
Author Name

Book title goes here

2

List of Figures

i

ii

List of Tables

iii

iv

Contents

I This is a Part 1

1 Scalable and distributed data mining 3
Kamalika Das and Kanishka Bhaduri
1.1 Introduction . 3
1.2 Parallel algorithms for data mining 4

1.2.1 Parallel data clustering algorithms 5
1.2.2 Parallel data classification algorithms 7
1.2.3 Parallel data mining systems/implementations 8

1.3 Distributed algorithms for data mining 11
1.3.1 Distributed classification 11
1.3.2 Distributed clustering 12
1.3.3 Data mining in peer-to-peer environments 13

1.3.3.1 Approximate algorithms 13
1.3.3.2 Exact Algorithms 14

1.4 Applications to astronomy 15
1.5 Conclusion . 17

Bibliography 19

v

vi

Part I

This is a Part

1

Chapter 1

Scalable and distributed data mining

Kamalika Das

SGT Inc., NASA Ames Research Center, Moffett Field, CA-94035.
Email: Kamalika.Das@nasa.gov

Kanishka Bhaduri

MCT Inc., NASA Ames Research Center, Moffett Field, CA-94035.
Email: Kanishka.Bhaduri-1@nasa.gov

1.1 Introduction . 3
1.2 Parallel algorithms for data mining . 4

1.2.1 Parallel data clustering algorithms . 5
1.2.2 Parallel data classification algorithms . 7
1.2.3 Parallel data mining systems/implementations 8

1.3 Distributed algorithms for data mining . 10
1.3.1 Distributed classification . 11
1.3.2 Distributed clustering . 12
1.3.3 Data mining in peer-to-peer environments . 13

1.3.3.1 Approximate algorithms . 13
1.3.3.2 Exact Algorithms . 14

1.4 Applications to astronomy . 15
1.5 Conclusion . 17

Acknowledgements . 17

1.1 Introduction

Data mining is playing an increasingly important role in astronomy re-
search [41][10][2] involving very large sky surveys such as Sloan Digital Sky
Survey SDSS and the 2-Micron All-Sky Survey 2MASS. These sky-surveys are
offering a new way to study and analyze the behavior of the astronomical ob-
jects. The next generation of sky-surveys are poised to take a step further by
incorporating sensors that will stream in large volume of data at a high rate.
For example, the Large Synoptic Survey Telescopes (LSST) will take repeated
images of the night sky every 20 seconds. This will generate 30 terabytes of
calibrated imagery every night that will need to be co-analyzed with other
astronomical data stored at different locations around the world. Event iden-
tification and classification in such data sets may provide useful insights to
unique astronomical phenomenon displaying astrophysically significant varia-
tions: quasars, supernovae, variable stars, and potentially hazardous asteroids.

3

4 Book title goes here

Analyzing such datasets is challenging not only because of their large size (sev-
eral petabytes) but also because the data is streamed at high rates.

Unfortunately, most of the traditional data mining algorithms fail to han-
dle large datasets for a variety of reasons e.g. computational, storage etc. There
are two approaches that have been taken: (1) to scale up the algorithms us-
ing approximation or other techniques, or (2) to use multiple machines to
leverage their combined computational power to do the same computation.
Techniques for using multiple machines to solve a single data mining task by
splitting the data falls under the area of parallel data mining. Another tech-
nique which is discussed in this chapter is the area of distributed data mining
(DDM). In this, the data is inherently distributed and the goal is to compute
data mining models without centralizing all the data. This will be needed,
for example, when the LSST data streams need to be co-analyzed with other
datasets stored at different geographical locations. Streaming data makes it
imperative to analyze the data in real time and in situ at these distribute
sites.

In this chapter we discuss techniques for both parallel and distributed data
mining. We discuss algorithms for some of the popular data mining tasks such
as clustering, classification, and regression. The rest of the chapter is organized
as follows. In the next section (Sec. 1.2) we discuss parallel data clustering
and classification algorithms. In Section 1.3 we discuss distributed techniques
for data mining. Following, in the next few sections we discuss algorithms
for distributed data classification and clustering algorithms. We also discuss
another emerging area of DDM which is known as peer-to-peer data mining.
In Section 1.4, we discuss applications of the above techniques in astronomy
data mining. Finally, we conclude the chapter in Section 1.5.

