
Building a Safety Case for a
Safety-Critical NASA Space Vehicle Software System

Martin S. Feather
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, USA

Martin.S.Feather@jpl.nasa.gov

Lawrence Z. Markosian
SGT, Inc.

NASA Ames Research Center
Moffett Field, USA

Lawrence.Z.Markosian@nasa.gov

Abstract—We describe our development of a key portion of a
safety case for a safety-critical piece of NASA software
designed to operate on a NASA launch vehicle. The software’s
purpose is to make real-time determinations of the presence of
catastrophic failure conditions of that vehicle and react
accordingly. We show how our safety case development applies
a series of generic software considerations instantiated on the
specifics of the NASA software system. We conclude that this
approach is applicable to a wide range of NASA software
systems.

Software safety; safety cases; V&V

I. INTRODUCTION
Our work is motivated by the observation that safety

cases are in widespread use in Europe and elsewhere, but
have not taken hold within NASA. Our particular interest is
in software systems. Both inside and outside NASA there
has been advocacy for development of safety cases for
software systems, but reports of actual applications are
scarce.

Our goals are to determine the feasibility of developing
safety cases for NASA’s safety-critical space software, and
to contribute guidance to help future developers of safety
cases for similar software systems. Our first step was to
develop an understanding of the state of the practice of safety
cases. We found plenty of discussions of the concept of
safety cases in the open literature. Our next step was to try to
develop a safety case ourselves. We chose to develop a
safety case for a significant portion of a safety-critical NASA
software system. Our experience in doing this is described in
this paper, which is organized as follows:

Section II briefly introduces safety cases.
Section III further describes the NASA context

motivating our study.
Section IV introduces the safety-critical software system

for which we are developing a safety case.
Section V shows key steps in our development of this

safety case.
Section VI summarizes our results and conclusions to

date, and suggestions for future work.

II. A BRIEF INTRODUCTION TO SAFETY CASES
Safety Cases are used to manage and regulate major

hazard industries (e.g., nuclear power, railroads, aviation,
and offshore oil platforms) in Europe and elsewhere. Their

origin traces back to the nuclear industry in the UK in the
1960’s – [1] provides a succinct summary of their history.
The following definition of a Safety Case is taken from the
UK’s Defence Standard 00-56 [2]:

“The Safety Case shall consist of a structured argument,
supported by a body of evidence, that provides a compelling,
comprehensible and valid case that a system is safe for a
given application in a given operating environment.”

Observe from this definition that a safety case is an
argument, i.e., is intended for human understanding. The
argument rests on evidence – both “direct” evidence (e.g., the
results of tests, analyses, inspections) coupled with
“backing” evidence to convey the trustworthiness of the
direct evidence (e.g., that inspections were performed by
trained personnel following accepted practices). The
structured nature of the argument refers to its organization,
necessary for presenting the case for the safety of a large
and/or complex system. Overall, the argument must be
compelling – it must convince people that a system is safe,
comprehensible – understandable by people (the structured
nature of the argument is important in this regard, so that
humans can navigate and understand the safety case for a
large and complex system), and valid – the argument must be
consistent and complete, so that the safety claims of the
system indeed follow from the structure of the argument and
the evidence on which it based. The phrase safe for a given
application in a given operating environment draws attention
to the need to establish the context within which the safety
case will establish that a system will be safe.

III. SAFETY CASES AND NASA
Our objective is to ascertain whether safety cases are

suitable for software systems used in space. Our initial
interest in safety cases stemmed from several sources:
• NASA’s Constellation program several years ago

recommended (but stopped short of mandating) the use
of “dependability cases” 1 for software projects. The
recommendation said in part: “Each project should
develop and maintain a Dependability Case to show, at
different stages of a project’s life cycle, how computing

1 A dependability case is a generalization of safety case. It addresses the
aspects of dependability that are relevant for a particular system, such as
availability, reliability, safety, security, real-time performance,
interoperability, etc. not all of which are necessarily safety-related. [3]

2011 Space Mission Challenges for Information Technology

978-0-7695-4446-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SMC-IT.2011.17

10

2011 Fourth IEEE International Conference on Space Mission Challenges for Information Technology

978-0-7695-4446-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SMC-IT.2011.17

10

system dependability will be, is being, and has been
achieved.” [4]

• In the same timeframe, a National Research Council
panel on “Software for Dependable Systems: Sufficient
Evidence” addressed the question of “How can software
and the systems that rely on it be made dependable in a
cost-effective manner, and how can one obtain
assurance that dependability has been achieved?” The
panel’s overall recommendation was to focus software
certification and acceptance on the dependability case
for the software [5].

