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Abstract—A mixed-initiative approach to activity planning for 
space  mission  operations  was  introduced  in  the  Mars 
Exploration  Rover  mission,  and  has  been  extended  and 
adapted  to  other  missions.   The  approach  involves  a 
collaboration between a human planner and automated tools 
that  reason about  activities  and constraints.   One  important 
class of constraints arises from state requirements and effects. 
The mixed-initiative framework passively detects and reports 
constraint  violations.   At the user's  request,  it can also offer 
suggestions, obtained through automated planning techniques, 
for  actively  fixing  certain  violations.   Due  to the  need for a 
rapid  response,  active  solving  previously  used  a  timeline 
insertion strategy that limited the types of violations that could 
be fixed, whereas the passive checking employed an encoding 
of the state constraints as resource constraints that identified 
all the violations.  In this paper, we report on an extension of 
the  active  solver  to  handle  resource  problems,  allowing  a 
unification of the passive and active strategies.
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I. INTRODUCTION

Activity planning is an important component of ground 
operations for actual and simulated space missions. For the 
Mars Exploration Rover mission, a tool called MAPGEN [3] 
was  developed  that  introduced  a  semi-automated,  mixed-
initiative approach [1] for activity planning. This approach 
has been continued in Ensemble [2], which has been adapted 
for  several  space-related  applications  including  Mars  and 
Lunar missions and ISS scheduling.

Classical planning and scheduling systems have typically 
focused on a form of active solving where the choices are 
entirely under the control of an automated system. However, 
ground  operations  engineers  in  space-related  applications 
have made clear their preference for an adjustable level of 
automation. This preference is based on a number of factors 
[3] that make it desirable for the human operator to actively 
participate in plan construction.

The  mixed-initiative  framework  incorporates  both 
passive  and  active  enforcement  of  constraints.  In  passive 
enforcement,  the  system  notifies  the  user  about  flaws  or 
violations  in  the  plan.  For  example,  a  medical  constraint 
might require fasting for 12 hours before a glucose test;  a 

plan that had a meal 5 hours before such a test would thus be 
flawed.  In active enforcement, the system can suggest ways 
to fix a violation, for example moving the meal earlier or the 
test  later.  Active  enforcement  may also involve,  as  a user 
option,  maintaining  plan  validity  when responding  to  user 
modifications,  for  example  keeping  a  minimum  12-hour 
separation when the user directly moves either activity.  In 
our applications, the activities in a plan are regarded as being 
complete, so the active enforcement only suggests changing 
the time of activities, not adding new activities.  Thus, it is 
restricted to a form of scheduling rather than full planning.

The Ensemble  mixed-initiative  framework  relies  on an 
underlying  planning/scheduling  constraint  solver  called 
EUROPA [4][5]. This system produces a flexible solution to 
an  activity-planning  problem.  A  flexible  solution 
encapsulates  in  a  concise  data  structure  called  a  Simple 
Temporal Network [2] a family of plans or schedules with 
similar causal structure but varying start times. However, for 
ease of comprehension, the plan is presented to the human 
operator as a normal fixed-time schedule. This is chosen to 
be  as  close  as  is  practical  (considering  the  enforced 
constraints)  to  a  reference  schedule  [3]  that  captures  the 
intent  of  the  user.  In  particular,  the  reference  schedule 
reflects  changes  made  directly  by  the  operator  as  well  as 
changes resulting from constraint enforcement.  Constraints 
are enforced at the discretion of the operator.

EUROPA  provides  a  library  of  built-in  plan-oriented 
constraints  to  aid  in  constructing  plans.  In  particular,  it 
includes  a  timeline  mechanism  to  help  enforce  mutual 
exclusion constraints. A timeline is a sequentially ordered set 
of intervals.  Thus, it is possible to ensure that two activity 
instances do not overlap in time by specifying in the model 
that they have interval subgoals that go on the same timeline. 
Subgoals  may  have  varying  qualitative  and  quantitative 
temporal  relationships  to their activities  [5].  These include 
EQUALS,  where the subgoal  is co-temporal  with the activity, 
CONTAINED-BY, where the span of the subgoal covers the span 
of the activity, and  MEETS and  MET_BY where the activity and 
subgoal  touch.  We  have  previously  used  the  timeline 
mechanism to support  active  enforcement.  In this  context, 
the reference schedule is used as the basis for a minimum 
perturbation heuristic that orders the placement choices. This 

mailto:J.L.Bresina@nasa.gov
mailto:Paul.H.Morris@nasa.gov


promotes stability in the plans incrementally constructed by 
the solver.

