
State-Based Scheduling via Active Resource Solving

Paul Morris and John Bresina
Computational Sciences Division

NASA Ames Research Center
Moffett Field, California, U.S.A.

Paul.H.Morris@nasa.gov , John.L.Bresina@nasa.gov

Javier Barreiro*, Michael Iatauro* and Tristan
Smith**

*SGT Inc., **MCTInc.
NASA Ames Research Center

Moffett Field, California, U.S.A.
Javier.Barreiro, Michael.Iatauro, Tristan.Smith@nasa.gov

Abstract—A mixed-initiative approach to activity planning for
space mission operations was introduced in the Mars
Exploration Rover mission, and has been extended and
adapted to other missions. The approach involves a
collaboration between a human planner and automated tools
that reason about activities and constraints. One important
class of constraints arises from state requirements and effects.
The mixed-initiative framework passively detects and reports
constraint violations. At the user's request, it can also offer
suggestions, obtained through automated planning techniques,
for actively fixing certain violations. Due to the need for a
rapid response, active solving previously used a timeline
insertion strategy that limited the types of violations that could
be fixed, whereas the passive checking employed an encoding
of the state constraints as resource constraints that identified
all the violations. In this paper, we report on an extension of
the active solver to handle resource problems, allowing a
unification of the passive and active strategies.

Keywords-component; mixed-initiative planning; automation
for flight and ground operations;

I. INTRODUCTION

Activity planning is an important component of ground
operations for actual and simulated space missions. For the
Mars Exploration Rover mission, a tool called MAPGEN [3]
was developed that introduced a semi-automated, mixed-
initiative approach [1] for activity planning. This approach
has been continued in Ensemble [2], which has been adapted
for several space-related applications including Mars and
Lunar missions and ISS scheduling.

Classical planning and scheduling systems have typically
focused on a form of active solving where the choices are
entirely under the control of an automated system. However,
ground operations engineers in space-related applications
have made clear their preference for an adjustable level of
automation. This preference is based on a number of factors
[3] that make it desirable for the human operator to actively
participate in plan construction.

The mixed-initiative framework incorporates both
passive and active enforcement of constraints. In passive
enforcement, the system notifies the user about flaws or
violations in the plan. For example, a medical constraint
might require fasting for 12 hours before a glucose test; a

plan that had a meal 5 hours before such a test would thus be
flawed. In active enforcement, the system can suggest ways
to fix a violation, for example moving the meal earlier or the
test later. Active enforcement may also involve, as a user
option, maintaining plan validity when responding to user
modifications, for example keeping a minimum 12-hour
separation when the user directly moves either activity. In
our applications, the activities in a plan are regarded as being
complete, so the active enforcement only suggests changing
the time of activities, not adding new activities. Thus, it is
restricted to a form of scheduling rather than full planning.

The Ensemble mixed-initiative framework relies on an
underlying planning/scheduling constraint solver called
EUROPA [4][5]. This system produces a flexible solution to
an activity-planning problem. A flexible solution
encapsulates in a concise data structure called a Simple
Temporal Network [2] a family of plans or schedules with
similar causal structure but varying start times. However, for
ease of comprehension, the plan is presented to the human
operator as a normal fixed-time schedule. This is chosen to
be as close as is practical (considering the enforced
constraints) to a reference schedule [3] that captures the
intent of the user. In particular, the reference schedule
reflects changes made directly by the operator as well as
changes resulting from constraint enforcement. Constraints
are enforced at the discretion of the operator.

EUROPA provides a library of built-in plan-oriented
constraints to aid in constructing plans. In particular, it
includes a timeline mechanism to help enforce mutual
exclusion constraints. A timeline is a sequentially ordered set
of intervals. Thus, it is possible to ensure that two activity
instances do not overlap in time by specifying in the model
that they have interval subgoals that go on the same timeline.
Subgoals may have varying qualitative and quantitative
temporal relationships to their activities [5]. These include
EQUALS, where the subgoal is co-temporal with the activity,
CONTAINED-BY, where the span of the subgoal covers the span
of the activity, and MEETS and MET_BY where the activity and
subgoal touch. We have previously used the timeline
mechanism to support active enforcement. In this context,
the reference schedule is used as the basis for a minimum
perturbation heuristic that orders the placement choices. This

mailto:J.L.Bresina@nasa.gov
mailto:Paul.H.Morris@nasa.gov

promotes stability in the plans incrementally constructed by
the solver.

