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Abstract—We describe our development of a key portion of a 
safety case for a safety-critical piece of NASA software 
designed to operate on a NASA launch vehicle. The software’s 
purpose is to make real-time determinations of the presence of 
catastrophic failure conditions of that vehicle and react 
accordingly. We show how our safety case development applies 
a series of generic software considerations instantiated on the 
specifics of the NASA software system. We conclude that this 
approach is applicable to a wide range of NASA software 
systems. 

Software safety; safety cases; V&V 

I.  INTRODUCTION 
Our work is motivated by the observation that safety 

cases are in widespread use in Europe and elsewhere, but 
have not taken hold within NASA. Our particular interest is 
in software systems. Both inside and outside NASA there 
has been advocacy for development of safety cases for 
software systems, but reports of actual applications are 
scarce.  

Our goals are to determine the feasibility of developing 
safety cases for NASA’s safety-critical space software, and 
to contribute guidance to help future developers of safety 
cases for similar software systems. Our first step was to 
develop an understanding of the state of the practice of safety 
cases. We found plenty of discussions of the concept of 
safety cases in the open literature. Our next step was to try to 
develop a safety case ourselves. We chose to develop a 
safety case for a significant portion of a safety-critical NASA 
software system. Our experience in doing this is described in 
this paper, which is organized as follows: 

Section II briefly introduces safety cases. 
Section III further describes the NASA context 

motivating our study. 
Section IV introduces the safety-critical software system 

for which we are developing a safety case. 
Section V shows key steps in our development of this 

safety case.  
Section VI summarizes our results and conclusions to 

date, and suggestions for future work. 

II. A BRIEF INTRODUCTION TO SAFETY CASES 
Safety Cases are used to manage and regulate major 

hazard industries (e.g., nuclear power, railroads, aviation, 
and offshore oil platforms) in Europe and elsewhere. Their 

origin traces back to the nuclear industry in the UK in the 
1960’s – [1] provides a succinct summary of their history. 
The following definition of a Safety Case is taken from the 
UK’s Defence Standard 00-56 [2]: 

“The Safety Case shall consist of a structured argument, 
supported by a body of evidence, that provides a compelling, 
comprehensible and valid case that a system is safe for a 
given application in a given operating environment.” 

Observe from this definition that a safety case is an 
argument, i.e., is intended for human understanding. The 
argument rests on evidence – both “direct” evidence (e.g., the 
results of tests, analyses, inspections) coupled with 
“backing” evidence to convey the trustworthiness of the 
direct evidence (e.g., that inspections were performed by 
trained personnel following accepted practices). The 
structured nature of the argument refers to its organization, 
necessary for presenting the case for the safety of a large 
and/or complex system. Overall, the argument must be 
compelling – it must convince people that a system is safe, 
comprehensible – understandable by people (the structured 
nature of the argument is important in this regard, so that 
humans can navigate and understand the safety case for a 
large and complex system), and valid – the argument must be 
consistent and complete, so that the safety claims of the 
system indeed follow from the structure of the argument and 
the evidence on which it based. The phrase safe for a given 
application in a given operating environment draws attention 
to the need to establish the context within which the safety 
case will establish that a system will be safe. 

III. SAFETY CASES AND NASA  
Our objective is to ascertain whether safety cases are 

suitable for software systems used in space. Our initial 
interest in safety cases stemmed from several sources:  
• NASA’s Constellation program several years ago 

recommended (but stopped short of mandating) the use 
of “dependability cases” 1  for software projects. The 
recommendation said in part: “Each project should 
develop and maintain a Dependability Case to show, at 
different stages of a project’s life cycle, how computing 

                                                           
1 A dependability case is a generalization of safety case. It addresses the 
aspects of dependability that are relevant for a particular system, such as 
availability, reliability, safety, security, real-time performance, 
interoperability, etc. not all of which are necessarily safety-related. [3] 
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system dependability will be, is being, and has been 
achieved.” [4] 

• In the same timeframe, a National Research Council 
panel on “Software for Dependable Systems: Sufficient 
Evidence” addressed the question of “How can software 
and the systems that rely on it be made dependable in a 
cost-effective manner, and how can one obtain 
assurance that dependability has been achieved?” The 
panel’s overall recommendation was to focus software 
certification and acceptance on the dependability case 
for the software [5].  