1.2 Parallel algorithms for data mining

In most of today’s applications data is being collected at an alarming rate
due to easier availability and better reliability of data collection sensors. This
is true not only for almost all disciplines of science such as astronomy, physics,
chemistry, and biology but also for human engineered systems such as com-
mercial aircrafts, automobiles, communication devices and virtually anything
to which a data sensor can be attached. Data mining/knowledge discovery
from databases plays a vital role in analyzing these datasets whose sizes of-
ten exceed tens or thousands of petabytes, well beyond the scope of a single
commodity computer to perform the analysis. Either the computational com-
plexity of the algorithm becomes the bottleneck or the data is too huge to fit
in memory. Instead of developing disk-based solutions, which are considerably
slower, it is appealing to develop solutions in which a cluster of computers
can be used for both memory and computational needs. To this end, several

Scalable and distributed data mining 5

researchers have proposed algorithms and systems which first splits the data
and then lets each machine in a cluster work on a data split. Finally, the re-
sults from each of these splits are combined to derive the final result of the
global computation. In this section, we provide several examples of data min-
ing algorithms and systems which are specifically designed for such tightly
coupled cluster of machines.

1.2.1 Parallel data clustering algorithms

Data clustering is one of the basic tasks of exploratory data analysis. Clus-
tering of the data not only helps one to understand the characteristics of the
data, but it also often used as a pre-processing step to identify different modes
or regimes of the data so that they can be analyzed separately. Clustering algo-
rithms often suffer from high computational and storage costs. Parallelizing is
thus a natural choice by which large datasets can be clustered in a reasonable
time.

Olson [59] presents several parallel algorithms for agglomerative hierarchi-
cal clustering. The considers two types of distance metrics (1) graph based in
which the distance between two clusters is determined by computing the min-
imum, average or maximum length of the edges between the members of the
cluster, and (2) geometric metrics in which the distance between two clusters
is defined as the centroid, median or minimum variance distance between the
members in the two groups. Both graph based and geometric metric based
hierarchical algorithms can be implemented in O(n2) where n is the number
of points in the dataset [27]. The most expensive operation in a hierarchi-
cal clustering is in finding the closest distance between two clusters for each
iteration. The author proposes several algorithms for speeding up this com-
putation using both concurrent read, concurrent write (CRCW) model and
exclusive read, exclusive write (EREW) model. The idea is, for each processor
to be in charge of one cluster and its associated nearest neighbor distances so
that the task of agglomerating the clusters is distributed across all the pro-
cessors. The author has shown that his algorithms run in linear time for most
of the distance metrics and CRCW architectures. For the EREW model, the
algorithms run in O(n log n) time.

Another popular clustering technique is the k-means algorithm which is a
partitioning based clustering method. In this method, the number of clusters
are known before the algorithm starts. Initially, each data point is assigned
to one cluster (based on some notion of distance to cluster centroids) and
at each successive iteration points may be re-assigned to other clusters and
new cluster centroids are computed. Although the advantage of k-means al-
gorithm over other clustering methods is its linear computational complexity,
still the computational burden is in finding the distance of each point from
each cluster centroid once per iteration. Fortunately, this processed can easily
be parallelized noting that, for each cluster, the distance of all points in that
cluster to the cluster centroids only depends on the points in that cluster and

6 Book title goes here

all the cluster centroids. Dhillon and Modha [29] present a parallel version of
this algorithm which aims to handle this problem elegantly. In the first step,
the data is distributed across the processors and a random choice of the k
centroids are also broadcast. Then the algorithm proceeds as follows:

• Compute the distance of all points in that partition to all the centroids
since the latter are available to all the processors

• For all points in that partition, find the cluster assignment based on the
minimum distance over all the clusters

• Update the cluster centroids at each processor independently

• Recompute the cluster centroids by requesting the centroids from the
other processors

The above steps are executed till the algorithm converges. The authors have
implemented the algorithm in the Message Passing Interface (MPI) which is a
standardized, portable, and widely available message-passing system designed
by a group of researchers from academia and industry [39]. Several experiments
conducted by the authors show that the algorithm demonstrates linear scale
up (with respect to the number of processors).