• In 2007 Professor John Knight from the University
of Virginia visited JPL, gave a presentation advocating
use of “assurance cases” for critical software, and
engaged in further discussions on the subject during his
visit.

• Prior to the above, several members of CMU’s
Software Engineering Institute had advocated
dependability cases for software [3]. They used a space
software system as illustration, showing portions of a
dependability case for that system (our understanding is
that they developed their dependability case after the
system had been implemented).

Despite these recurring expressions of advocacy from
independent sources, we could not find any evidence of
safety cases being developed, or planned to be developed, for
NASA software systems. We attributed this to hesitation
deriving from a lack of experience with safety cases within
NASA, and more generally within the United States as a
whole. Since no-one had constructed a safety case for a
NASA software system, there was understandable reluctance
to be the first to do so. 2 We also could find plenty of
descriptions of the concept of safety cases, a few examples
of actual safety cases3, but almost no examples of safety
cases that specifically address details of software’s internals.4
We recently found some helpful examples in [10].

In response, we crafted a proposal to NASA’s Software
Assurance Research Program to prototype the development
of a safety case for a safety-critical NASA software system,
and on the basis of that experience develop a NASA Safety
Case Guide for evaluating the applicability of safety cases in
NASA, and providing guidance and training to future NASA
developers of safety cases.5

2 Discussions with Constellation personnel conveyed the following
arguments that arose in opposition to requiring safety cases: (1) no
experience for estimating the level of effort was available to the
Constellation program; (2) proponents of safety cases could not produce
cost models; and (3) it was believed that the required safety analysis is
already adequately performed, i.e., the added value of a safety case was not
apparent [6], [7].
3 A repository of safety cases is at [8].
4 An exception is the NASA Ames’ Robust Software Engineering group’s
research on automated generation of safety cases for model-based
development [9].
5 More recently, NASA’s Aeronautics Research Mission Directorate
established a research effort under the Aviation Safety Research Program
to investigate the use of safety cases to support verification and validation
of flight-critical systems. A number of such research projects have been
funded under this research effort, which is expected to continue over a
three-year period.

IV. FOCUS OF OUR STUDY – A NASA SAFETY-CRITICAL
SOFTWARE SYSTEM

For our study of how safety cases can be developed we
picked as our target a software subsystem to operate on
board a NASA launch vehicle. The subsystem in question is
the Abort Failure Detection, Notification and Response
(AFDNR) system [11]. Roughly speaking, AFDNR’s
purpose is to make real-time determinations of the presence
of catastrophic failure conditions of that vehicle from
readings provided from sensors distributed throughout the
space vehicle, and react accordingly. Dwight Sanderfer, lead
of the AFDNR design effort at NASA Ames, provided us the
following more thorough description of AFDNR’s purpose:

The AFDNR function is a part of the Ares I
Flight Computer flight software designed to
recognize Ares I conditions that require Orion to
manually or automatically issue the abort command
to initiate the abort sequence to separate Orion from
the Ares I vehicle, and notify Orion of the abort
recommendation with sufficient time to safely
separate the Orion from the Ares I.

Sensor data from the launch vehicle is first
“qualified” before sending on to AFDNR – this step
identifies failed sensors, and disqualifies their data;
thereafter AFDNR only considers qualified sensor
data.

AFDNR monitors qualified vehicle sensor data
against a defined set of abort triggers (measures of a
system’s state and/or behavior indicating an abort
condition exists). Two abort triggers are defined for
each abort condition; both are required for AFDNR
to recognize this as the need for an abort.

Upon recognition of the need for an abort,
AFDNR notifies Orion (including crew), Mission
Systems and Ground Systems (pre-launch only).
Furthermore, if the abort condition is time-critical,
AFDNR contains logic to autosafe the system [12].