• In 2007 Professor John Knight from the University 
of Virginia visited JPL, gave a presentation advocating 
use of “assurance cases” for critical software, and 
engaged in further discussions on the subject during his 
visit. 

• Prior to the above, several members of CMU’s 
Software Engineering Institute had advocated 
dependability cases for software [3]. They used a space 
software system as illustration, showing portions of a 
dependability case for that system (our understanding is 
that they developed their dependability case after the 
system had been implemented). 

Despite these recurring expressions of advocacy from 
independent sources, we could not find any evidence of 
safety cases being developed, or planned to be developed, for 
NASA software systems. We attributed this to hesitation 
deriving from a lack of experience with safety cases within 
NASA, and more generally within the United States as a 
whole. Since no-one had constructed a safety case for a 
NASA software system, there was understandable reluctance 
to be the first to do so. 2  We also could find plenty of 
descriptions of the concept of safety cases, a few examples 
of actual safety cases3, but almost no examples of safety 
cases that specifically address details of software’s internals.4 
We recently found some helpful examples in [10].  

In response, we crafted a proposal to NASA’s Software 
Assurance Research Program to prototype the development 
of a safety case for a safety-critical NASA software system, 
and on the basis of that experience develop a NASA Safety 
Case Guide for evaluating the applicability of safety cases in 
NASA, and providing guidance and training to future NASA 
developers of safety cases.5 

                                                           
2  Discussions with Constellation personnel conveyed the following 
arguments that arose in opposition to requiring safety cases: (1) no 
experience for estimating the level of effort was available to the 
Constellation program; (2) proponents of safety cases could not produce 
cost models; and (3) it was believed that the required safety analysis is 
already adequately performed, i.e., the added value of a safety case was not 
apparent [6], [7]. 
3 A repository of safety cases is at [8]. 
4 An exception is the NASA Ames’ Robust Software Engineering group’s 
research on automated generation of safety cases for model-based 
development [9]. 
5  More recently, NASA’s Aeronautics Research Mission Directorate 
established a research effort under the Aviation Safety Research Program 
to investigate the use of safety cases to support verification and validation 
of flight-critical systems. A number of such research projects have been 
funded under this research effort, which is expected to continue over a 
three-year period. 

IV. FOCUS OF OUR STUDY – A NASA SAFETY-CRITICAL 
SOFTWARE SYSTEM 

For our study of how safety cases can be developed we 
picked as our target a software subsystem to operate on 
board a NASA launch vehicle. The subsystem in question is 
the Abort Failure Detection, Notification and Response 
(AFDNR) system [11]. Roughly speaking, AFDNR’s 
purpose is to make real-time determinations of the presence 
of catastrophic failure conditions of that vehicle from 
readings provided from sensors distributed throughout the 
space vehicle, and react accordingly. Dwight Sanderfer, lead 
of the AFDNR design effort at NASA Ames, provided us the 
following more thorough description of AFDNR’s purpose:  

The AFDNR function is a part of the Ares I 
Flight Computer flight software designed to 
recognize Ares I conditions that require Orion to 
manually or automatically issue the abort command 
to initiate the abort sequence to separate Orion from 
the Ares I vehicle, and notify Orion of the abort 
recommendation with sufficient time to safely 
separate the Orion from the Ares I.  

Sensor data from the launch vehicle is first 
“qualified” before sending on to AFDNR – this step 
identifies failed sensors, and disqualifies their data; 
thereafter AFDNR only considers qualified sensor 
data. 

AFDNR monitors qualified vehicle sensor data 
against a defined set of abort triggers (measures of a 
system’s state and/or behavior indicating an abort 
condition exists). Two abort triggers are defined for 
each abort condition; both are required for AFDNR 
to recognize this as the need for an abort. 

Upon recognition of the need for an abort, 
AFDNR notifies Orion (including crew), Mission 
Systems and Ground Systems (pre-launch only). 
Furthermore, if the abort condition is time-critical, 
AFDNR contains logic to autosafe the system [12]. 

Responses based on AFDNR’s abort recommendations 
have potentially safety-critical implications. As per NASA’s 
Software Safety Standard [13], AFDNR is therefore 
classified as safety-critical software (“Processes data … that 
lead directly to safety decisions…”). Our safety case study 
encompasses both the “qualification” of the sensor data 
provided to AFDNR and AFDNR’s determination of 
whether there is an abort condition, but does not encompass 
AFDNR’s response to abort conditions. 