In some cases, k-means may produce unsatisfactory results if the data itself
is not grouped into convex regions. An alternative approach, proposed first by
Shi and Malik [62] is to embed the data first into a k-dimensional eigen space
and then perform clustering in that space. This technique is known as spectral
clustering techniques and several algorithms have been proposed to do such
clustering. As shown by Ng et al., spectral clustering often produces more
meaningful results compared to simple distance-based k-means when the data
is for example arranged in an annular shape. For many applications such as
astronomy, this may be interesting since many of the galaxies may be present
in some non-convex and arbitrary shape. Given a dataset S = {x1, . . . ,xn}
where xi ∈ R

d that we want to group into k clusters the steps of spectral
clustering are as follows:

• Compute weighted adjacency matrix W ∈ R
d×d where Wij =

exp(−||xi − xj ||
2/2σ2) if i 6= j and Wij = 0 otherwise

• Define a diagonal matrix D whose (i, i)-th element is the sum of W’s
i-th row and construct the Laplacian matrix as L = D−1/2WD−1/2

• Compute the first k eigenvectors eig1, . . . , eigk of L

• Let E ∈ R
n×k be the matrix in which each column is an eigenvector

• Run k-means algorithm on E taking each input vector as a row of E

• Assign a class label to each of the original n points

Scalable and distributed data mining 7

The above algorithm works quite well if the entire data similarity matrix
W fits in memory and the eigenvectors can be computed efficiently. Spectral
clustering becomes too expensive and eventually impossible to compute if the
data is too big. To solve this problem Chen et al. [21] have proposed a parallel
spectral clustering (PSC) algorithm that can run on multiple machines. Their
main idea is to first split the dataset among p processors such that each
processor has n/p data points. To reduce storage complexity at each node,
instead of computing the full dense similarity matrix, the authors propose to
compute the t most similar items (using an efficient max-heap) of all points
in that partition and the rest of the dataset with the assumption that the
rest of the distances are quite small and can safely be ignored. This is then
stored in a sparse format to save space. In the next step, a parallel eigensolver
is used to find the top k eigenvectors of the Laplacian matrix such that the
eigenvectors are stored in a distributed fashion at all the nodes. Finally a
parallel k-means clustering algorithm is used to cluster the eigenvectors into
k groups. Experimental results on image databases of size close to 200,000
shows good performance using only 64 machines. The source code of the PSC
is available at http://code.google.com/p/pspectralclustering/.

1.2.2 Parallel data classification algorithms

Several parallel implementations are also developed for some very popular
data classification algorithms such as support vector machines, decision trees
etc. Chang et al. [19] has developed a parallel support vector machine (PSVM)
algorithm which reduces the memory requirement fromO(n2) to O(np/m) and
the running time from O(n3) to O(np2/m), where n is the number of data
instances, m is the number of machines available and p is the reduced matrix
dimension of the incomplete cholesky factorization of the input data. Ir has
been empirically verified that p can be set to

√
(n) without degrading the

quality. Solution of SVM in the dual domain requires one to solve a convex
Quadratic Programming (QP) problem with linear constraints. This is most
efficient done using the interior point methods. However, the computational
complexity of this is O(n3). PSVM aims to circumvent both the memory
requirement and the computation requirement by first loading the training
data into the m machines in a round robin fashion reducing the memory
requirement from O(n2) to O(nd/m) per machine. In the second step, each
machine computes an incomplete cholesky factorization of the loaded data
matrix and stores only the factorized data, thereby reducing the memory
requirement further to O(np/m), where p/m ≪ n is the column dimension
of the factorized matrix. To reduce the computational overhead, the authors
propose a parallel IPM technique which co-ordinates the solution of the dual
SVM formulation using the interior point method among all the machines.
This parallel IPM reduces the computational cost from O(n3) to O(np2/m).
Experimental results on publicly available datasets show that the algorithm
achieves comparable accuracy to LIBSVM, a state-of-the-art SVM routine.

8 Book title goes here

The technique also shows linear scale-up when the number of machines is
increased. The software is open sourced and can be downloaded from http:

//code.google.com/p/psvm/.