Responses based on AFDNR’s abort recommendations
have potentially safety-critical implications. As per NASA’s
Software Safety Standard [13], AFDNR is therefore
classified as safety-critical software (“Processes data … that
lead directly to safety decisions…”). Our safety case study
encompasses both the “qualification” of the sensor data
provided to AFDNR and AFDNR’s determination of
whether there is an abort condition, but does not encompass
AFDNR’s response to abort conditions.

As described above, the scope of our safety case is
AFDNR software. The scope is further limited primarily to
the AFDNR algorithms (i.e., executable prototype). This
focus was selected because we had the best access to the
algorithm developers and design documentation, and because
the flight software had not been developed to the point where
a representative safety case could be constructed within our
project resources.6 In fact, all AFDNR software development

6 This is not to suggest that safety cases need or even should be developed
only when the flight software development is well underway. In fact, the
opposite is likely to be the case, and the literature indicates that safety case

1111

was significantly scaled back half-way into our project with
the termination of the Constellation Program.

Given our project’s scope, we focused on several
documents related to AFDNR to support development of the
safety case. We also consulted with AFDNR project
personnel at NASA Ames Research Center.

The principal AFDNR resource used in developing the
safety case has been the system definition and specifically
the descriptions of AFDNR algorithms (and, to a lesser
extent, sensor data qualification system (SDQS) functions).
The flow diagrams for detection and confirmation functions
serve as the specification for these functions, and were used
in developing and testing the executable algorithms.

We also referenced the AFDNR project’s mathematical
framework used by project personnel to derive the allocation
of false positives and false negatives from a module to its
submodules given assumptions about common cause failures
and the probability that the module will fail at a defined
limit. Other relevant AFDNR references were the functional
fault analysis (FFA) and the failure modes & effects analysis
(FMEA). All of the resources mentioned in this paragraph
contribute to the context for, but, in general, do not provide
data for direct incorporation into, the software safety case.

Also relevant to the software safety case is the testing
that was performed on the prototype algorithms. Information
on testing was provided in conversations with software
engineers who performed the testing.

For this paper we limit our description to aspects of
AFDNR that have been previously published. This level of
detail is sufficient for illustrating the points of this paper, but
of course our actual safety case drives into greater detail of
AFDNR itself.

V. DEVELOPMENT OF THE SAFETY CASE

A. System Level to Software Level
The first step in our construction of the safety case was to

identify the system-level safety requirements relevant to the
AFDNR software subsystem, make those the top-level goals
of our safety case, and decompose them to get to the level of
the AFDNR software itself.

As described in [11], the safety challenge pertinent to
determination of an abort condition is: “… the need to reduce
the false positive and false negative indications for abort. A
false negative describes a situation where an abort is
necessary to avoid loss of crew but is not detected by the
system. A false positive describes an incorrect indication for
the need to abort, where none is necessary. During launch
and ascent, this could lead to loss of mission and loss of
vehicle, and possibly loss of crew since the abort process is
not without its own risk.”

The launch vehicle’s requirements state upper-bounds on
the probabilities of false positives and false negatives. These
are decomposed into requirements on the vehicle’s major
elements (e.g., first stage), leading to requirements on
AFDNR’s determination of abort conditions, also expressed

development should be integrated with the other activities in the software
development lifecycle [14]

as upper-bounds on the probabilities of false positives and
false negatives. We mirror this decomposition in our safety
case, leading to safety goals on AFDNR itself.

Our initial focus has been on the false positive goal. Our
choice was driven by the knowledge that the vehicle itself is
designed to be reliable, hence false positives are the
predominant concern (by comparison, only during the
infrequent occasions when an abort is necessary could a false
negative occur). There is commensurately more complexity
in the design of AFDNR to minimize the probability of false
positives, increasing the interest in how a safety case might
apply to this.

B. Quantifiable goals and the Software Safety Case
Decomposition
Since the safety requirements are provided as

probabilistic assertions, we began our work on the AFDNR
safety case by examining a number of publicly-available
safety cases and papers that used analogous assertions. In
these safety cases, the high level safety requirements are
stated in terms of the probability or frequency of injury or
fatality. For example, the documentation for reduced vertical
separation minima (RVSM) post-implementation safety case
in European air space gives the following high-level safety
requirements [15]:

(i) the vertical collision risk in RVSM airspace
meets the ICAO Target Level of Safety (TLS) of 5
x 10-9 fatal accidents per flight hour.