As described above, the scope of our safety case is 
AFDNR software. The scope is further limited primarily to 
the AFDNR algorithms (i.e., executable prototype). This 
focus was selected because we had the best access to the 
algorithm developers and design documentation, and because 
the flight software had not been developed to the point where 
a representative safety case could be constructed within our 
project resources.6 In fact, all AFDNR software development 

                                                           
6 This is not to suggest that safety cases need or even should be developed 
only when the flight software development is well underway. In fact, the 
opposite is likely to be the case, and the literature indicates that safety case 
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was significantly scaled back half-way into our project with 
the termination of the Constellation Program. 

Given our project’s scope, we focused on several 
documents related to AFDNR to support development of the 
safety case. We also consulted with AFDNR project 
personnel at NASA Ames Research Center.  

The principal AFDNR resource used in developing the 
safety case has been the system definition and specifically 
the descriptions of AFDNR algorithms (and, to a lesser 
extent, sensor data qualification system (SDQS) functions). 
The flow diagrams for detection and confirmation functions 
serve as the specification for these functions, and were used 
in developing and testing the executable algorithms. 

We also referenced the AFDNR project’s mathematical 
framework used by project personnel to derive the allocation 
of false positives and false negatives from a module to its 
submodules given assumptions about common cause failures 
and the probability that the module will fail at a defined 
limit. Other relevant AFDNR references were the functional 
fault analysis (FFA) and the failure modes & effects analysis 
(FMEA). All of the resources mentioned in this paragraph 
contribute to the context for, but, in general, do not provide 
data for direct incorporation into, the software safety case.  

Also relevant to the software safety case is the testing 
that was performed on the prototype algorithms. Information 
on testing was provided in conversations with software 
engineers who performed the testing.  

For this paper we limit our description to aspects of 
AFDNR that have been previously published. This level of 
detail is sufficient for illustrating the points of this paper, but 
of course our actual safety case drives into greater detail of 
AFDNR itself. 

V. DEVELOPMENT OF THE SAFETY CASE 

A. System Level to Software Level 
The first step in our construction of the safety case was to 

identify the system-level safety requirements relevant to the 
AFDNR software subsystem, make those the top-level goals 
of our safety case, and decompose them to get to the level of 
the AFDNR software itself.  

As described in [11], the safety challenge pertinent to 
determination of an abort condition is: “… the need to reduce 
the false positive and false negative indications for abort. A 
false negative describes a situation where an abort is 
necessary to avoid loss of crew but is not detected by the 
system. A false positive describes an incorrect indication for 
the need to abort, where none is necessary. During launch 
and ascent, this could lead to loss of mission and loss of 
vehicle, and possibly loss of crew since the abort process is 
not without its own risk.”  

The launch vehicle’s requirements state upper-bounds on 
the probabilities of false positives and false negatives. These 
are decomposed into requirements on the vehicle’s major 
elements (e.g., first stage), leading to requirements on 
AFDNR’s determination of abort conditions, also expressed 

                                                                                                  
development should be integrated with the other activities in the software 
development lifecycle [14] 

as upper-bounds on the probabilities of false positives and 
false negatives. We mirror this decomposition in our safety 
case, leading to safety goals on AFDNR itself. 

Our initial focus has been on the false positive goal. Our 
choice was driven by the knowledge that the vehicle itself is 
designed to be reliable, hence false positives are the 
predominant concern (by comparison, only during the 
infrequent occasions when an abort is necessary could a false 
negative occur). There is commensurately more complexity 
in the design of AFDNR to minimize the probability of false 
positives, increasing the interest in how a safety case might 
apply to this. 

B. Quantifiable goals and the Software Safety Case 
Decomposition  
Since the safety requirements are provided as 

probabilistic assertions, we began our work on the AFDNR 
safety case by examining a number of publicly-available 
safety cases and papers that used analogous assertions. In 
these safety cases, the high level safety requirements are 
stated in terms of the probability or frequency of injury or 
fatality. For example, the documentation for reduced vertical 
separation minima (RVSM) post-implementation safety case 
in European air space gives the following high-level safety 
requirements [15]:  

(i) the vertical collision risk in RVSM airspace 
meets the ICAO Target Level of Safety (TLS) of 5 
x 10-9 fatal accidents per flight hour. 

(ii) The vertical collision risk in RVSM airspace 
due solely to technical height-keeping performance 
meets the ICAO TLS of 2.5 x 10-9 fatal accidents 
per flight hour. 