EUROPA also provides  a mechanism to track resource 
usage in activity plans. The global resource usage profile is 
calculated  from  the  resource  transactions  of  individual 
activities that are specified in the model.   The system also 
detects violations of overall resource limits that are specified 
in  the  model,  and  identifies  them  as  flaws  in  the  plan. 
Although the natively supported resources are numerical, we 
will  see  that  complex  state  conditions  can  be  efficiently 
encoded and checked as numerical resources.

Previous versions of the Ensemble solver have used the 
EUROPA resource mechanism for passive detection of State 
constraint  violations.  However,  active fixing was based on 
timelines.   As  we  will  see,  there  are  certain  drawbacks 
associated with this.  Recently, EUROPA has been extended 
to  include  efficient  mechanisms  for  active  solving  of 
resource flaws.  This provided an opportunity  to unify the 
passive and active strategies,  but there remained a need to 
reconcile the fixed-time reference schedule of Ensemble with 
the flexible-time solver  mechanisms  of  EUROPA.   In this 
paper  we  describe  an  approach  that  uses  the  reference 
schedule internally within EUROPA to guide a flexible time 
solving process.

A. Active State Reasoning

One  of  the  core  mechanisms  in  the  active  state-based 
reasoning used in Ensemble and described in [7] is  conflict  
resolution.  This involves imposing ordering constraints on 
events with inconsistent states so that they cannot happen at 
the same time.  For example,  a  TEST-GLUCOSE activity could 
have a prior food exclusion requirement that is violated by 
an effect of a MEAL activity, necessitating an ordering of the 
requirement and the effect so that they cannot coincide.  This 
basic  mechanism  does  not  distinguish  between  state 
requirements  and  state  effects;  any  inconsistent  pair  will 
need an ordering and either ordering may be chosen if it is 
consistent with the other constraints.

Conflict  resolution  alone  is  insufficient  for  complete 
state-based scheduling.  For example, consider a  MEDICATION 
activity with a stomach-full requirement and a MEAL activity 
with  a  stomach-empty  requirement.   If  the  meal  is 
constrained to follow the medication, there is no concurrent 
inconsistency,  but  those  two  activities  alone  in  that  order 
would not constitute  a valid plan because the stomach-full 
requirement would not be fulfilled until after the medication 
activity has already occurred

In  traditional  state-based  planning  and  scheduling, 
conflict resolution is augmented by a causal link mechanism 
where each event that requires a particular state is linked to 
some event that achieves the state [9].  The link imposes a 
precedence  constraint  between  the  two  events.  It  also 
establishes an additional state (maintenance) requirement on 
the interval between the events.  In EUROPA, causal links 
can be imposed by creating a separate timeline for a set of 
related states,  and then using  CONTAINED-BY subgoals on that 
timeline for requirements and MEETS subgoals for effects [4]. 
For  example,  in  Remote  Agent  [5],  a  THRUST activity  is 

CONTAINED-BY a  POINTING subgoal on an attitude timeline,  and 
this is merged with a MEETS subgoal of a TURNING activity.

The  problem  with  causal  links  is  that  they  involve  a 
somewhat  arbitrary  choice  of  which  achiever  to  link  to  a 
requirement.   Since  the  causal  link  is  protected  in  the 
forward  search,  a  bad  choice  can  only  be  corrected  by 
backtracking, which may be deep.  Furthermore, depending 
on the order  in which activities  are added to the plan and 
subgoals are expanded, the correct choice may not even be 
available  at  the  time  the  selection  is  made,  and  thus  the 
backtracking may be futile.

Experience with Remote Agent [5] suggested that finely 
tuned heuristics that avoid most backtracking are needed to 
make the causal link method workable. Unfortunately, such 
heuristics are typically brittle with respect to small changes 
in the model.  Moreover, the heuristics, which are generally 
tuned for the forward search, tend to become less effective 
after backtracking.

In other experience with causal link mechanisms during 
the development  of  MAPGEN [3],  it  was found that  poor 
planning  search  behavior  was  particularly  associated  with 
situations where two activities that required the same state 
were linked to the same achiever.  This made it impossible to 
insert a third activity requiring a different state between the 
two activities without generally extensive backtracking.