Decision Trees is another popular classification technique. There have been
several attempts in making them scale to large datasets by parallelizing their
construction over a network of machines. The major drawback of decision
trees is the need to sort the instances in order to figure out where to split
a tree node. The various techniques for parallel tree building can roughly be
divided into three groups [1]: (1) task-parallel, in which the tree nodes are
distributed across the machines and each machine contains a small subset of
all the tree nodes, (2) data parallel, in which the data is split amongst the
machines and each machine is responsible in contributing to the tree based on
only its share, and (3) hybrid, in which data parallelism is exploited towards
the first stages followed by task parallelism towards the end. Parallel deci-
sion tree algorithms circumvent the need for data sorting by pre-sorting, dis-
tributed sorting or approximations. Approximations are carried out through
compact data representations such as histograms, counts etc. [4][61]. In the
meta-learning literature, a decision tree is learned independently at each of
the data partitions [17][11]. A test tuple is classified by taking a majority vote
of all the individual classifiers. While this approach may be very simple to
implement and easy to use, performance degrades if the data partitions are
much different. The core of the decision tree indiction algorithm is the eval-
uation of impurity gains for determining the splitting attribute. Most of the
impurity gain calculations (e.g. gini, information gain, misclassification gain)
can be expressed as sufficient statistics (counts of how many tuples belong to
a particular class for each attribute value) over the datasets. For each level of
the tree, a machine can build histogram counts of the attribute-label values
and these are then broadcast to all the other machines. At the end of this step,
each machine can compute the correct impurity measure for each attribute and
select the splitting node as the one which minimizes this measure. This pro-
cess is then repeated recursively for each level of the tree until some stopping
criterion (such as depth or required fraction of purity in the leaf nodes) are
reached. Based on minor variations of this technique, several parallel decision
tree induction algorithms have been proposed such as [43][4][61].

1.2.3 Parallel data mining systems/implementations

One of the more popular frameworks which lend itself nicely to massively
parallel computations is the Map-Reduce framework proposed by Dean and
Ghemawat [28] of Google Inc. The idea of map-reduce is extremely simple.
A given dataset is first broken into multiple smaller sets. A map function is
invoked for each of these smaller sets independently. The task of the map
function is to take in a pair (#key, #value) in one domain and output a pair
(#key, #value) in another domain. This map function is applied to every
item in the input dataset, thereby converting it to this key-value pair. The

Scalable and distributed data mining 9

framework then groups and stores all these intermediate key-value pairs such
that all the values for each key is stored as a group. The reduce function is
then applied in parallel to each group which then collects and outputs a single
value for each group. The following is a schematic description of the map and
reduce functions:

Map(k1, v1) → list(k2, v2)
Reduce(k2, list(v2)) → list(v3)

In the above, a mapper takes in a key-value pair k1, v1 and outputs a list of
key-value pairs (k2, v2) in a different domain. The reducer then takes all the
values having the same key k2 and outputs another list of values v3 which are
in the same domain as the original data.

Example: MapReduce

The canonical example of Mapreduce is in counting the number of
occurrences of each word in a document. For this, the input to each Map
routine is the name of a document and the content of that document. For
each word in the document, the Map outputs a pair (#word,’1’). The
framework then groups same words (which are the keys output from
different mappers) together. Finally, parallel invocation of the reducers
on each group combines the counts of the occurrences of the word for
that group.

There are many open-source MapReduce implementations available today.
Apache Hadoop1 is one such working system implemented in Java.

Once the MapReduce framework is setup, it is fairly easy to implement
advanced data mining algorithms. For data mining algorithms to be amenable
to MapReduce, one must be able to express it in a decomposable form i.e.,
computations can be carried out at each of the partitions independently and
then combined to form the global solution. The word counting example pre-
sented earlier is one example of a decomposable computation in which the
word count is computed at each mapper and then they are easily combined
by the reducers.

As an example, let us see how a multi-variate regression model can be eval-
uated using MapReduce. Consider a data matrix D having m rows (instances)

and d columns (features) such that D = [(x1, y1) , (x2, y2) , . . . , (xm, ym)]
T
,

where xj = [xj.1 . . . xj.(d−1)] ∈ R
d−1 and yj ∈ R. Every local data tuple can

be viewed as an input and output pair. Let the input-output be related lin-
early as follows: ŷj = f(xj) = w0+w1xj.1+w2xj.2+ ...+wd−1xj.(d−1) = wx̃T

j ,
where w = [w0w1 . . . wd−1] and x̃j = [1 xj]. The task of linear least squares
is to find the optimal values of w by minimizing the squared error between ŷ

1http://hadoop.apache.org/

10 Book title goes here

and y. First, we rewrite D = [X y], where X = [x̃1, x̃2, . . . , x̃m]
T
is the set

of all inputs and y = [y1, y2, . . . , ym]T is the set of all outputs. Following least
squares technique,

w =
(
XTX

)−1 (
XTy

)
.