 
The architecture requirements for the Constellation 

program include analogous high-level safety requirements on 
various Constellation mission classes and flight phases. 
These safety requirements are allocated to various systems, 
subsystems, etc. The mathematical framework for allocating 
false positives and false negatives in Ares is based on 
probabilistic risk assessment (PRA). While well-established 
for hardware and systems, PRA’s applicability to software is 
questionable. (See, for example, [14] and [16]).  

Regardless of the applicability of PRA and other methods 
of allocating false positive and false negative requirements, 
allocation of these requirements to and within software, and 
the verification of such requirements, was not performed by 
the AFDNR design and algorithm development team and we 
have not attempted to carry out such an analysis for the 
safety case.7  

Another approach frequently used to address risk in 
safety cases is to use the “as low as reasonably practical” 
(ALARP) concept. [17] provides a safety case pattern for 
the argument. While this concept does not by itself fully 
address the question of allocating and verifying probabilistic 
safety requirements, it provides guidance for constructing 
the safety case argument in a way that allows experts to 

                                                           
7 The need to do so is not specific to safety cases, but should be addressed 
in any software safety analysis. 
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judge whether a target risk level (not expressed 
quantitatively in the safety case) is achieved according to a 
specific argument strategy and evidence set, at what the 
experts consider “reasonable” cost. On the other hand, this 
approach has been criticized as unable to capture, in the 
safety case structure, the information required for a 
quantitative modeling and analysis [18]. 

Building on this objection, [19] factors the problem into 
a safety argument and a confidence argument, where the 
confidence argument is based on subjective probability. We 
believe that this is a promising area of safety case research. 
However, without the data to construct the confidence 
argument, we have focused on the safety argument in our 
AFDNR safety case.  
 

C. Generic concerns for a software system - 
corresponding step in the safety case 
We decompose the goal that AFDNR system causes 

sufficiently few false positives by considering each of a 
generic set of concerns for any software system that 
performs a calculation8, and instantiating them on AFDNR. 
These generic concerns are:  

• Interference: Nothing external to the software will 
interfere with the correctness of its calculations. 

• Internals: The software itself performs its 
calculations correctly. 

• Inputs: The software’s inputs (upon which its 
calculations are based) are correct, or errors in those 
inputs will not cause the software to calculate 
incorrect results. 

• Outputs: The results of the software’s calculations 
are conveyed correctly and interpreted correctly 
wherever they are to be used. 

When instantiated on AFDNR’s calculation goal, these 
generic concerns become the following four subgoals: 

• The Interference subgoal: “AFDNR’s computing 
platform (including other software that might be 
executing upon it) does not interfere with AFDNR to 
cause it to generate false positives”. 

• The Internals subgoal: “AFDNR’s calculations do 
not generate false positives”. 

• The Inputs subgoal: “AFDNR’s inputs are correct or, 
if incorrect, will not lead AFDNR to generate false 
positives”. 

• The Outputs subgoal: “The results of AFDNR’s 
calculations are not corrupted to, or misinterpreted 
as, false positives”.  

The Interference and Outputs subgoals quickly lead to 
consideration of the broader context in which AFDNR 
resides. For example, the Interference subgoal we take one 

                                                           
8  These generic considerations correspond to requirements found in 
prescriptive standards such as IEEE Standard for Software Verification and 
Validation 1012-2004, which states “Determine… that the software 
interfaces correctly with other software components in the system in 
accordance with requirements and that errors are not propagated between 
software components of the system.” [20] 
 

step further and subdivide into a subgoal that the computing 
platform on which AFDNR executes will not cause AFDNR 
to generate false positives, and another subgoal that all other 
executing software will not cause AFDNR to generate false 
positives. Since detailed consideration of AFDNR’s 
computing platform and other software lies outside the scope 
of our effort, we simply capture the dependencies of the 
AFDNR safety case on these externalities in our safety case 
as assumptions that their claims are true.  

The Internals and Inputs subgoals form the heart of our 
safety case, since our focus is on the design of AFDNR 
itself. We look at each of these subgoals in the following 
subsections. 

D. AFNDR’s inputs  
To address the goal “AFDNR’s inputs are correct or, if 

incorrect, will not lead AFDNR to generate false positives” 
we first introduce a simple but necessary subgoal that 
“AFDNR’s inputs are not confused with one another”, and 
then consider each of the kinds of inputs that the software 
receives, introducing one subgoal for each kind. These give 
rise to quite different treatments in our safety case.  