In MAPGEN, as deployed, and the Ensemble scheduler, 
causal link solving has been avoided due to these problems; 
these  systems  use  only  conflict  resolution  for  automated 
violation fixing.  Experience shows this approach gives good 
search  performance  even  without  finely  tuned  heuristics. 
The drawback is incomplete fixing, i.e., some violations may 
remain even though a schedule  exists  that  could fix them. 
Since  these  systems  are  mixed-initiative,  and  flag  all 
violations,  the  human  operator  has  the  opportunity  (and 
responsibility) to fix any left by the automated process.

What  is  needed  is  a  way  of  formulating  a  complete 
systematic search that, in effect, can correct a bad causal link 
"after the fact" within the forward search without the need 
for backtracking.  It turns out a resource perspective on flaws 
is key to achieving this.  In previous work, we have used an 
encoding  of  state  constraints  as  resource  constraints  to 
facilitate passive detection of state violations.  In this paper 
we introduce a systematic resource solver that can actively 
fix state violations using the same encoding in a way that has 
the effect of retroactive correction of causal links.

EUROPA  provides  an  extensible  framework;  state 
constraints  could in principle  be supported by adding new 
modeling constructs, search mechanisms, and data structures 
to reason about discrete states.  That new mechanism could 
be informed by the analogy with resource solving to better 
handle  the causal  link issue.    However,  given  that   state 
constraints  can  be  efficiently  encoded  using  numeric 
resources,  which were already supported in EUROPA,  we 
decided to pursue that implementation path first so we could 
verify  the  new  approach,  while  significantly  reducing  the 
need for writing new code in the short term.



II.STATE RESOURCE ENCODING

In  this  section  we  describe  the  encoding  of  states  as 
numeric resources.  This is similar to the encoding used for 
passive  resource  checking  in  [7],  except  that  enumerated 
state  spaces  are  now  also  handled.   First  we  review  the 
encoding for  Boolean states that have only  TRUE and  FALSE 
values.  The encoding uses consumable resources, also called 
reservoirs,  that  involve  distinct  produce  and  consume 
transactions  that  increment  or  decrement  the  resource  at 
given points in time.  For example, a mission crew, where 
crew members can be assigned to and relieved from duties, 
may be regarded as such a resource.

We encode a Boolean state using a consumable resource 
as follows.  If the state is initially TRUE, the initial capacity of 
the  resource  is  a  specific  large  number  that  we designate 
TRUE_VALUE (currently 1000.0); otherwise the initial capacity 
is zero.  An event that changes the state from TRUE to FALSE 
consumes  TRUE_VALUE amount  of  the resource,  whereas an 
event that changes the state from  FALSE to  TRUE produces a 
like  amount.   An  activity  that  requires  the  TRUE state 
consumes a unit amount of the resource at the beginning and 
returns  it  at  the  end.   It  is  considered  a  violation  if  the 
available capacity of  the resource drops below zero.   The 
encoding is summarized in table I.

Note  that  in  the  TRUE state,  this  numerical  encoding 
permits up to  TRUE_VALUE concurrent instances of activities 
that  require  the  TRUE state,  whereas  in  the  FALSE state  any 
occurrence of such an activity drops the numerical resource 
below 0.0, and thus produces a violation.  (We assume that 
TRUE_VALUE is  chosen  to  be  sufficiently  large  to 
accommodate the amount of concurrency that is needed for 
the application.)

Enumerated state spaces may be represented by using a 
separate  Boolean  for  each individual  state.   When a state 
change occurs, each state Boolean is set to FALSE except for 
that  of the new state,  which is  set to  TRUE.   For  example, 
with an enumerated state space {a, b, c}, a state change to b 
would set the Boolean for b to TRUE and those for a and c to 
FALSE.  Note, however,  that a state change to b, followed by 
a change to c, sets a to FALSE twice.  

TABLE I. NUMERICAL ENCODING OF BOOLEAN STATE.

