remains to show that the ref-
times satisfy the timepoint bounds. It has already been noted
that the upper bound is satisfied since for each timepoint x,
distance(refpoint, x) ≤ distance(origin, x), because of the 0
edge from the refpoint to the origin.

Next we show that distance(refpoint, origin) ≥ 0. Other-
wise, suppose there is a shortest path from the refpoint to the
origin that is negative. Let y be the first timepoint (after the
refpoint) on the path. Then reftime(y) = preftime(y) since
the shortest path from the refpoint is the direct edge. We also
have distance(refpoint, y) + distance(y, origin) < 0. Thus,

preftime(y) = reftime(y)
= distance(refpoint, y)
< −distance(y, origin)
= lower-bound(y)

which contradicts the definition of preftime(y).
Thus, distance(refpoint, x) + distance(x, origin) ≥ 0

for each timepoint x. It follows that reftime(x) ≥
lower-bound(x). 2

We see that the preftime is the distance along the direct
edge to a timepoint x while the reftime is the shortest path
distance to x. Thus, reftime(x) ≤ preftime(x). The follow-
ing result shows that among consistent schedules that satisfy
this condition, the reftime schedule is the closest to the pref-
time.

Theorem 3 The reftime schedule is maximal among sched-
ules S such that S satisfies the temporal constraints and
S(x) ≤ preftime(x) for each timepoint x.

Proof:
Consider any such S and suppose S(x1) > reftime(x1).

Let x2 be the first timepoint (after the refpoint) on a short-
est path from the refpoint to x1. Then reftime(x2) =
preftime(x2).

By the temporal constraints, we have S(x1) − S(x2) ≤
distance(x2, x1). Thus,

S(x2) ≥ S(x1)− distance(x2, x1)
> reftime(x1)− distance(x2, x1)
= reftime(x2)
= preftime(x2)

But this violates the condition of the theorem. 2

The following corollary shows the reftimes satisfy the
most basic stability property.

Corollary 3.1 If the preferred time schedule satisfies the
temporal constraints, then the reference schedule is the pre-
ferred time schedule.



Proof: Immediate from the theorem after noting that no
lower-bound corrections are needed for the preferred times
if they satisfy the temporal constraints. 2

With this definition of the reference schedule, the ref-
times decrease from the preferred times to satisfy the con-
straints unless they have to be increased to satisfy lower
bound requirements. There is a symmetrical counterpart
to the definition of reference times where the default is to
rise instead of drop. For this alternative definition, pref-
times are installed as lower bound constraints from the ref-
point; for example, we would install a preftime on x as
a lower bound constraint x − refpoint ≥ preftime(x) in-
stead of x − refpoint ≤ preftime(x). Similar results then
hold, but with the roles of lower and upper bounds inter-
changed. However, the drop default seems preferable to the
rise default since it tends to minimize makespan. One can
construct examples where the drop variant perturbs the pre-
ferred times less than the rise variant and vice versa. The
approach of (Morris et al. 2004) could minimize the sum of
the perturbations, but at an added computational cost. The
refpoint propagation method seems like a good compromise
that combines efficiency and effectiveness.

In terms of complexity, the computation of the reftimes
involves one extra Dijkstra propagation above the standard
propagation in an STN. It should be noted that this has a
somewhat different character than the lower/upper bound
propagations. A tightening of the constraints may cause a
lower bound to increase. This may cause the preftime to also
increase, because of a lower bound correction. However, an
increase in the preftime amounts to a loosening of the pref-
time constraint. The repropagation needed after a loosening
typically affects more timepoints than after a tightening, so
this is more costly in practice, though the theoretical com-
plexity is the same.

Suppose E is the number of edges and N is the number
of nodes in the STN. The discrete event simulation needed
to detect the flaws is O(N). If we add the O(E + N log N)
cost associated with the additional Dijkstra propagation, this
compares very favorably with the maximum flow method
needed for flexible flaw detection, which is O(NE), or
worse, for the common algorithms.

State-Derived Resources
In the previous sections, we have described an approach that
uses a temporally grounded reference schedule to detect a
subset of the flaws in a flexible plan. Those flaws are re-
solved in the flexible plan by adding new flexible constraints.
Then a new reference schedule is produced to satisfy the new
constraints, and the process iterates.