AFDNR has two kinds of inputs: the input indicating the 
current mission phase (e.g., a mission phase might be “ascent 
before first state separation has occurred”), and the sensor 
readings. 

The first kind of input is the mission phase. To represent 
this in the safety case we add a subgoal “Mission phase input 
to AFDNR is correct, or if incorrect will not lead AFDNR to 
generate false positives”. Further explanation of what correct 
means is linked to this subgoal. Mission phase input is relied 
upon by AFDNR to be correct as-is (i.e., AFDNR takes no 
action to validate such inputs). To represent this in the safety 
case we refine the previous subgoal into a stricter subgoal 
“Mission phase input is correct”. The provider of this 
mission phase input is external to AFDNR, and hence 
outside our scope, so we attach an assumption to this subgoal 
asserting that the input is correct. This makes it clear that the 
safety case depends upon this assumption. 

The second kind of input to AFDNR is sensor data. To 
represent this in the safety case we add a subgoal “Sensor 
inputs to AFDNR are correct, or if incorrect will not lead 
AFDNR to generate false positives”. In contrast to the 
mission phase input, AFDNR does not assume these inputs 
are correct. Sensors are known to be fallible devices whose 
own failures lead to their reporting incorrect readings, and a 
significant portion of AFDNR’s design is devoted to 
correctly discerning the state of the vehicle despite the 
possibility of incorrect sensor inputs. To represent this in the 
safety case we refine the previous subgoal into a stricter 
subgoal “Incorrect sensor inputs to AFDNR will not lead 
AFDNR to generate false positives”. The AFDNR design 
achieves this by determining whether a sensor reading can be 
relied upon to be correct (a process referred to as “data 
qualification” in [21]), and excluding non-qualified sensor 
readings in its calculation of the condition of the vehicle. To 
represent this in the safety case we refine the previous 
subgoal into “AFDNR excludes incorrect sensor inputs from 
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its calculation of positives”. We will consider how AFDNR 
does this in the next section.  

Fig. 1 shows the portion of our safety case that 
decomposes the goal “AFDNR’s inputs are correct, or if 
incorrect, will not lead AFDNR to generate false positives” 
up to this point. This figure shows our decomposition 
diagrammatically, using the Goal Structured Notation 
developed at the University of York, UK [22]. The 
rectangular boxes denote subgoals, the oval (with a letter 
“A” to its bottom right) denotes an assumption, the rounded-
ended boxes denote context (additional information), and the 
parallelogram-shaped box denotes a strategy (an explanation 
of how the subgoal above the parallelogram is refined into 
the subgoals below it). The small diamond below the bottom 
of the “AFDNR’s inputs are not confused with one another” 
indicates that there is further elaboration of the safety case is 
needed to address this goal.  

Note that our entire safety case starts at the system level 
with the goal to show that the requirement placing an upper-
bound on the probability of false positives is met by 
AFDNR. Fig. 1 shows a portion from the interior of the 
entire safety case. 

We are using Adelard LLP’s ASCE™ software tool to 
edit and maintain our safety case. The figures in this paper 
are screenshots taken from our use of ASCE. 

E. The “Calculate/Convey/Use” Software Safety Case 
Pattern 
Excluding use of incorrect inputs from calculations 

obviously requires both recognizing when an input is 
incorrect, and then avoiding its use. As described in [11], in 
the architecture of AFDNR the recognition is done by a 
separate subsystem, called the “Sensor Data Qualification 
System” (SDQS) [21]. 

To represent this in our safety case we split the goal 
“AFDNR excludes incorrect sensor inputs from its 
calculation of positives” into three subgoals: 

• “Incorrect sensor inputs are identified by SDQS” – this 
is the calculation of a result (of the correctness of 
sensor inputs),  

• “Identifications of incorrect sensor inputs are 
conveyed from SDQS to AFDNR” – this is the 
conveyance of that result from where it is calculated to 
where it is used, and 

• “AFDNR excludes sensor inputs identified as 
incorrect from its calculation of positives” – this is the 
use of the calculated result (note that the use made of 
this result is to exclude the incorrect sensor input from 
AFDNR’s calculations). 