EUROPA also provides a mechanism to track resource
usage in activity plans. The global resource usage profile is
calculated from the resource transactions of individual
activities that are specified in the model. The system also
detects violations of overall resource limits that are specified
in the model, and identifies them as flaws in the plan.
Although the natively supported resources are numerical, we
will see that complex state conditions can be efficiently
encoded and checked as numerical resources.

Previous versions of the Ensemble solver have used the
EUROPA resource mechanism for passive detection of State
constraint violations. However, active fixing was based on
timelines. As we will see, there are certain drawbacks
associated with this. Recently, EUROPA has been extended
to include efficient mechanisms for active solving of
resource flaws. This provided an opportunity to unify the
passive and active strategies, but there remained a need to
reconcile the fixed-time reference schedule of Ensemble with
the flexible-time solver mechanisms of EUROPA. In this
paper we describe an approach that uses the reference
schedule internally within EUROPA to guide a flexible time
solving process.

A. Active State Reasoning

One of the core mechanisms in the active state-based
reasoning used in Ensemble and described in [7] is conflict
resolution. This involves imposing ordering constraints on
events with inconsistent states so that they cannot happen at
the same time. For example, a TEST-GLUCOSE activity could
have a prior food exclusion requirement that is violated by
an effect of a MEAL activity, necessitating an ordering of the
requirement and the effect so that they cannot coincide. This
basic mechanism does not distinguish between state
requirements and state effects; any inconsistent pair will
need an ordering and either ordering may be chosen if it is
consistent with the other constraints.

Conflict resolution alone is insufficient for complete
state-based scheduling. For example, consider a MEDICATION
activity with a stomach-full requirement and a MEAL activity
with a stomach-empty requirement. If the meal is
constrained to follow the medication, there is no concurrent
inconsistency, but those two activities alone in that order
would not constitute a valid plan because the stomach-full
requirement would not be fulfilled until after the medication
activity has already occurred

In traditional state-based planning and scheduling,
conflict resolution is augmented by a causal link mechanism
where each event that requires a particular state is linked to
some event that achieves the state [9]. The link imposes a
precedence constraint between the two events. It also
establishes an additional state (maintenance) requirement on
the interval between the events. In EUROPA, causal links
can be imposed by creating a separate timeline for a set of
related states, and then using CONTAINED-BY subgoals on that
timeline for requirements and MEETS subgoals for effects [4].
For example, in Remote Agent [5], a THRUST activity is

CONTAINED-BY a POINTING subgoal on an attitude timeline, and
this is merged with a MEETS subgoal of a TURNING activity.

The problem with causal links is that they involve a
somewhat arbitrary choice of which achiever to link to a
requirement. Since the causal link is protected in the
forward search, a bad choice can only be corrected by
backtracking, which may be deep. Furthermore, depending
on the order in which activities are added to the plan and
subgoals are expanded, the correct choice may not even be
available at the time the selection is made, and thus the
backtracking may be futile.

Experience with Remote Agent [5] suggested that finely
tuned heuristics that avoid most backtracking are needed to
make the causal link method workable. Unfortunately, such
heuristics are typically brittle with respect to small changes
in the model. Moreover, the heuristics, which are generally
tuned for the forward search, tend to become less effective
after backtracking.

In other experience with causal link mechanisms during
the development of MAPGEN [3], it was found that poor
planning search behavior was particularly associated with
situations where two activities that required the same state
were linked to the same achiever. This made it impossible to
insert a third activity requiring a different state between the
two activities without generally extensive backtracking.