Now assume that we need to do the same computation using MapReduce.
Our first task is to split D into p partitions D1,D2, . . . ,Dp such that D =⋃p

i=1 Di. Using the same notations for Xi and yi for each partition, it can be
easily verified that,

XTX =

p∑

i=1

XT
i Xi, XTy =

p∑

i=1

XT
i yi.

Once these two matrices are known, w is give by,

w =

(
p∑

i=1

XT
i Xi

)
−1(p∑

i=1

XT
i yi

)

The above expression suggests that we use two sets of mappers for the dis-
tributed computation, each containing p mappers. The first set will com-
pute the value of

∑p
i=1 X

T
i Xi and the second set will compute the value of∑p

i=1 X
T
i yi. All the outputs of the first mappers will go into a single reducer

which will simply sum the values of XT
i Xi while the output of the second set

will be reduced by a single reducer to compute XT
i yi. The specifications for

the first set of mappers and reduces will be

Map(i,Di) → list(1,XT
i Xi)

Reduce(1, list(XT
i Xi)) =

∑p
i=1 X

T
i Xi

Similarly, for the second set, the input-output of the mappers will be,

Map(i,Di) → list(1,XT
i yi)

Reduce(1, list(XT
i yi)) =

∑p
i=1 X

T
i yi

Another popular and widely accepted framework for parallel/distributed
processing is the Message Passing Interface (MPI) [39]. An MPI program is
loaded onto the main memory of a machine which allows the same program
to be executed on multiple data. In needed, the processes can communicate
with each other and synchronize. MPI is useful for iterative algorithms in
which there is a clear dependence among the data partitions and interprocess
communication is necessary for the algorithm to compute. On the other hand,
MapReduce is good for non-iterative algorithms in which the individual pro-
cesses are independent and communication is only needed while going from the
map phase to the reduce phase. Traditionally it has been observed that par-
allel data mining algorithms benefit from MapReduce while for distributed
data mining algorithms, we need an MPI interface. Most of the algorithms
that we discuss in the next section will necessitate communication among the
processes.

Scalable and distributed data mining 11

1.3 Distributed algorithms for data mining

In this section we present a brief overview of the existing work on Dis-
tributed Data Mining or (DDM). DDM, as the name suggests, deals with the
problem of data analysis in environments with distributed data, computing
nodes, and users. In DDM, the data is inherently distributed and it is difficult
to centralize the data due to bandwidth constraints. DDM aims to solve this
problem by developing data analysis algorithms which can work with the data
in situ. For an introduction to the area, interested readers are referred to the
books by Kargupta et al. [46][47], by Ghosh [35] and several surveys [67][68].

Depending on how the data is distributed across the various sites, a natural
way to categorize the DDM algorithms is as follows:

• Horizontally partitioned — in which all the features are present at all
the sites, but the samples/data tuples are distributed across the sites.

• Vertically partitioned — in which the features are distributed across all
the sites (may be overlapping or disjoint).

DDM algorithms have been proposed for many popular data analysis tasks.
In the next two subsections, we present a brief sampling from each major
category: distributed clustering and classification.

1.3.1 Distributed classification

Ensemble based classifier learning is well suited to distributed data mining
framework. In ensemble techniques such as bagging [14], boosting [34] and ran-
dom forests [15] several weak classifiers are induced from different partitions of
the data and then they are combined using voting techniques or otherwise to
produce the output. These techniques can be adopted for distributed learning
by inducing a weak classifier from each distributed data site and then com-
bining them at a central location. In the literature this is popularly known
as the meta-learning framework [17][18]. Several strategies for combining the
classifiers have been proposed such as voting, arbitration and combiner. The
meta learning framework for homogenous dataset is implemented as part of
the JAM system [63].