(ii) The vertical collision risk in RVSM airspace
due solely to technical height-keeping performance
meets the ICAO TLS of 2.5 x 10-9 fatal accidents
per flight hour.

The architecture requirements for the Constellation

program include analogous high-level safety requirements on
various Constellation mission classes and flight phases.
These safety requirements are allocated to various systems,
subsystems, etc. The mathematical framework for allocating
false positives and false negatives in Ares is based on
probabilistic risk assessment (PRA). While well-established
for hardware and systems, PRA’s applicability to software is
questionable. (See, for example, [14] and [16]).

Regardless of the applicability of PRA and other methods
of allocating false positive and false negative requirements,
allocation of these requirements to and within software, and
the verification of such requirements, was not performed by
the AFDNR design and algorithm development team and we
have not attempted to carry out such an analysis for the
safety case.7

Another approach frequently used to address risk in
safety cases is to use the “as low as reasonably practical”
(ALARP) concept. [17] provides a safety case pattern for
the argument. While this concept does not by itself fully
address the question of allocating and verifying probabilistic
safety requirements, it provides guidance for constructing
the safety case argument in a way that allows experts to

7 The need to do so is not specific to safety cases, but should be addressed
in any software safety analysis.

1212

judge whether a target risk level (not expressed
quantitatively in the safety case) is achieved according to a
specific argument strategy and evidence set, at what the
experts consider “reasonable” cost. On the other hand, this
approach has been criticized as unable to capture, in the
safety case structure, the information required for a
quantitative modeling and analysis [18].

Building on this objection, [19] factors the problem into
a safety argument and a confidence argument, where the
confidence argument is based on subjective probability. We
believe that this is a promising area of safety case research.
However, without the data to construct the confidence
argument, we have focused on the safety argument in our
AFDNR safety case.

C. Generic concerns for a software system -
corresponding step in the safety case
We decompose the goal that AFDNR system causes

sufficiently few false positives by considering each of a
generic set of concerns for any software system that
performs a calculation8, and instantiating them on AFDNR.
These generic concerns are:

• Interference: Nothing external to the software will
interfere with the correctness of its calculations.

• Internals: The software itself performs its
calculations correctly.

• Inputs: The software’s inputs (upon which its
calculations are based) are correct, or errors in those
inputs will not cause the software to calculate
incorrect results.

• Outputs: The results of the software’s calculations
are conveyed correctly and interpreted correctly
wherever they are to be used.

When instantiated on AFDNR’s calculation goal, these
generic concerns become the following four subgoals:

• The Interference subgoal: “AFDNR’s computing
platform (including other software that might be
executing upon it) does not interfere with AFDNR to
cause it to generate false positives”.

• The Internals subgoal: “AFDNR’s calculations do
not generate false positives”.

• The Inputs subgoal: “AFDNR’s inputs are correct or,
if incorrect, will not lead AFDNR to generate false
positives”.

• The Outputs subgoal: “The results of AFDNR’s
calculations are not corrupted to, or misinterpreted
as, false positives”.

The Interference and Outputs subgoals quickly lead to
consideration of the broader context in which AFDNR
resides. For example, the Interference subgoal we take one

8 These generic considerations correspond to requirements found in
prescriptive standards such as IEEE Standard for Software Verification and
Validation 1012-2004, which states “Determine… that the software
interfaces correctly with other software components in the system in
accordance with requirements and that errors are not propagated between
software components of the system.” [20]

step further and subdivide into a subgoal that the computing
platform on which AFDNR executes will not cause AFDNR
to generate false positives, and another subgoal that all other
executing software will not cause AFDNR to generate false
positives. Since detailed consideration of AFDNR’s
computing platform and other software lies outside the scope
of our effort, we simply capture the dependencies of the
AFDNR safety case on these externalities in our safety case
as assumptions that their claims are true.

The Internals and Inputs subgoals form the heart of our
safety case, since our focus is on the design of AFDNR
itself. We look at each of these subgoals in the following
subsections.