Boolean Numerical Encoding

Initial TRUE 1000.0
Initial FALSE      0.0

TRUE→FALSE Subtract 1000.0
FALSE→TRUE Add      1000.0

Start require TRUE Subtract 1.0
End require TRUE Add      1.0

Violation < 0.0

In  this  situation,  we  would  like  the  extra  FALSE setting  to 
simply have no effect rather than eliciting a violation.  For 
this  reason,  the  resource  mechanism  is  modified  to  use 
saturated  arithmetic instead  of  normal  arithmetic. 
Specifically, if a resource transaction would otherwise cause 
the resource value to go outside the range [1 -  TRUE_VALUE, 
TRUE_VALUE],  then  multiples  of  TRUE_VALUE are  added  or 
subtracted  to  bring  it  back  within  that  range.   Thus,  the 
saturated  resource  values  retain  no  memory  of  previous 
states,  and  the  state  transitions  behave  like  Markov 
processes.

Negated  and  disjunctive  state  requirements  for  small 
enumerated  sets  can  be  effectively  handled  within  this 
framework  by  assigning  an  additional  resource  to  each 
negated value,  i.e.,  introducing a second Boolean with the 
opposite sense.  For example, with an enumerated state space 
{a,b,c,d}, the disjunctive requirement a_or_b is equivalent to 
the two requirements not_c and not_d.

For many applications,  an Activity Dictionary is used to 
statically associate activity types with state requirements and 
effects.   However,  in  some  applications  the  users  have 
expressed  a need  to  configure  the  state  impact  of  activity 
instances dynamically during planning.  This is achieved by 
encapsulating the  state requirements and effects in optional 
sub-activities that can be attached to the parent activities via 
temporal constraints.  The sub-activities may be temporally 
offset  from the  parent  activity,  as  for  example  the  fasting 
requirement associated with a glucose test.

To  make  the  example  more  concrete,  consider  a  plan 
fragment with a one-hour meal activity  M starting at noon, 
and a 15 minute  glucose  test  activity  G at  3:45pm.   Also 
suppose there is an eight-hour fasting requirement preceding 
the end of the test.  We model this using a fasting resource 
with TRUE_VALUE as the initial value.  The fasting requirement 
for  G results  in  a  consumer  transaction  at  8am  and  a 
producer  transaction at 4pm, both with 1.0 as the amount. 
We also have a consumer transaction at noon, and a producer 
transaction at 1pm, with  TRUE_VALUE as the amount in both 
cases.  This plan fragment is flawed because the value of the 
fasting resource drops to -1.0 at noon, which is a violation. 
Table II summarizes the situation using negated amounts to 
indicate the consumer transactions.  We will use this later as 
a  running  example  to  illustrate  how  resource  solving 
operations can fix state violations.

TABLE II. MEAL/GLUCOSE TEST  INTERACTS WITH  FASTING RESOURCE.

Time
Resource 

Transaction
Resource 

Value
Source 
Activity

Initial 1000.0
08:00 -1.0 999.0 G
12:00 -1000.0 -1.0 M
13:00 +1000.0 999.0 M
16:00 +1.0 1000.0 G



III.Active Resource Solving

EUROPA  provides  several  mechanisms  for  solving 
planning and scheduling problems.   There is a basic flaw-
based Solver cycle that

1) detects flaws in the current plan,
2) selects a flaw for resolution,
3) chooses a way of resolving the flaw, and
4) backtracks if the flaw cannot be fixed.

In the  case  of  resource  scheduling  problems,  there  are 
built-in  methods  for  each  of  these  steps.   For  step  1,  a 
resource  profile   is  constructed  for  the  current  plan  that 
shows  where  the  resource  limits  are  exceeded.   The 
selection  in  step  2  is  done  with  user-specified  heuristics. 
Step 3 installs an ordering constraint between two resource 
transactions with the potential to resolve the flaw.  Step 4 
undoes  previous  steps  to  return  to  a  point  where  an 
alternative  choice  is  available.   For  the  search  to  be 
complete and non-redundant, it suffices that the choices in 
step 3 be mutually exclusive and exhaustive.

There are hooks to easily customize the various Solver 
steps, and some variations on the methods are also provided. 
In particular, there is a special  grounded version of step 1. 
As mentioned earlier, EUROPA normally produces flexible 
solutions  to  activity  planning  problems.   It  does  this  by 
analyzing the constraints so that it can detect  flaws that it 
knows must occur in  some schedule that is consistent with 
the current set of temporal constraints, using the maximum 
flow  approach  of  [8].   It  then  adds  new  constraints  to 
exclude  those  flaws.   The final  product  is  a “safe” set  of 
constraints  that  guarantees  that  every  schedule  satisfying 
them has no flaws.