The problem of learning from heterogeneously partitioned data has been
addressed by several researchers. Park and his colleagues [60] have developed
algorithms for learning from heterogenous datasets using an evolutionary tech-
nique. Their work first builds local classifiers and then identifies a selection of
tuples that none of these local classifiers can correctly classify. These tuples
are centralized and a new classifier is build on this tuples. The classification of
a new tuple is based on either a collection of local classifiers or the centralized
one.

12 Book title goes here

Caragea et al. [16] presented a decision tree induction algorithm for both
distributed homogenous and heterogenous environments. Noting that the crux
of any decision tree algorithm is the use of an effective splitting criteria, the
authors propose a method by which this criteria can be evaluated in a dis-
tributed fashion. More specifically the paper shows that by only centralizing
summary statistics from each site e.g., counts of instances that satisfy specific
constraints on the values of the attributes to one location, there can be huge
savings in terms of communication when compared to brute force centraliza-
tion. Moreover, the distributed decision tree induced is the same compared to
a centralized scenario. Their system is available as part of the INDUS system.

A different approach is taken by Giannella et al. [37] for distributed clas-
sifier learning. They used Gini information gain as the impurity measure and
showed that Gini between two attributes can be formulated as a dot product
between two binary vectors. To cut down the communication complexity, the
authors evaluated the dot product after projecting the vectors in a random
subspace. Instead of sending either the raw data or the large binary vec-
tors, the distributed sites communicate only these projected low-dimensional
vectors. The paper shows that using only 20% of the communication cost
necessary to centralize the data, they can build trees which are at least 80%
accurate compared to the trees produced by centralization.

The collective data mining framework (CDM) by Kargupta et al. [45] pro-
poses algorithms for data mining from heterogenous data sites using orthogo-
nal basis functions. The basic idea is to represent the model to be built using
an orthonormal basis set such as fourier coefficients. These coefficients are
then evaluated at each local site and they are transferred to a central loca-
tion. Coefficients involving cross terms between the sites are evaluated at the
central site after centralizing a sample of the data. Several data mining algo-
rithms have been proposed using this technique. Bayes net from distributed
heterogenous data [20], decision trees [49], distributed multivariate regression
[40], distributed principle component (PCA) and data clustering [48] are some
of the algorithms developed using the CDM framework.

1.3.2 Distributed clustering

Several techniques have been proposed in the literature for distributed
clustering of data.

Kargupta et al. [48] have developed a principle component analysis (PCA)
based clustering technique on the CDM framework for heterogeneously dis-
tributed data. Each local site performs PCA, projects the local data along the
principle components, and applies a known clustering algorithm. The commu-
nication complexity of such a technique is much smaller than centralizing all
the data.

Klusch et al. [51] considered the problem of distributed clustering over ho-
mogenously distributed data using kernel-density. They use a local definition
of density based cluster and points which have same density (according to

Scalable and distributed data mining 13

some kernel function) are put in the same cluster. They build local clusters of
the data and transmit these to a central site. The central site then combines
these clusters.

k-means clustering of data is a popular data mining technique. Distributed
versions of k-means clustering algorithms have been proposed by various re-
searchers till date. Eisenhardt et al. [31] proposed a distributed method for
document clustering using k-means. Their technique is enhanced with a “probe
and echo” mechanism for updating cluster centroids. The algorithm is syn-
chronized and each round corresponds to a k-means iteration. There is one
designated initiator node. It launches a probe message to all its neighbors and
sends its local centroids and weights. Whenever a node Pj receives a probe
message from its neighbor Pi, it first updates its current centroids with the
ones received from Pi and then forwards the probe to all its neighbors (ex-
cept Pi). When a site has received a probe or each from everyone, it forwards
the message to the one from which it first received the probe. This process
continues until a termination criteria stops the iterations. Based on this tech-
nique, several extensions have been proposed. Banyopadhyay et al. [3] have
proposed an algorithm for k-means clustering based on sampling technique.
To relax the synchronization assumptions, Datta et al. [26] later proposed an
asynchronous version of k-means algorithm when the data is distributed in
the form of a large peer-to-peer network.

Johnson and Kargupta [44] have proposed a hierarchical clustering al-
gorithm on heterogeneously distributed data. The idea is to generate local
dendograms and then combine them at a central site. Lazarevic et al. [54]
considers the problem of combining spatial clusterings to produce a global
regression-based classifier on a homogenously distributed data.

Several other techniques for distributed heterogenous data clustering have
been proposed using ensemble approach such as [64] and [33].