In MAPGEN, as deployed, and the Ensemble scheduler,
causal link solving has been avoided due to these problems;
these systems use only conflict resolution for automated
violation fixing. Experience shows this approach gives good
search performance even without finely tuned heuristics.
The drawback is incomplete fixing, i.e., some violations may
remain even though a schedule exists that could fix them.
Since these systems are mixed-initiative, and flag all
violations, the human operator has the opportunity (and
responsibility) to fix any left by the automated process.

What is needed is a way of formulating a complete
systematic search that, in effect, can correct a bad causal link
"after the fact" within the forward search without the need
for backtracking. It turns out a resource perspective on flaws
is key to achieving this. In previous work, we have used an
encoding of state constraints as resource constraints to
facilitate passive detection of state violations. In this paper
we introduce a systematic resource solver that can actively
fix state violations using the same encoding in a way that has
the effect of retroactive correction of causal links.

EUROPA provides an extensible framework; state
constraints could in principle be supported by adding new
modeling constructs, search mechanisms, and data structures
to reason about discrete states. That new mechanism could
be informed by the analogy with resource solving to better
handle the causal link issue. However, given that state
constraints can be efficiently encoded using numeric
resources, which were already supported in EUROPA, we
decided to pursue that implementation path first so we could
verify the new approach, while significantly reducing the
need for writing new code in the short term.

II.STATE RESOURCE ENCODING

In this section we describe the encoding of states as
numeric resources. This is similar to the encoding used for
passive resource checking in [7], except that enumerated
state spaces are now also handled. First we review the
encoding for Boolean states that have only TRUE and FALSE
values. The encoding uses consumable resources, also called
reservoirs, that involve distinct produce and consume
transactions that increment or decrement the resource at
given points in time. For example, a mission crew, where
crew members can be assigned to and relieved from duties,
may be regarded as such a resource.

We encode a Boolean state using a consumable resource
as follows. If the state is initially TRUE, the initial capacity of
the resource is a specific large number that we designate
TRUE_VALUE (currently 1000.0); otherwise the initial capacity
is zero. An event that changes the state from TRUE to FALSE
consumes TRUE_VALUE amount of the resource, whereas an
event that changes the state from FALSE to TRUE produces a
like amount. An activity that requires the TRUE state
consumes a unit amount of the resource at the beginning and
returns it at the end. It is considered a violation if the
available capacity of the resource drops below zero. The
encoding is summarized in table I.

Note that in the TRUE state, this numerical encoding
permits up to TRUE_VALUE concurrent instances of activities
that require the TRUE state, whereas in the FALSE state any
occurrence of such an activity drops the numerical resource
below 0.0, and thus produces a violation. (We assume that
TRUE_VALUE is chosen to be sufficiently large to
accommodate the amount of concurrency that is needed for
the application.)

Enumerated state spaces may be represented by using a
separate Boolean for each individual state. When a state
change occurs, each state Boolean is set to FALSE except for
that of the new state, which is set to TRUE. For example,
with an enumerated state space {a, b, c}, a state change to b
would set the Boolean for b to TRUE and those for a and c to
FALSE. Note, however, that a state change to b, followed by
a change to c, sets a to FALSE twice.

TABLE I. NUMERICAL ENCODING OF BOOLEAN STATE.

Boolean Numerical Encoding

Initial TRUE 1000.0
Initial FALSE 0.0

TRUE→FALSE Subtract 1000.0
FALSE→TRUE Add 1000.0

Start require TRUE Subtract 1.0
End require TRUE Add 1.0

Violation < 0.0

In this situation, we would like the extra FALSE setting to
simply have no effect rather than eliciting a violation. For
this reason, the resource mechanism is modified to use
saturated arithmetic instead of normal arithmetic.
Specifically, if a resource transaction would otherwise cause
the resource value to go outside the range [1 - TRUE_VALUE,
TRUE_VALUE], then multiples of TRUE_VALUE are added or
subtracted to bring it back within that range. Thus, the
saturated resource values retain no memory of previous
states, and the state transitions behave like Markov
processes.