Fig. 2 shows this portion of our safety case. We believe 
that calculation/conveyance/use is a simple yet useful 

 
Figure 1. Decomposition of the goal “AFDNR’s inputs are correct, or if incorrect, will not lead AFDNR to generate false positives” 
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example of the concept of a “safety case pattern” [17], which 
says of them: “As with Design Patterns, Safety Case Patterns 
are intended to describe partial solutions, i.e., for safety cases 
– attacking just one aspect of the overall structure of the 
safety argument contained within a safety case”. In software 
systems there will clearly be many occasions when the 
calculation/conveyance/use pattern could apply.  

We think this pattern is useful to apply when, as here in 
the AFDNR system, safety hinges on key information being 
computed by one software component and used by another.  

F. AFDNR's internals 
We now briefly consider the Internals subgoal: 

“AFDNR’s calculations do not generate false positives”. As 
to be expected, the decomposition of this subgoal depends on 
the specifics of AFDNR, details of which are beyond the 
scope of this paper to elucidate. We here give a brief 
overview of the range of considerations addressed at this 
level. 

Within AFDNR the existence of abort conditions is 
determined based on sensor readings exceeding pre-
established thresholds. Avoiding false positives during these 
determinations depends on: 

• Threshold settings being designed correctly – “the 
choice of abort detection thresholds can influence 
the rates of false negatives and false positives” [11]  

• Those settings being encoded correctly in the 
software. 

• The AFDNR software correctly implements the 
logic of tests of sensor readings against thresholds. 

• The AFDNR software executing those tests at the 
right times. 

Each of these gives rise to an equivalent subgoal in our 
safety case. 

In addition, AFDNR requires that an abort condition 
must be both detected and either “confirmed” or 
“corroborated”. As stated in [11]: “…confirmation is defined 

as affirmation of the failure condition by measuring similar 
sensors multiple times, and corroboration is defined as 
affirmation of the fault or failure condition by measuring 
dissimilar sensors or assessing the health status of other 
vehicle components or subsystems.” This scheme further 
mitigates the risk of false positives, and therefore is 
represented in our safety case. 

G. Evidence (testing, simulation, MCDC etc) 
AFDNR’s developers had implemented and tested 

executable prototypes of some of the AFDNR fault detection 
algorithms specified by flow diagrams and other means in 
the system design document. Each algorithm implemented 
the detector for one abort condition. The developers used 
Mathworks® SystemTest™ to generate test cases, covering 
the full range of inputs (sequences of sensor inputs and 
qualification flags from SDQS). These inputs included 
nominal sensor data that should not cause AFDNR to 
respond with a fault detection, as well as data that should 
cause one of the faults of interest. The results were compared 
against the Matlab™ model in the system design document, 
which served as an oracle independent of the flow diagram 
specifications. The automated test case generator was used to 
generate tests for modified condition-decision coverage 
(MCDC) coverage of each abort condition handler. Given 
that each detection algorithm that was tested had a low 
cyclomatic complexity, no recursion and only bounded 
iteration, the test team lead believed that full path coverage 
would have been feasible given a reasonable level of funding 
and appropriate test tools.  

The safety case captures the kinds of evidence and 
justification that are required to show the adequacy of the 
validation efforts. A high level goal is “The testing 
methodology is appropriate to make false positives 
sufficiently unlikely.” This requires a subgoal to justify the 
use of each tool. Another subgoal is needed to justify the use 
of MCDC testing. Another high level goal is to justify the 
capability (credentials, experience) of the test team.  

Many other issues would need to be addressed in the 
safety case for the flight software, for example, the safety of 
the abort executive, which orchestrates the execution of each 
of the abort condition algorithms, and the safety of the 
execution platform. We anticipate that the flight software 
implementations of the algorithms are likely to be more 
complex and difficult to test to an adequate level of 
assurance. Automated verification tools such as static 
analyzers and worst-case execution time analyzers might be 
required. Autocoding might be used. The use of such tools 
requires justification in the safety case. One issue with the 
use of such tools is that a safety case must provide a 
“comprehensible… case that a system is safe…” Automated 
tools such as static analyzers and code generators are 
generally not able to produce comprehensible evidence. For 
example, a static analyzer may be able to generate 
comprehensible evidence, in the form of “execution” traces 
that demonstrate that a claimed defect is, in fact, a defect; 
however, even if such tools can prove the lack of defects of a 
certain class, they typically are not able to provide 
comprehensible evidence that these defects are absent. An 

Figure 2. An instance of the Calculate, Convey, Use Pattern
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example of work that addresses this problem by aiming to 
generate explainable verification is seen in [23]. 