1.3.3 Data mining in peer-to-peer environments

An emerging area of data mining is in the area of peer-to-peer networks.
In this model, the data is distributed over a large number of partitions with
the partitions being connected in an adhoc fashion, much like a peer-to-peer
network. The goal is to build data mining models in such environments. One
of the primary differences between traditional distributed data mining and
peer-to-peer is the huge number of sites and the need for asynchronous com-
putation. Datta et al. [25] present an overview of this topic.

In the next few sections we present an overview of the different types of
P2P data mining algorithms.

1.3.3.1 Approximate algorithms

Approximate algorithms, as the name suggests, computes the approximate
data mining results.

14 Book title goes here

The first type are the sampling-based algorithms in which peers samples
data using some variations of graph random walk from their own partition
and that of several neighbors’ and then build a model assuming that this data
is representative of that of the entire set of peers. Examples for these algo-
rithms include the P2P k-Means algorithm by Bandyopadhyay et al. [3], the
naive Bayes algorithm by Kowalczyk et al. [52], and more. Bandyopadhyay
et al. [3] talk about a distributed k-Means algorithm designed for a horizon-
tally partitioned scenario, such that only the centroids of the local sites need
to be communicated. The paper presents a theoretical proof of quality and
convergence (in some restricted cases e.g. when the data is sampled uniformly
from the network). Datta et al. [26] later enhanced this algorithm to work in
an asynchronous environment. More recently, Das et al. have developed an
algorithm [24] for identifying significant inner product entries in a P2P net-
work in a horizontally partitioned data distribution scenario. The proposed
algorithm uses a variant of Metropolis-Hastings random walk to draw ran-
dom samples from the network and using the results from the ordinal decision
theory bounds the quality of the result and the communication complexity.

Another type are the gossip-based algorithms first introduced by Kempe
et al. [50], in which they showed that each peer, by contacting a small number
of nodes chosen at random, can get the result of the computation exponen-
tially fast. Boyd et al. [12] enhanced the protocol for general graphs. The most
important quality of gossip-based algorithms is that they provide probabilis-
tic guarantees for the accuracy of the result. However, the first gossip-based
algorithms required that the algorithm be executed from scratch if the data
changes in order to maintain those guarantees. This problem was later ad-
dressed by Mehyar et al. [58], and by Jelasity et al. [42]. Mehyar et al. [58]
propose a graph Laplacian-based approach to compute the average of a set of
points in a P2P network. Each peer has a number say xi and an estimate of
the global average zi. The paper shows that the rate at which zi →

1
n

∑n
i=1 xi

is exponential, thereby achieving fast convergence.

1.3.3.2 Exact Algorithms

Exact algorithms form an exciting paradigm of computation whereby the
result generated by the distributed algorithms is exactly the same if all the
peers were given all the data. Thus, contrary to approximate techniques, these
algorithms produce the correct result everytime they are executed.

Exact algorithms for P2P data mining include the majority voting and
association rule mining protocol developed by Wolff and Schuster [66]. This
algorithm and the ones discussed in this section guarantee eventual correctness
— when the computation terminates, each node computes the correct result
compared to a centralized setting. In the simplest form, majority rule protocol
deals with the following computation: suppose each node has two real numbers
xi and yi, and the goal is to find out if

∑n
i=1 xi ≥

∑n
i=1 yi, where there

are n peers in the network. This protocol is eventually correct, fault-tolerant

Scalable and distributed data mining 15

and robust to data and network changes. They are efficient and require far
less resources compared to broadcast. Based on its variants, researchers have
further proposed more complicated algorithms such as facility location [53],
outlier detection [13], and meta-classification [56].

Based on the above protocol, Bhaduri et al. [8] have proposed a decision
tree learning algorithm which can build the same tree on all the peers in an
asynchronous fashion. First, the authors show that comparison of two features
can be accomplished by concurrently running 4 majority votes. The next step
is to choose top 1 out of k attributes and this can be easily accomplished
by running the previous comparison per attribute pair. Finally, the tree can
be built asynchronously by performing this 1 out of k comparison for each
level of the tree. More recently, Bhaduri and Kargupta [6] have proposed an
exact algorithm for multivariate regression in P2P networks. The idea is to
use a two-step approach. A local algorithm is used to track the fitness of the
current regression model and the data. If the data has changed such that
the model no longer fits the data, a feedback loop is used and the model is
rebuilt. Experimental results show the accuracy and low monitoring cost of
the proposed technique. This has been refined in a more recent publication [5]
in which the authors showed how coefficient of variation (R2) can be used to
find the goodness of fit in a distributed setting. Both soft clustering using EM
[7] and its deterministic version [65] have been proposed for large distributed
networks.