Negated and disjunctive state requirements for small
enumerated sets can be effectively handled within this
framework by assigning an additional resource to each
negated value, i.e., introducing a second Boolean with the
opposite sense. For example, with an enumerated state space
{a,b,c,d}, the disjunctive requirement a_or_b is equivalent to
the two requirements not_c and not_d.

For many applications, an Activity Dictionary is used to
statically associate activity types with state requirements and
effects. However, in some applications the users have
expressed a need to configure the state impact of activity
instances dynamically during planning. This is achieved by
encapsulating the state requirements and effects in optional
sub-activities that can be attached to the parent activities via
temporal constraints. The sub-activities may be temporally
offset from the parent activity, as for example the fasting
requirement associated with a glucose test.

To make the example more concrete, consider a plan
fragment with a one-hour meal activity M starting at noon,
and a 15 minute glucose test activity G at 3:45pm. Also
suppose there is an eight-hour fasting requirement preceding
the end of the test. We model this using a fasting resource
with TRUE_VALUE as the initial value. The fasting requirement
for G results in a consumer transaction at 8am and a
producer transaction at 4pm, both with 1.0 as the amount.
We also have a consumer transaction at noon, and a producer
transaction at 1pm, with TRUE_VALUE as the amount in both
cases. This plan fragment is flawed because the value of the
fasting resource drops to -1.0 at noon, which is a violation.
Table II summarizes the situation using negated amounts to
indicate the consumer transactions. We will use this later as
a running example to illustrate how resource solving
operations can fix state violations.

TABLE II. MEAL/GLUCOSE TEST INTERACTS WITH FASTING RESOURCE.

Time
Resource

Transaction
Resource

Value
Source
Activity

Initial 1000.0
08:00 -1.0 999.0 G
12:00 -1000.0 -1.0 M
13:00 +1000.0 999.0 M
16:00 +1.0 1000.0 G

III.Active Resource Solving

EUROPA provides several mechanisms for solving
planning and scheduling problems. There is a basic flaw-
based Solver cycle that

1) detects flaws in the current plan,
2) selects a flaw for resolution,
3) chooses a way of resolving the flaw, and
4) backtracks if the flaw cannot be fixed.

In the case of resource scheduling problems, there are
built-in methods for each of these steps. For step 1, a
resource profile is constructed for the current plan that
shows where the resource limits are exceeded. The
selection in step 2 is done with user-specified heuristics.
Step 3 installs an ordering constraint between two resource
transactions with the potential to resolve the flaw. Step 4
undoes previous steps to return to a point where an
alternative choice is available. For the search to be
complete and non-redundant, it suffices that the choices in
step 3 be mutually exclusive and exhaustive.

There are hooks to easily customize the various Solver
steps, and some variations on the methods are also provided.
In particular, there is a special grounded version of step 1.
As mentioned earlier, EUROPA normally produces flexible
solutions to activity planning problems. It does this by
analyzing the constraints so that it can detect flaws that it
knows must occur in some schedule that is consistent with
the current set of temporal constraints, using the maximum
flow approach of [8]. It then adds new constraints to
exclude those flaws. The final product is a “safe” set of
constraints that guarantees that every schedule satisfying
them has no flaws.

The grounded resource flaw detection method departs
from this in that it only looks for flaws in an evolving
grounded schedule, i.e., one in which every activity has a
definite time. This avoids the high overhead associated with
the maximum flow method. As it adds constraints, it
updates the grounded schedule to one that satisfies the new
constraints. The final product is a grounded schedule that
has no flaws, and an accompanying set of constraints.
However, in this case the set of constraints does not
necessarily constitute a safe flexible solution; there may still
be flaws in some of the other schedules that satisfy those
constraints. In our applications this is not an important
issue because the user generally only needs (and sees) the
grounded solution.