VI. RESULTS/IMPACTS/FUTURE DIRECTIONS 

A. Conclusions 
This was our first time at developing a safety case, and 

we make the following observations about our effort: 
• We had available to us voluminous documentation 

of the AFDNR design and its system context, 
totaling several hundreds of pages. Although we 
had some prior familiarity of AFDNR from modest 
involvement in its conception, we nevertheless 
found it challenging to try to gain the understanding 
of AFDNR that we would need to develop its safety 
case. We believe it would have been easier for us 
had we been involved in developing the safety case 
from the very start.  

• In developing the safety case itself we started from 
a “blank sheet of paper” (actually, the blank 
drawing canvas of the Adelard’s ASCE™ safety 
case tool). Despite the well-written guidance on 
how to go about development of safety cases 
(including material from Adelard [24], and some 
training materials that Tim Kelly of the University 
of York, UK kindly shared with us), we found it 
daunting to get started. We believe that the 
availability of examples of safety cases for software 
systems, especially an example crafted for training 
in the use of safety cases, would have helped us.  

• We have iterated several times on the safety case 
itself, significantly reorganizing it as we improved 
our understanding of how safety cases should be 
structured (for example, in an early version we 
failed to organize the overall safety case as an 
argument for why the system would be safe, instead 
lapsing into a more traditional fault tree-like 
structure). We may yet find the need to make 
additional such reorganizations as our 
understanding improves further. 

• In retrospect we see our safety case development 
applies a series of generic software considerations 
(e.g., the generic concerns of “interference”, 
“internals”, “inputs” and “outputs” described in 
section V.C; the “Calculate/Convey/Use” pattern in 
section V.E) instantiated on the specifics of the 
AFDNR software system. We believe that this 
approach has potential for use on a wide range of 
software systems. 

B. Future work 
We would like to continue our safety case to explore 

what would be the next step in AFDNR’s development, 
where architectural choices are made on how to realize the 
its design. This would give us experience with what John 
Knight calls “Assurance Based Design” [25], whereby 
consideration of the assurance implications of design 
alternatives can be useful to guide choice among those 
alternatives. 

We plan to include in our safety case the results of some 
of the testing that has already been performed on the 
prototype of AFDNR’s design. In the safety case, the results 
of such testing would form evidence supporting some of the 
goals of the safety case. 

We also plan to provide guidance on developing and 
using safety cases within the existing NASA software 
lifecycle. 

ACKNOWLEDGMENT 
This research was carried out at the Jet Propulsion 

Laboratory, California Institute of Technology under a 
contract with the National Aeronautics and Space 
Administration, and at NASA Ames Research Center.  

The work was sponsored by the NASA Office of Safety 
and Mission Assurance under the Software Assurance 
Research Program led by the NASA Software IV&V 
Facility. This activity is managed locally at JPL through the 
Assurance and Technology Program Office and at NASA 
Ames Research Center by the Robust Software Engineering 
group. 

We also thank Adelard LLP for allowing us extended use 
of its ASCE™ software tool to edit and maintain our safety 
case. 

Tom Pressburger of NASA Ames Research Center 
provided NASA Ames management of the project and has 
given feedback on our safety case research and specifically 
on earlier drafts of this paper. The authors held numerous 
conversations with the NASA Ames FDNR team including 
Dwight Sanderfer, Masoud Mansouri-Samani and Anupa 
Bajwa. The authors held meetings with John Rushby of SRI 
International, who reviewed safety case development and 
provided numerous references on safety case research. Josef 
Pohl and Ibrahim Habli provided helpful feedback on the 
paper and portions of the safety case shown herein. 
However, any errors in this paper are the sole responsibility 
of the authors. 

REFERENCES 
 

[1] P. Wilkinson, “Safety Cases: Success or Failure?,” Seminar Paper 2 
at the National Research Centre for OHS regulation. 
http://ohs.anu.edu.au/publications/pdf/seminar_paper_2.pdf  

[2]  “Safety Management Requirements for Defence Systems”: “Part 1 
Requirements,” UK MOD Defence Standard 00-56. 
http://www.dstan.mod.uk/standards/defstans/00/056/01000400.pdf 

[3] C.B. Weinstock, J.B. Goodenough, and J.J. Hudak, “Dependability 
Cases,” Technical Note CMU/SEI-2004-TN-016, 2004. 