Although developed in a context where the flaws are re-
source flaws, there is no obvious reason why the general
approach could not also be applied to problems where the
flaws arise from other sources, such as state requirements
and effects. One advantage of applying this to state-based
reasoning is that modal truth criterion issues are particularly
simple for a temporally grounded schedule (Kambhampati
and Nau 1994). Note that the search framework developed
here makes no commitment to the ordering in the reference

Boolean Construct Numerical Encoding

Initial TRUE 1000
Initial FALSE 0

TRUE → FALSE Subtract 1000
FALSE → TRUE Add 1000

Start require TRUE Subtract 1
End require TRUE Add 1

Violation < 0

Table 1: Numerical encoding of Boolean state.

schedule; it merely uses it to detect and fix flaws in the as-
sociated flexible plan. Thus, it has the potential to sidestep
the efficiency issue raised in (Kambhampati and Nau 1994,
page 22), which relates to premature commitment.

As a first step towards applying this method to state-
based reasoning, we have developed an encoding of state
requirements and effects as resource transactions in a con-
text of temporally extended activities and temporal con-
straints (Morris and Bresina 2008). We hope this will serve
as a useful theoretical scaffolding for guiding the extension
to state-based reasoning, as well as providing an initial vehi-
cle for experiments. This is still a work in progress, but we
discuss some of the implications here.

The encoding is initially applied to Boolean states where
certain activities can reset the state from TRUE to FALSE or
from FALSE to TRUE at their start or end timepoints and cer-
tain activities can require the TRUE state for their duration.
A Boolean state is encoded using a consumable resource as
follows. If the state is initially true, the initial capacity of
the resource is a specific large number that we designate
truevalue (currently 1000); otherwise the initial capacity
is zero. An event that changes the state from TRUE to FALSE
consumes truevalue amount of the resource, whereas an
event that changes the state from FALSE to TRUE produces
a like amount. An activity that requires the TRUE state con-
sumes a unit amount of the resource at the beginning and re-
turns it at the end. It is considered a violation if the available
capacity of the resource drops below zero. The encoding is
summarized in table 1.

In the TRUE state, this numerical encoding permits up to
truevalue concurrent instances of activities that require
the TRUE state, whereas in the FALSE state any occurrence
of such an activity drops the numerical resource below 0,
and thus produces a violation. Thus, truevalue should
be set sufficiently large so that it can accommodate whatever
amount of concurrency is needed for the application. There
is no penalty for making it as large as one likes, subject to
computer datatype limits. In table 1 and the remainder of the
paper, we use 1000 for the truevalue amount.

As a first extension, the encoding can be generalized to
enumerated state values provided each activity type deter-
mines a well-defined sequence of state transitions. For ex-
ample, in planning for a Mars rover, a state variable for



a robot arm might involve {UNSTOWING. UNSTOWED,
STOWING, STOWED} as values and a STOW activity type
might specify the sequence

UNSTOWED → STOWING → STOWED

where the transitions occur at the start and end timepoints,
respectively, and UNSTOWED is regarded as a precondition.

For a model with these restrictions, the state requirements
and effects can be translated into producer and consumer
transactions on consumable resources. The translation uses
a different numeric resource for each state value. For ex-
ample, in the Mars rover case, there would be numeric re-
sources for each of UNSTOWING. UNSTOWED, STOWING,
STOWED, and

STOW
UNSTOWING

-1000 UNSTOWED
+1000 -1000 STOWING

+1000 STOWED

illustrates the effects of the STOW activity. Note that if the
arm is already stowed, the value of the UNSTOWED resource
will be 0, in which case this activity drops it to -1000, which
is detected as a flaw.