In principle, any grounded schedule that satisfies the
constraints can be used for grounded solving. For example
the earliest-time schedule, where every activity starts at the
earliest time allowed by the constraints, is an obvious
possibility. However, in our applications plan stability is
important. This requires that as constraints change, the
grounded schedule should change as little as practical in
order to satisfy the new constraints. Our approach uses
reference times [1] as the grounded schedule. This requires

that the reference times be updated as constraints are added
to remove the flaws. In [1], a solution grounding algorithm
is provided that does the updating. However, active solving
of resources requires an update after each solver step.
Consequently, we have implemented a new more efficient
grounding algorithm, which will be discussed in a
forthcoming paper.

It should be noted that flexible solutions do have
advantages over single solutions. In particular, the
flexibility may be useful in dealing with temporal
uncertainty during execution [8]. In our case, the above
methods can be regarded as producing a flexible temporal
solution by ignoring the reference times and just keeping the
precedence constraints introduced to eliminate flaws, This
flexible solution is not necessarily safe because it may have
other grounded solutions besides the reference schedule and
those might not satisfy the resource constraints. However, it
may be safe, if the grounded schedules have exposed the
possible flaws. Safety can be verified by a single maximum
flow calculation using the methods of [8].

If not safe, the above procedure can be followed by the
EUROPA flexible solving procedure to eliminate the
remaining flaws. However, an efficient alternative is to
augment the constraints with additional producer/consumer
and consumer/producer precedences extracted from the
grounded solution. When the precedences are complete in
this way, every solution satisfying the temporal constraints
is flawless if any one is. This augmenting approach is
unlikely in general to provide as much flexibility as the
flexible solving method, although for many applications this
approach offers an appropriate trade-off between solution
speed and flexibility.

IV.Search Behavior

We now consider how the resource encoding affects
search and backtracking behavior. A resource flaw occurs
when the value of the resource falls outside preset upper and
lower limits. We will confine the discussion to the lower
limit; the upper limit is similar or can be avoided by using
complementary resources. The state-based encoding uses
only the lower limit.

Given a fixed schedule, lower limit flaws can only occur
at points where there are consumer transactions that
decrement the resource below the limit. Consumers that
contribute to the resource shortfall at a flaw point are called
culprits; it will be useful to refer to those at the flaw itself as
prime culprits and the others as secondary culprits.
Producers that positively contribute to the resource value at
the flaw point, and so partially mitigate the shortfall are
helpers. Other producers that are not currently helpers, but
might be if moved, are called saviors. Clearly, culprits and
helpers precede the flaw and saviors strictly follow the flaw.

Fig. 1 illustrates this for the glucose testing example. The
-1000.0 consumer at noon (start of meal), where the flaw
occurs, is a prime culprit, while the -1.0 consumer at 8am
(start of fast) is a secondary culprit.

The +1000.0 initialization is a helper, and the +1000.0
producer at 1pm (end of meal) and +1.0 producer at 4pm
(end of fast) are saviors.
 Intuitively, the flaw shortfall can only be reduced by
moving a savior to before the flaw or moving a culprit to
after the flaw. However, the latter move would merely
postpone the flaw unless the culprit is moved far enough to
come after some savior. Consequently, we can say the only
possibilities for eliminating the flaw involve modifying the
plan in a way that makes some culprit follow some savior.
This may come about by moving the culprit or the savior or
both. Constraints may force other activities to move also.

In the example, possible fixes are to modify the plan so
that the -1.0 culprit (start of fast) comes after the +1000.0
savior (end of meal), or so that the -1000.0 culprit (start of
meal) comes after the +1.0 savior (end of fast). In other
words, the meal will come either before or after the fast.
The other culprit/savior combinations of the -1.0 consumer
(start of fast) after the +1.0 producer (end of fast) or the
-1000.0 consumer (start of meal) after the +1000.0 producer
(end of meal) are not possible fixes because of constraints.

Consider a slight modification of the example where the
meal overlaps the beginning of the fasting period. In this
case, the flaw occurs at the start of the fast. The roles of
primary and secondary culprit are reversed with respect to
the activities. However, the culprit/savior combinations
and the resulting fixes are essentially the same.