D. AFNDR’s inputs
To address the goal “AFDNR’s inputs are correct or, if

incorrect, will not lead AFDNR to generate false positives”
we first introduce a simple but necessary subgoal that
“AFDNR’s inputs are not confused with one another”, and
then consider each of the kinds of inputs that the software
receives, introducing one subgoal for each kind. These give
rise to quite different treatments in our safety case.

AFDNR has two kinds of inputs: the input indicating the
current mission phase (e.g., a mission phase might be “ascent
before first state separation has occurred”), and the sensor
readings.

The first kind of input is the mission phase. To represent
this in the safety case we add a subgoal “Mission phase input
to AFDNR is correct, or if incorrect will not lead AFDNR to
generate false positives”. Further explanation of what correct
means is linked to this subgoal. Mission phase input is relied
upon by AFDNR to be correct as-is (i.e., AFDNR takes no
action to validate such inputs). To represent this in the safety
case we refine the previous subgoal into a stricter subgoal
“Mission phase input is correct”. The provider of this
mission phase input is external to AFDNR, and hence
outside our scope, so we attach an assumption to this subgoal
asserting that the input is correct. This makes it clear that the
safety case depends upon this assumption.

The second kind of input to AFDNR is sensor data. To
represent this in the safety case we add a subgoal “Sensor
inputs to AFDNR are correct, or if incorrect will not lead
AFDNR to generate false positives”. In contrast to the
mission phase input, AFDNR does not assume these inputs
are correct. Sensors are known to be fallible devices whose
own failures lead to their reporting incorrect readings, and a
significant portion of AFDNR’s design is devoted to
correctly discerning the state of the vehicle despite the
possibility of incorrect sensor inputs. To represent this in the
safety case we refine the previous subgoal into a stricter
subgoal “Incorrect sensor inputs to AFDNR will not lead
AFDNR to generate false positives”. The AFDNR design
achieves this by determining whether a sensor reading can be
relied upon to be correct (a process referred to as “data
qualification” in [21]), and excluding non-qualified sensor
readings in its calculation of the condition of the vehicle. To
represent this in the safety case we refine the previous
subgoal into “AFDNR excludes incorrect sensor inputs from

1313

its calculation of positives”. We will consider how AFDNR
does this in the next section.

Fig. 1 shows the portion of our safety case that
decomposes the goal “AFDNR’s inputs are correct, or if
incorrect, will not lead AFDNR to generate false positives”
up to this point. This figure shows our decomposition
diagrammatically, using the Goal Structured Notation
developed at the University of York, UK [22]. The
rectangular boxes denote subgoals, the oval (with a letter
“A” to its bottom right) denotes an assumption, the rounded-
ended boxes denote context (additional information), and the
parallelogram-shaped box denotes a strategy (an explanation
of how the subgoal above the parallelogram is refined into
the subgoals below it). The small diamond below the bottom
of the “AFDNR’s inputs are not confused with one another”
indicates that there is further elaboration of the safety case is
needed to address this goal.

Note that our entire safety case starts at the system level
with the goal to show that the requirement placing an upper-
bound on the probability of false positives is met by
AFDNR. Fig. 1 shows a portion from the interior of the
entire safety case.

We are using Adelard LLP’s ASCE™ software tool to
edit and maintain our safety case. The figures in this paper
are screenshots taken from our use of ASCE.

E. The “Calculate/Convey/Use” Software Safety Case
Pattern
Excluding use of incorrect inputs from calculations

obviously requires both recognizing when an input is
incorrect, and then avoiding its use. As described in [11], in
the architecture of AFDNR the recognition is done by a
separate subsystem, called the “Sensor Data Qualification
System” (SDQS) [21].

To represent this in our safety case we split the goal
“AFDNR excludes incorrect sensor inputs from its
calculation of positives” into three subgoals:

• “Incorrect sensor inputs are identified by SDQS” – this
is the calculation of a result (of the correctness of
sensor inputs),

• “Identifications of incorrect sensor inputs are
conveyed from SDQS to AFDNR” – this is the
conveyance of that result from where it is calculated to
where it is used, and

• “AFDNR excludes sensor inputs identified as
incorrect from its calculation of positives” – this is the
use of the calculated result (note that the use made of
this result is to exclude the incorrect sensor input from
AFDNR’s calculations).