[4] “Constellation Program Computing System Requirements,” CxP 
70065, May 25, 2010.  

[5] D. Jackson, M. Thomas, and L.I. Millett (eds). “Software for 
Dependable Systems: Sufficient Evidence?”, National Research 
Council, 2007, National Academies Press. 

[6] M. Barry, private communication to the authors, October 30, 2009. 
[7] M. Lowry, private communications to the authors, 2008 – 2010. 
[8] University of Virginia Dependability Research Group, “Safety 

Cases:Repository”, 
http://dependability.cs.virginia.edu/info/Safety_Cases:Repository  

[9] N. Basir, E. Denney, and B. Fischer, “Deriving Safety Cases for 
Hierarchical Structure in Model-based Development” in Proceedings 

1616



of the 29th International Conference on Computer Safety, Reliability 
and Security (SAFECOMP 2010), September 2010. 

[10] A. Ellis and E. Nguyen, “Assurance Case Patterns for Flight 
Software”, Workshop on Spacecraft Flight Software, 2010. 
http://flightsoftware.jhuapl.edu/files/2010/FSW10_Ellis.pdf  

[11] G. Pisanich, A. Bajwa, D. Sanderfer, and M.D. Watson,“An Abort 
Failure Detection, Notification, & Response System: Overview of an 
ISHM Development Process,” IEEE Aerospace Conference, March 
2008. IEEAC paper #1404.  

[12] M. Feather and L. Markosian, “Safety Case for NASA Ares Abort 
Fault Detection, Notification & Response”, NASA Software 
Assurance Symposium, Fairmont WV, September 2009. 

[13] “Software Safety Standard,” NASA-STD-8719.13B w/Change 1, July 
2004, available from 
http://www.hq.nasa.gov/office/codeq/doctree/871913B.pdf  

[14] D. Jackson, “A Direct Path to Dependable Software,” 
Communications of the ACM, vol. 52, no. 4, April, 2009, pp. 78-88, 
doi: 10.1145/1498765.1498787 

[15] “The EUR RVSM Post-Implementation Safety Case,” 
EUROCONTROL RVSM A1190, July, 2004, p. 17. 

[16] M. Stamatelatos, “Probabilistic Risk Assessment Procedures Guide 
for NASA Managers and Practitioners, Version 1.1,” NASA, August 
2002, pp. 186 – 205. 
http://www.hq.nasa.gov/office/codeq/doctree/praguide.pdf 

[17] T. Kelly, “Arguing Safety – A Systematic Approach to Managing 
Safety Cases,” September, 1998, available from 
http://www-users.cs.york.ac.uk/~tpk/tpkthesis.pdf 

[18] R. Alexander and T. Kelly, “Escaping the Non-Quantitative Trap”, in 
Proceedings of the 27th International System Safety Conference (ISSC 
’09), August 2009. 

[19] R. Hawkins, T. Kelly, J. Knight and P. Graydon, “A New Approach 
to Creating Clear Safety Arguments,” Proceedings of the 19th Safety 
Critical Systems Symposium, February 2011 

[20] IEEE Standard for Software Verification and Validation, IEEE Std 
1012-2004. IEEE Computer Society, June 1005, p. 3. 

[21] E. Wong, C. Fulton, W. Maul, and K. Melcher, “Sensor Data 
Qualification System (SDQS) Implementation Study,” International 
Conference on Prognostics and Health Management 2008 (PHM08) 
Denver, Colorado, October 6–9, 2008. 

[22] T. Kelly and R. Weaver, “The Goal Structuring Notation – A Safety 
Argument Notation,” Proceedings of the Dependable Systems and 
Networks 2004 Workshop on Assurance Cases, July 2004. 

[23] E. Denney and B. Fischer, “Generating code review documentation 
for auto-generated mission-critical software" Proc. Third IEEE 
International Conference on Space Mission Challenges for 
Information Technology (SMC-IT), Pasadena, California, Jul. 19-23, 
2009. 

[24] “ASCAD Adelard Safety Case Development Manual”, available for 
download, after registration, at Adelard’s website 
http://www.edelard.com/resources/ascad  

[25] P.J. Graydon, J.C. Knight & E.A. Strunk, “Assurance Based 
Development of Critical Systems” in Proceedings of the 2007 
International Symposium on Dependable Systems and Networks 
(DSN), June 2007 

 

 
 

1717