A particular culprit/savior move, even if allowed by the
constraints, might not eliminate or even reduce the flaw.
For example, moving a culprit may force some helper to
also move because of the constraints, which may render the
move futile or counterproductive. If one such move does
not resolve the flaw, we can try another. Consider, for
example, a case where two culprits c1 and c2, each of
resource value 3, are constrained to strictly precede a helper
h with resource value 4. Since only one of these culprits can
be moved in a single solver step, the first move will also
move the helper and will increase the flaw shortfall by 1,
but the second move will then decrease it by 3.

To ensure that the search is complete and systematic,
instead of directly moving the culprit or savior, we add a
constraint s≤c, where s is the savior and c the culprit, to
enforce a suitable move. The solution grounding algorithm
then produces a new reference schedule where the savior
precedes the culprit. If the added constraint would be
inconsistent with the existing constraints, the move is
disallowed. If there are no allowed moves, then the flaw

cannot be fixed and the search must backtrack and revise a
previous choice, if possible. If backtracking returns to a
point where we added some s≤c, we remove it, instead add
the complementary constraint c<s, and resume forward
search. These two choices are mutually exclusive and
exhaustive, fulfilling the condition for a complete and
systematic search.

In the state encoding, the examples we considered show
that the flaw resolution steps may, in effect, move an
activity with an unsatisfied requirement either to a later or
earlier interval where the desired state holds. In general,
search that involves movements both backwards and
forwards could potentially lead to cycles. However, that is
not possible here because each flaw resolution movement
comes with an added constraint that excludes the previous
reference schedule. The systematic search is actually in the
flexible space of constraints; the grounded schedules are
used only to restrict which flaws are considered.

The above discussion and example dealt with a Boolean
state space. For enumerated state spaces, there is a further
issue. Consider the following sequence of three state
changes and one requirement: …→ a → b → c → req(b).
This plan has a flaw because it requires state b after a
change to state c. Fig. 2 shows the effect on the state
resource for b. This could be fixed by moving the -1000
culprit at c after the +1 savior. However, there is another
possibility: reordering the sequence to be …→ a → c → b
→ req(b) also fixes the flaw, but this moves the c culprit
earlier rather than later.

As noted earlier, enumerated state spaces use saturated
arithmetic where repeated subtractions of 1000 have no
further effect. The intuition that a flaw shortfall can only be
reduced by moving a culprit after a savior depends on an
assumption that the value of a sum does not depend on the
order of the summands, but this is no longer true for
saturated arithmetic. For example, ((1000 – 1000) + 1000)
– 1000 = 0, but ((1000 – 1000) – 1000) + 1000 = 1000.
This creates an opportunity to resolve a flaw in another way:
instead of moving a -1000 culprit after a savior, we can
move it before a +1000 helper, which essentially “masks”
the culprit. Thus, for saturated arithmetic, the solver
decision method in step 3 needs to consider this option also.
The “culprit after savior” and “culprit before helper” options
are analogous to promotion and demotion as discussed by
Chapman [10], but are simpler in the grounded schedule
approach used here.

We now consider how this approach helps to avoid the
issues described earlier with causal link mechanisms. At a
particular point in the search, a consumer transaction may
be satisfied in the sense that it is not a prime culprit for a

Figure 1: Culprits and Saviors

Figure 2: Enumerated State Flaw

flaw in the reference schedule. In the state-based encoding,
this may mean that an activity that requires a state follows a
state change to that state without any intervening change to
a different state. The enabling state change might then be
regarded as an “achiever” for the requirement. However,
unlike what happens with the causal link mechanism
discussed earlier, there is no commitment on the part of the
forward search to continue to use that achiever. For
example, in order to resolve some flaw elsewhere, it may be
necessary to put a change to a different state in between the
“achiever” and the requirement. That just creates a new
flaw that can be resolved in the forward search, which
results in a new achiever. With the causal link mechanism,
it would be necessary to backtrack to the point where the
causal link selection was made in order to revise that choice.