Fig. 2 shows this portion of our safety case. We believe
that calculation/conveyance/use is a simple yet useful

Figure 1. Decomposition of the goal “AFDNR’s inputs are correct, or if incorrect, will not lead AFDNR to generate false positives”

1414

example of the concept of a “safety case pattern” [17], which
says of them: “As with Design Patterns, Safety Case Patterns
are intended to describe partial solutions, i.e., for safety cases
– attacking just one aspect of the overall structure of the
safety argument contained within a safety case”. In software
systems there will clearly be many occasions when the
calculation/conveyance/use pattern could apply.

We think this pattern is useful to apply when, as here in
the AFDNR system, safety hinges on key information being
computed by one software component and used by another.

F. AFDNR's internals
We now briefly consider the Internals subgoal:

“AFDNR’s calculations do not generate false positives”. As
to be expected, the decomposition of this subgoal depends on
the specifics of AFDNR, details of which are beyond the
scope of this paper to elucidate. We here give a brief
overview of the range of considerations addressed at this
level.

Within AFDNR the existence of abort conditions is
determined based on sensor readings exceeding pre-
established thresholds. Avoiding false positives during these
determinations depends on:

• Threshold settings being designed correctly – “the
choice of abort detection thresholds can influence
the rates of false negatives and false positives” [11]

• Those settings being encoded correctly in the
software.

• The AFDNR software correctly implements the
logic of tests of sensor readings against thresholds.

• The AFDNR software executing those tests at the
right times.

Each of these gives rise to an equivalent subgoal in our
safety case.

In addition, AFDNR requires that an abort condition
must be both detected and either “confirmed” or
“corroborated”. As stated in [11]: “…confirmation is defined

as affirmation of the failure condition by measuring similar
sensors multiple times, and corroboration is defined as
affirmation of the fault or failure condition by measuring
dissimilar sensors or assessing the health status of other
vehicle components or subsystems.” This scheme further
mitigates the risk of false positives, and therefore is
represented in our safety case.

G. Evidence (testing, simulation, MCDC etc)
AFDNR’s developers had implemented and tested

executable prototypes of some of the AFDNR fault detection
algorithms specified by flow diagrams and other means in
the system design document. Each algorithm implemented
the detector for one abort condition. The developers used
Mathworks® SystemTest™ to generate test cases, covering
the full range of inputs (sequences of sensor inputs and
qualification flags from SDQS). These inputs included
nominal sensor data that should not cause AFDNR to
respond with a fault detection, as well as data that should
cause one of the faults of interest. The results were compared
against the Matlab™ model in the system design document,
which served as an oracle independent of the flow diagram
specifications. The automated test case generator was used to
generate tests for modified condition-decision coverage
(MCDC) coverage of each abort condition handler. Given
that each detection algorithm that was tested had a low
cyclomatic complexity, no recursion and only bounded
iteration, the test team lead believed that full path coverage
would have been feasible given a reasonable level of funding
and appropriate test tools.

The safety case captures the kinds of evidence and
justification that are required to show the adequacy of the
validation efforts. A high level goal is “The testing
methodology is appropriate to make false positives
sufficiently unlikely.” This requires a subgoal to justify the
use of each tool. Another subgoal is needed to justify the use
of MCDC testing. Another high level goal is to justify the
capability (credentials, experience) of the test team.

Many other issues would need to be addressed in the
safety case for the flight software, for example, the safety of
the abort executive, which orchestrates the execution of each
of the abort condition algorithms, and the safety of the
execution platform. We anticipate that the flight software
implementations of the algorithms are likely to be more
complex and difficult to test to an adequate level of
assurance. Automated verification tools such as static
analyzers and worst-case execution time analyzers might be
required. Autocoding might be used. The use of such tools
requires justification in the safety case. One issue with the
use of such tools is that a safety case must provide a
“comprehensible… case that a system is safe…” Automated
tools such as static analyzers and code generators are
generally not able to produce comprehensible evidence. For
example, a static analyzer may be able to generate
comprehensible evidence, in the form of “execution” traces
that demonstrate that a claimed defect is, in fact, a defect;
however, even if such tools can prove the lack of defects of a
certain class, they typically are not able to provide
comprehensible evidence that these defects are absent. An

Figure 2. An instance of the Calculate, Convey, Use Pattern

1515

example of work that addresses this problem by aiming to
generate explainable verification is seen in [23].