The grounded  resource  flaw detection  method departs 
from  this  in  that  it  only  looks  for  flaws  in  an  evolving 
grounded schedule, i.e.,  one in which every activity  has a 
definite time.  This avoids the high overhead associated with 
the  maximum  flow  method.   As  it  adds   constraints,  it 
updates the grounded schedule to one that satisfies the new 
constraints.   The final product is a grounded schedule that 
has  no  flaws,  and  an  accompanying  set  of  constraints. 
However,  in  this  case  the  set  of  constraints  does  not 
necessarily constitute a safe flexible solution; there may still 
be flaws in some of the other  schedules that satisfy those 
constraints.   In   our  applications  this  is  not  an  important 
issue because the user generally only needs (and sees) the 
grounded solution.

In  principle,  any  grounded  schedule  that  satisfies  the 
constraints can be used for grounded solving. For example 
the earliest-time schedule, where every activity starts at the 
earliest  time  allowed  by  the  constraints,  is  an  obvious 
possibility.   However,  in our  applications  plan stability is 
important.   This  requires  that  as  constraints  change,  the 
grounded  schedule  should  change  as  little  as  practical  in 
order  to  satisfy  the  new  constraints.   Our  approach  uses 
reference times [1] as the grounded schedule.  This requires 

that the reference times be updated as constraints are added 
to remove the flaws.  In [1], a solution grounding algorithm 
is provided that does the updating.  However, active solving 
of  resources  requires  an  update  after  each  solver  step. 
Consequently,  we have implemented a new more efficient 
grounding  algorithm,  which  will  be  discussed  in  a 
forthcoming paper.

It  should  be  noted  that  flexible  solutions  do  have 
advantages  over  single  solutions.   In  particular,  the 
flexibility  may  be  useful  in  dealing  with  temporal 
uncertainty  during  execution  [8].   In  our  case,  the  above 
methods can be regarded as producing a flexible temporal 
solution by ignoring the reference times and just keeping the 
precedence constraints introduced to eliminate flaws,  This 
flexible solution is not necessarily safe because it may have 
other grounded solutions besides the reference schedule and 
those might not satisfy the resource constraints.  However, it 
may be  safe,  if  the grounded schedules  have  exposed  the 
possible flaws.  Safety can be verified by a single maximum 
flow calculation using the methods of [8].

If not safe, the above procedure can be followed by the 
EUROPA  flexible  solving  procedure  to  eliminate  the 
remaining  flaws.   However,  an  efficient  alternative  is  to 
augment the  constraints with additional producer/consumer 
and  consumer/producer  precedences  extracted  from  the 
grounded solution.  When the precedences are complete in 
this way, every solution satisfying the temporal constraints 
is  flawless  if  any  one  is.   This  augmenting  approach  is 
unlikely  in  general  to  provide  as  much  flexibility  as  the 
flexible solving method, although for many applications this 
approach  offers  an  appropriate  trade-off  between  solution 
speed and flexibility.

IV.Search Behavior

We  now  consider  how  the  resource  encoding  affects 
search and backtracking behavior.  A resource flaw occurs 
when the value of the resource falls outside preset upper and 
lower limits.   We will confine the discussion to the lower 
limit; the upper limit is similar or can be avoided by using 
complementary  resources.   The  state-based encoding  uses 
only the lower limit.

Given a fixed schedule, lower limit flaws can only occur 
at  points  where  there  are  consumer  transactions  that 
decrement  the  resource  below the  limit.   Consumers  that 
contribute to the resource shortfall at a flaw point are called 
culprits; it will be useful to refer to those at the flaw itself as 
prime  culprits  and  the  others  as  secondary  culprits.  
Producers that positively contribute to the resource value at 
the  flaw  point,  and  so  partially  mitigate  the  shortfall  are 
helpers.    Other producers that are not currently helpers, but 
might be if moved, are called saviors.  Clearly, culprits and 
helpers precede the flaw and saviors strictly follow the flaw.

Fig. 1 illustrates this for the glucose testing example. The 
-1000.0 consumer  at noon (start of meal),  where the flaw 
occurs, is a prime culprit,  while the -1.0 consumer at 8am 
(start of fast) is a secondary culprit.  