A requirement only affects the resource for the particular
state value that is required. For example a DEPLOY activity
that requires the robot arm to be in the unstowed state would
have the following resource transactions

DEPLOY
-1 +1 UNSTOWED

which subtract 1 at the start and add 1 at the end.
In earlier sections, we saw that the grounded resource

solver algorithm (Figure 1) tries to resolve resource flaws by
adding “culprit after savior” constraints. To illustrate the ef-
fect on state-derived resources, consider a flawed reference
schedule with the following sequence of activities

STOW DEPLOY UNSTOW

-1000 -1 +1 +1000 UNSTOWED

where the possible fixes are to constrain the -1000 culprit
to follow the +1 savior, which makes DEPLOY come be-
fore the STOW, or the -1 culprit to follow the +1000 savior,
which makes DEPLOY come after the UNSTOW. These
alternatives are roughly analogous to promotion and “white
knight” operations (Kambhampati and Nau 1994) in previ-
ous planning methods. Interestingly, demotion and causal
linking are not needed in this restricted framework. Our past
experience in planning for Mars rovers suggests that causal
linking often produces undesirable premature commitments.
For example, if two activities that require the same state have
been linked to the same achiever, then a third activity that
requires a different state cannot be inserted between them
without backtracking.

We are exploring some further directions for extending
the numeric resource encoding. One involves allowing state
changes with unspecified prior states. A simple example of

this is where the STOW activity is considered valid even if
the arm is already STOWED. (In that case, it has no effect.)
This can be handled by modifying the way in which the nu-
meric resource level is updated so that it uses what might be
called saturated arithmetic instead of ordinary arithmetic.
Specifically, if a resource transaction (consumption or pro-
duction) would otherwise cause the available resource level
to fall outside the range [−999, 1000], then multiples of
1000 are added or subtracted to bring it back within that
range. For example, two consecutive occurrences of the
STOW activity would bring the level of the UNSTOWED re-
source to 0 instead of −1000. Saturation occurs naturally
for some purely numerical applications, such as a FILL-UP
operation for an automobile.

One implication of the use of saturated arithmetic is that
addition is no longer commutative. For example, ((1000 −
1000) + 1000) = 1000 but ((1000 + 1000) − 1000) = 0.
Because of this, Lemma 1 as stated no longer holds. For
example, a reference schedule with the sequence

UNSTOW STOW DEPLOY

+1000 -1000 -1 +1 UNSTOWED

has a flaw at the beginning of DEPLOY. One way of fix-
ing this is to add a constraint that moves the −1000 cul-
prit at STOW start beyond the +1 savior at DEPLOY end.
The effect of this is to reorder the plan to be UNSTOW,
DEPLOY, STOW. However, suppose an existing temporal
constraint prevents this fix. Because of the non-commutative
nature of saturated arithmetic, an alternative fix is to add a
constraint that moves the −1000 culprit at STOW start so
that it comes before the +1000 helper at UNSTOW end.
Assuming STOW and UNSTOW are not allowed to over-
lap, this reorders the plan to be STOW, UNSTOW, DE-
PLOY. If the arm was initially STOWED, then the STOW
operation is now a no-op. If the arm was initially UN-
STOWED, then the UNSTOW operation, which was previ-
ously a no-op, now becomes effective. This alternative fix
method is roughly analogous to demotion (Kambhampati
and Nau 1994) in conventional planning. Note that causal
linking is still not needed.

For an example that does not involve ineffective opera-
tions, suppose the robot arm can be rotated to different po-
sitions to enable the use of different instruments, say a mi-
croscopic imager (MI), Mossbauer spectrometer (MB), or
rock abrasion tool (RAT). Initially, it is in the RAT position.
Consider the flawed plan

GO MI GO MB USE MI

+1000 -1000 -1 +1 MI-AVAIL
-1000 -1000 RAT-AVAIL

where we have illustrated the effects on two of the resources.
Since the prior state is unspecified for the GO MI and
GO MB activity types, they decrement the resources for all
the complementary states. Thus, each subtracts 1000 from
RAT-AVAIL. Because of saturation, this does not constitute
a flaw. However, the MI-AVAIL resource does have a flaw.
The fixes for this are similar to the prior example, but the
activities all have an effect before and after the fixes.



Although Lemma 1 as stated no longer holds with sat-
urated arithmetic, we can prove a weaker result that in-
volves moving a culprit either beyond a savior or before
a prior helper. This change ripples through the other the-
oretical results. We get a modified algorithm that is still
complete and correct but has additional fix options, and a
flexible plan extraction method that requires preserving both
producer ≤ consumer and consumer ≤ producer orderings
from the reference schedule.