VI. RESULTS/IMPACTS/FUTURE DIRECTIONS

A. Conclusions
This was our first time at developing a safety case, and

we make the following observations about our effort:
• We had available to us voluminous documentation

of the AFDNR design and its system context,
totaling several hundreds of pages. Although we
had some prior familiarity of AFDNR from modest
involvement in its conception, we nevertheless
found it challenging to try to gain the understanding
of AFDNR that we would need to develop its safety
case. We believe it would have been easier for us
had we been involved in developing the safety case
from the very start.

• In developing the safety case itself we started from
a “blank sheet of paper” (actually, the blank
drawing canvas of the Adelard’s ASCE™ safety
case tool). Despite the well-written guidance on
how to go about development of safety cases
(including material from Adelard [24], and some
training materials that Tim Kelly of the University
of York, UK kindly shared with us), we found it
daunting to get started. We believe that the
availability of examples of safety cases for software
systems, especially an example crafted for training
in the use of safety cases, would have helped us.

• We have iterated several times on the safety case
itself, significantly reorganizing it as we improved
our understanding of how safety cases should be
structured (for example, in an early version we
failed to organize the overall safety case as an
argument for why the system would be safe, instead
lapsing into a more traditional fault tree-like
structure). We may yet find the need to make
additional such reorganizations as our
understanding improves further.

• In retrospect we see our safety case development
applies a series of generic software considerations
(e.g., the generic concerns of “interference”,
“internals”, “inputs” and “outputs” described in
section V.C; the “Calculate/Convey/Use” pattern in
section V.E) instantiated on the specifics of the
AFDNR software system. We believe that this
approach has potential for use on a wide range of
software systems.

B. Future work
We would like to continue our safety case to explore

what would be the next step in AFDNR’s development,
where architectural choices are made on how to realize the
its design. This would give us experience with what John
Knight calls “Assurance Based Design” [25], whereby
consideration of the assurance implications of design
alternatives can be useful to guide choice among those
alternatives.

We plan to include in our safety case the results of some
of the testing that has already been performed on the
prototype of AFDNR’s design. In the safety case, the results
of such testing would form evidence supporting some of the
goals of the safety case.

We also plan to provide guidance on developing and
using safety cases within the existing NASA software
lifecycle.

ACKNOWLEDGMENT
This research was carried out at the Jet Propulsion

Laboratory, California Institute of Technology under a
contract with the National Aeronautics and Space
Administration, and at NASA Ames Research Center.

The work was sponsored by the NASA Office of Safety
and Mission Assurance under the Software Assurance
Research Program led by the NASA Software IV&V
Facility. This activity is managed locally at JPL through the
Assurance and Technology Program Office and at NASA
Ames Research Center by the Robust Software Engineering
group.

We also thank Adelard LLP for allowing us extended use
of its ASCE™ software tool to edit and maintain our safety
case.

Tom Pressburger of NASA Ames Research Center
provided NASA Ames management of the project and has
given feedback on our safety case research and specifically
on earlier drafts of this paper. The authors held numerous
conversations with the NASA Ames FDNR team including
Dwight Sanderfer, Masoud Mansouri-Samani and Anupa
Bajwa. The authors held meetings with John Rushby of SRI
International, who reviewed safety case development and
provided numerous references on safety case research. Josef
Pohl and Ibrahim Habli provided helpful feedback on the
paper and portions of the safety case shown herein.
However, any errors in this paper are the sole responsibility
of the authors.

REFERENCES

[1] P. Wilkinson, “Safety Cases: Success or Failure?,” Seminar Paper 2
at the National Research Centre for OHS regulation.
http://ohs.anu.edu.au/publications/pdf/seminar_paper_2.pdf

[2] “Safety Management Requirements for Defence Systems”: “Part 1
Requirements,” UK MOD Defence Standard 00-56.
http://www.dstan.mod.uk/standards/defstans/00/056/01000400.pdf

[3] C.B. Weinstock, J.B. Goodenough, and J.J. Hudak, “Dependability
Cases,” Technical Note CMU/SEI-2004-TN-016, 2004.