The  +1000.0 initialization  is  a  helper,  and  the  +1000.0 
producer at 1pm (end of  meal) and +1.0 producer at 4pm 
(end of fast) are saviors.
  Intuitively,  the  flaw  shortfall  can  only  be  reduced  by 
moving a savior  to before the flaw or moving a culprit  to 
after  the  flaw.   However,  the  latter  move  would  merely 
postpone the flaw unless the culprit is moved far enough to 
come after some savior.  Consequently, we can say the only 
possibilities for eliminating the flaw involve modifying the 
plan in a way that makes some culprit follow some savior. 
This may come about by moving the culprit or the savior or 
both.  Constraints may force other activities to move also.

In the example, possible fixes are to modify the plan so 
that the -1.0 culprit  (start of fast) comes after the +1000.0 
savior (end of meal),  or so that the -1000.0 culprit (start of 
meal)  comes  after  the +1.0 savior  (end of  fast).   In other 
words,  the  meal  will  come either  before  or  after  the fast. 
The other culprit/savior combinations of the -1.0 consumer 
(start  of  fast)  after  the +1.0 producer  (end of  fast)  or  the 
-1000.0 consumer (start of meal) after the +1000.0 producer 
(end of meal) are not possible fixes because of constraints.

Consider a slight modification of the example where the 
meal overlaps the beginning of the fasting period.  In this 
case, the flaw occurs at the start of the fast.  The roles of 
primary and secondary culprit are reversed with respect to 
the  activities.   However,  the   culprit/savior  combinations 
and the resulting fixes are essentially the same.

A particular culprit/savior move, even if allowed by the 
constraints,  might  not  eliminate  or  even  reduce  the  flaw. 
For  example,  moving  a culprit  may force  some  helper  to 
also move because of the constraints, which may render the 
move futile  or counterproductive.   If  one such move does 
not  resolve  the  flaw,  we  can  try  another.   Consider,  for 
example,  a  case  where  two  culprits  c1 and  c2,  each  of 
resource value 3, are constrained to strictly precede a helper 
h with resource value 4. Since only one of these culprits can 
be moved in a single solver step,  the first move will  also 
move the helper and will  increase the flaw shortfall  by 1, 
but the second move will then decrease it by 3.

To  ensure  that  the  search  is  complete  and  systematic, 
instead of directly moving the culprit  or savior,  we add a 
constraint  s≤c,  where  s is  the  savior  and  c the  culprit,  to 
enforce a suitable move.  The solution grounding algorithm 
then  produces  a new reference  schedule  where  the  savior 
precedes  the  culprit.   If  the  added  constraint  would  be 
inconsistent  with  the  existing  constraints,  the  move  is 
disallowed.   If there are no allowed moves,  then the flaw 

cannot be fixed and the search must backtrack and revise a 
previous  choice,  if  possible.   If  backtracking  returns  to  a 
point where we added some s≤c, we remove it, instead add 
the  complementary  constraint   c<s, and  resume  forward 
search.   These  two  choices  are  mutually  exclusive  and 
exhaustive,  fulfilling  the  condition  for  a  complete  and 
systematic search.

In the state encoding, the examples we considered show 
that  the  flaw  resolution  steps  may,  in  effect,  move  an 
activity with an unsatisfied requirement either to a later or 
earlier  interval  where the desired state  holds.   In general, 
search  that  involves  movements  both  backwards  and 
forwards could  potentially lead to cycles.  However, that is 
not  possible  here  because  each flaw resolution  movement 
comes with an added constraint that excludes the previous 
reference schedule.  The systematic search is actually in the 
flexible  space  of  constraints;  the  grounded  schedules  are 
used only to restrict which flaws are considered.

The above discussion and example dealt with a Boolean 
state space.  For enumerated state spaces, there is a further 
issue.   Consider  the  following  sequence  of  three  state 
changes and one requirement:  …→ a → b → c → req(b). 
This  plan  has  a  flaw  because  it  requires  state  b after  a 
change  to  state  c.  Fig.  2  shows  the  effect  on  the  state 
resource  for  b.  This  could  be  fixed by moving  the  -1000 
culprit  at  c after  the +1 savior.  However,  there is  another 
possibility: reordering the sequence to be …→ a → c → b 
→  req(b) also fixes the flaw, but this moves the  c culprit 
earlier rather than later.