Note that consideration of saturated arithmetic is unnec-
essary for computing the resource flaws since the grounded
reference schedule determines the prior states. The search
and extraction methods are specified in terms of culprits,
saviors, and helpers rather than arithmetic. We have used
saturated arithmetic as a theoretical device to derive the
modified search and extraction procedures and prove their
soundness rather than incorporating it directly in the com-
putational methods.

There is another way of approaching this issue that retains
ordinary arithmetic. The idea is to enlarge the concept of a
reference schedule to that of a reference plan that includes a
reference grounding of the parameters as well as being tem-
porally grounded.

We could regard the GO actions as having implicit from
parameters. If we make these explicit, the plan becomes

GO MI FROM(RAT) GO MB FROM(MI) USE MI

where as before RAT is the initial position. Now the fully
grounded activities specify well-defined state transitions.
The flaw can be fixed by constraining the middle activity so
that it comes first, but this requires simultaneously chang-
ing the from parameters of the first and second activities to
arrive at the plan

GO MB FROM(RAT) GO MI FROM(MB) USE MI

With this interpretation, it is the modified parameters that
have altered the resource computation to fix the flaw rather
than a modified arithmetic. However, this seems to require
a more complex analysis that tracks the resource effect of
parameter changes. We have not pursued this approach.

Closing Remarks
In the past, temporally flexible resource solvers have been
handicapped by the complexity of performing inference
within flexible time, not just in terms of performance, but
also in terms of extensibility to more diverse resource types.
Combining flexible solving with an evolving grounded
schedule helps alleviate this by allowing resource flaws to
be detected using a simple linear discrete event simulation.
We have also introduced a new method for updating the
grounded schedule that has a low computational complex-
ity and satisfies a global stability criterion.

We have also discussed an encoding of state conditions
and effects as resource transactions. An interesting as-
pect of active solving of state requirements using the re-
source encoding of (Morris and Bresina 2008) is that causal
links (Weld 1994) seem not to be needed. This furthers the
objective of least commitment planning, since causal links

involve an arbitrary commitment to a particular achiever.
The state encoding also motivated an extension of the re-
source model to consider saturated resources.

In the future, we would like to apply the grounded infer-
ence approach to active solving for more complex resource
types like linear resources (Frank and Morris 2007), since
flaws can be more easily detected in a grounded reference
schedule. We would also like to develop a direct state-
based solver that detects flaws based on a grounded refer-
ence schedule, but without the intervening resource encod-
ing.

More generally, the idea of combining a least commit-
ment search with a reference assignment to the uncommitted
variables may be applicable to other types of planning and
constraint satisfaction problems.

References
Bresina, J. L., and Morris, P. H. 2007. Mixed-initiative plan-
ning in space mission operations. AI Magazine 28(2):75–88.
Cesta, A.; Oddi, A.; and Smith, S. F. 1998. Scheduling
multi-capacitated resources under complex temporal con-
straints. In Fourth Int. Conf. on Principles and Practices
of Constraint Programming (CP98).
Cormen, T.; Leiserson, C.; and Rivest, R. 1990. Introduction
to Algorithms. Cambridge, MA: MIT press.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.
Frank, J., and Morris, P. 2007. Bounding the resource avail-
ability of activities with linear resource impact. In Interna-
tional Conference on Automated Planning and Scheduling.
Kambhampati, S., and Nau, D. S. 1994. On the nature and
role of modal truth criteria in planning. Artificial Intelli-
gence 82:129–155.
Laborie, P. 2003. Resource temporal networks: Definition
and complexity. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence.
Morris, P., and Bresina, J. 2008. Active and passive con-
straint enforcement for activity planning. In International
Symposium on Artificial Intelligence, Robotics and Automa-
tion in Space.
Morris, P.; Morris, R.; Khatib, L.; Ramakrishnan, S.; and
Bachmann, A. 2004. Strategies for global optimization of
temporal preferences. In Tenth International Conference on
Principles and Practices of Constraint Programming (CP-
2004, 408–422. Springer.
Muscettola, N. 2004. Incremental maximum flows for fast
envelope computation. In Proceedings of the 14th Interna-
tional Conference on Automated Planning and Scheduling.
Weld, D. 1994. An introduction to least commitment plan-
ning. AI Magazine 15(4):27–61.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. Ff-replan: A
baseline for probabilistic planning. In ICAPS-07, 352–359.