V.Closing Remarks

We have presented a new approach to active state-based
scheduling that addresses flaws left unfixed by conflict
resolution, while avoiding the search pitfalls associated with
traditional causal link mechanisms. The method uses a
blend of grounded flaw selection and flexible flaw
resolution that results in a grounded solution that can be
extended to a flexible solution.

The system was tested by taking an existing multi-crew
scheduling application that involved state-based planning
and modifying the model so that one state requirement
(crew members should be hungry before eating) was
modelled using the new approach, while other requirements
continued to use the existing conflict resolution method. A
somewhat unexpected bonus was that the modified system
took substantially fewer steps to solve the modified
requirement without affecting the solution of the other
requirements. Our current hypothesis to explain this is that
looking for a single grounded solution is inherently an
easier task than searching the flexible space (even when the
latter is only doing conflict resolution). In the future we
would like to evaluate this hypothesis empirically with more
extensive testing.

We would also like to experiment with new ways of
extending a grounded solution to a flexible one that might
provide more flexibility than the method discussed earlier.
One promising direction is to use the grounded solution as a
precomputed oracle to influence the choices within the full
flexible solving algorithm.

Our experience suggests that explicit specialization of
the resource solving method to state-based reasoning would
be beneficial. In particular, the set of useful culprit/savior
pairs could be pruned by noting that certain combinations
would not provide any benefit to the flaw. For example,
suppose a flaw occurs because a particular state requirement
S is not met. If some other activity that requires S occurs
entirely before the flaw, it is futile to move that activity
beyond the flaw because the movement of the secondary
culprit at the activity start is undercut by the concomitant
movement of the helper at the activity end.

In future work, we would like to dispense with the
numeric encoding of states, and devise direct flaw detection
and resolution methods inspired by the numeric encoding.
This should bring about significant performance
improvements and simplified modeling, as it allows a more
compact representation for book-keeping instead of needing
a separate resource for each state in the enumerated set.
Also, as we reason directly on states we should be able to
perform more intelligent propagation on the domains of the
variables involved in the state constraints, which should
translate into more efficient search.

References

[1] J.L. Bresina, and P.H. Morris, “Mixed-Initiative Planning in
Space Mission Operations”, AI Magazine, 28, 2, AAAI, Menlo
Park, Summer, 2007, pp. 75-88.
[2] .J.L. Bresina and P.H. Morris, “Mission Operations Planning:
Beyond MAPGEN”, Second IEEE International Conference on
Space Mission Challenges for Information Technology, Pasadena,
CA., 2006.
[3] J. Bresina, A. Jónsson, P. Morris, and K. Rajan, “Activity
Planning for the Mars Exploration Rovers”, Fourteenth International
Conference on Automated Planning and Scheduling, Monterey,
2005, pp. 40-49.
[4] J. Frank and A. Jónsson, “Constraint-Based Interval and
Attribute Planning.” Journal of Constraints, Special Issue on
Constraints and Planning, 2003.
[5] A. K. Jónsson, P. H. Morris, N. Muscettola, and K. Rajan,
“Next generation Remote Agent planner,” Fifth International
Symposium on Artificial Intelligence, Robotics and Automation in
Space (iSAIRAS99), 1999.
[6] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint
networks,” Artificial Intelligence, 49, 1991, pp. 61-95.
[7] P.H. Morris and J.L. Bresina, “Active and passive constraint
enforcement for activity planning,” ISAIRAS, Pasadena, CA.,
2008.
[8] N. Muscettola, “Incremental maximum flows for fast envelope
Computation”, Proc. of 14th ICAPS, 2004.
[9] D.S. Weld, “An introduction to least commitment planning,” AI
Magazine, 15, 1994, pp. 27-61.
[10] D. Chapman, “Planning for conjunctive goals,” Artificial
Intelligence, 32, 1987, pp. 333-377.