As noted earlier,  enumerated state spaces use  saturated 
arithmetic  where  repeated  subtractions  of  1000  have  no 
further effect.  The intuition that a flaw shortfall can only be 
reduced by moving a culprit  after a savior  depends on an 
assumption that the value of a sum does not depend on the 
order  of  the  summands,  but  this  is  no  longer  true  for 
saturated arithmetic.  For example, ((1000 – 1000) + 1000) 
– 1000 = 0, but  ((1000 – 1000) – 1000) + 1000 = 1000. 
This creates an opportunity to resolve a flaw in another way: 
instead  of  moving  a  -1000  culprit  after  a  savior,  we  can 
move it before a +1000 helper,  which essentially “masks” 
the  culprit.   Thus,  for  saturated  arithmetic,  the  solver 
decision method in step 3 needs to consider this option also. 
The “culprit after savior” and “culprit before helper” options 
are analogous to promotion and demotion as discussed by 
Chapman  [10],  but  are  simpler  in  the  grounded  schedule 
approach used here.

We now consider how this approach helps to avoid the 
issues described earlier with causal link mechanisms.  At a 
particular point in the search, a consumer transaction may 
be  satisfied in the sense that it is not a prime culprit for a 

Figure 1: Culprits and Saviors

Figure 2: Enumerated State Flaw



flaw in the reference schedule.  In the state-based encoding, 
this may mean that an activity that requires a state follows a 
state change to that state without any intervening change to 
a different state.  The enabling state change might then be 
regarded as an “achiever”  for  the requirement.   However, 
unlike  what  happens  with  the  causal  link  mechanism 
discussed earlier, there is no commitment on the part of the 
forward  search  to  continue  to  use  that  achiever.   For 
example, in order to resolve some flaw elsewhere, it may be 
necessary to put a change to a different state in between the 
“achiever”  and  the  requirement.   That  just  creates  a  new 
flaw  that  can  be  resolved  in  the  forward  search,  which 
results in a new achiever.  With the causal link mechanism, 
it  would be necessary to backtrack to the point  where the 
causal link selection was made in order to revise that choice.

V.Closing Remarks

We have presented a new approach to active state-based 
scheduling  that  addresses  flaws  left  unfixed  by  conflict 
resolution, while avoiding the search pitfalls associated with 
traditional  causal  link  mechanisms.   The  method  uses  a 
blend  of  grounded  flaw  selection  and  flexible  flaw 
resolution  that  results  in  a  grounded  solution  that  can  be 
extended to a flexible solution. 

The system was tested by taking an existing  multi-crew 
scheduling  application  that  involved  state-based  planning 
and  modifying  the  model  so  that  one  state  requirement 
(crew  members  should  be  hungry  before  eating)  was 
modelled using the new approach, while other requirements 
continued to use the existing conflict resolution method.  A 
somewhat unexpected bonus was that the modified system 
took  substantially  fewer  steps  to  solve  the  modified 
requirement  without  affecting  the  solution  of  the  other 
requirements.  Our current hypothesis to explain this is that 
looking  for  a  single  grounded  solution  is  inherently  an 
easier task than searching the flexible space (even when the 
latter  is  only doing conflict  resolution).   In the future we 
would like to evaluate this hypothesis empirically with more 
extensive testing.

We  would  also  like  to  experiment  with  new  ways  of 
extending a grounded solution to a flexible one that might 
provide more flexibility than the method discussed earlier. 
One promising direction is to use the grounded solution as a 
precomputed oracle to influence the choices within the full 
flexible solving algorithm.

Our  experience  suggests  that  explicit  specialization  of 
the resource solving method to state-based reasoning would 
be beneficial.  In particular, the set of useful culprit/savior 
pairs could be pruned by noting that certain combinations 
would  not  provide  any benefit  to the flaw.   For example, 
suppose a flaw occurs because a particular state requirement 
S is not met.  If some other activity that requires  S occurs 
entirely  before  the  flaw,  it  is  futile  to  move  that  activity 
beyond  the  flaw because  the  movement  of  the  secondary 
culprit  at the activity  start  is undercut  by the concomitant 
movement of the helper at the activity end.

In  future  work,  we  would  like  to  dispense  with  the 
numeric encoding of states, and devise direct flaw detection 
and resolution methods inspired by the numeric encoding. 
This  should  bring  about  significant  performance 
improvements and simplified modeling, as it allows a more 
compact representation for book-keeping instead of needing 
a  separate  resource  for  each  state  in  the  enumerated  set. 
Also, as we reason directly on states we should be able to 
perform more intelligent propagation on the domains of the 
variables  involved  in  the  state  constraints,  which  should 
translate into more efficient search.
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