[4] “Constellation Program Computing System Requirements,” CxP
70065, May 25, 2010.

[5] D. Jackson, M. Thomas, and L.I. Millett (eds). “Software for
Dependable Systems: Sufficient Evidence?”, National Research
Council, 2007, National Academies Press.

[6] M. Barry, private communication to the authors, October 30, 2009.
[7] M. Lowry, private communications to the authors, 2008 – 2010.
[8] University of Virginia Dependability Research Group, “Safety

Cases:Repository”,
http://dependability.cs.virginia.edu/info/Safety_Cases:Repository

[9] N. Basir, E. Denney, and B. Fischer, “Deriving Safety Cases for
Hierarchical Structure in Model-based Development” in Proceedings

1616

of the 29th International Conference on Computer Safety, Reliability
and Security (SAFECOMP 2010), September 2010.

[10] A. Ellis and E. Nguyen, “Assurance Case Patterns for Flight
Software”, Workshop on Spacecraft Flight Software, 2010.
http://flightsoftware.jhuapl.edu/files/2010/FSW10_Ellis.pdf

[11] G. Pisanich, A. Bajwa, D. Sanderfer, and M.D. Watson,“An Abort
Failure Detection, Notification, & Response System: Overview of an
ISHM Development Process,” IEEE Aerospace Conference, March
2008. IEEAC paper #1404.

[12] M. Feather and L. Markosian, “Safety Case for NASA Ares Abort
Fault Detection, Notification & Response”, NASA Software
Assurance Symposium, Fairmont WV, September 2009.

[13] “Software Safety Standard,” NASA-STD-8719.13B w/Change 1, July
2004, available from
http://www.hq.nasa.gov/office/codeq/doctree/871913B.pdf

[14] D. Jackson, “A Direct Path to Dependable Software,”
Communications of the ACM, vol. 52, no. 4, April, 2009, pp. 78-88,
doi: 10.1145/1498765.1498787

[15] “The EUR RVSM Post-Implementation Safety Case,”
EUROCONTROL RVSM A1190, July, 2004, p. 17.

[16] M. Stamatelatos, “Probabilistic Risk Assessment Procedures Guide
for NASA Managers and Practitioners, Version 1.1,” NASA, August
2002, pp. 186 – 205.
http://www.hq.nasa.gov/office/codeq/doctree/praguide.pdf

[17] T. Kelly, “Arguing Safety – A Systematic Approach to Managing
Safety Cases,” September, 1998, available from
http://www-users.cs.york.ac.uk/~tpk/tpkthesis.pdf

[18] R. Alexander and T. Kelly, “Escaping the Non-Quantitative Trap”, in
Proceedings of the 27th International System Safety Conference (ISSC
’09), August 2009.

[19] R. Hawkins, T. Kelly, J. Knight and P. Graydon, “A New Approach
to Creating Clear Safety Arguments,” Proceedings of the 19th Safety
Critical Systems Symposium, February 2011

[20] IEEE Standard for Software Verification and Validation, IEEE Std
1012-2004. IEEE Computer Society, June 1005, p. 3.

[21] E. Wong, C. Fulton, W. Maul, and K. Melcher, “Sensor Data
Qualification System (SDQS) Implementation Study,” International
Conference on Prognostics and Health Management 2008 (PHM08)
Denver, Colorado, October 6–9, 2008.

[22] T. Kelly and R. Weaver, “The Goal Structuring Notation – A Safety
Argument Notation,” Proceedings of the Dependable Systems and
Networks 2004 Workshop on Assurance Cases, July 2004.

[23] E. Denney and B. Fischer, “Generating code review documentation
for auto-generated mission-critical software" Proc. Third IEEE
International Conference on Space Mission Challenges for
Information Technology (SMC-IT), Pasadena, California, Jul. 19-23,
2009.

[24] “ASCAD Adelard Safety Case Development Manual”, available for
download, after registration, at Adelard’s website
http://www.edelard.com/resources/ascad

[25] P.J. Graydon, J.C. Knight & E.A. Strunk, “Assurance Based
Development of Critical Systems” in Proceedings of the 2007
International Symposium on Dependable Systems and Networks
(DSN), June 2007

1717