While most of the work in local algorithms focus on developing algorithms
which compute models based on all the peers’ data, Ping et al. [56] have
proposed a different method. In that work, a meta classification algorithm
is described in which every peer computes a weak classifier on its own data.
Then, weak classifiers are merged into a meta classifier by computing — per
new sample — the majority of the outcomes of the weak classifiers. The com-
putation of weak classifiers requires no communication overhead at all, and
the majority is computed using the majority voting protocol.

1.4 Applications to astronomy

There are several attempts in analyzing astronomy and large data collec-
tions using data mining [32][22]. However, none of them uses distributed data
mining for extracting the information from datasets. Borne [9] and McConnell
and Skillicorn [57] were the first to talk about the idea of using distributed
data mining for mining astronomy datasets. One of the first large-scale at-
tempts in incorporating grid data mining into astronomy data is the US NSF
funded GRIST project [38]. The aim of this project is to maintain large dis-
tributed archive of images and use grid computation strategies to mine for
such massive repositories.

16 Book title goes here

US National Virtual Observatory (NVO) is a large-scale effort by the NSF
to develop an information infrastructure by which users can access distributed
astronomy data archives. It contains services for querying, storing, analyzing
and visualizing these astronomy catalogs. New data analysis modules can be
added to the infrastructure. The DEMAC architecture described by Giannella
et al. [36] and Dutta et al. [30] fits well with the NVO as a new service.
Their framework sits as a layer on top of the data layer and the users can
access it through the functions of the NVO. This layer will run a distributed
data mining algorithm in the background using multiple data sources and
the users will only be able to download the learned model instead of the
raw data. There are two algorithms which are discussed in the papers. Both
work under the assumption that the data at each site contains a subset of
the variables (vertically partitioned) and the tuples have been cross-matched.
The first algorithms is a distributed PCA algorithm for identifying the galactic
fundamental plane and the second is the outlier detection algorithm based on
the estimated covariance. Both these algorithms rely on random projections
to project the local data in a low dimensional sub space which is then shared
amongst the sites. These are then used to re-construct the covariance matrix.
It can be shown that, on average, the covariance matrix is well approximated
using random projection. Once the covariance matrix is known at each site,
PCA calculation simply boils down to performing eigen analysis of this matrix
which does not take any communication at all. Computing the outliers from
this dataset based on PCA requires one to project the dataset in the residual
subspace spanned by the few most insignificant eigenvectors. Since the entire
dataset is not available at one location, computing the top outliers needs
distributed processing. It has been shown in [30], that this top-k computation
can be reduced to a series of max computations for which the authors have
proposed a distributed algorithm.

While the above algorithm works well in the static scenario, a challenging
task is to develop distributed algorithms which can ingest high-throughput
data streams such as the next generation LSST pipeline data [55]. The latter
would produce repeated images of the sky and the goal is to determine changes
in such images in real-time. The detection algorithm needs to take into ac-
count not only the LSST pipeline data, but also other astronomy datasets
distributed geographically. Das et al. [23] presents an algorithm which can
identify changes in the fundamental plane by tracking the principal compo-
nents of the covariance matrix. In their approach, they assume that the data
is distributed among a large number of sites horizontally and the sites are
connected in an adhoc fashion. Each of these sites gets a stream of tuples and
the goal is to detect any changes in the eigenspace of the global covariance
matrix. The proposed algorithm takes a two step approach. First, given an
estimate of the principal eigenvector and eigenvalue (henceforth called the
model), the algorithm each site asynchronously checks if the data fits the
model. This checking is done using a data-dependent set of rules which guar-
antee that if the model fits the global data, no communication is wasted and

Scalable and distributed data mining 17

the algorithm converges. Only when the data does not fit the model at any
site, they send messages which result in a globally correct termination con-
dition. In the second phase, one the sites jointly discover that the model is
outdated, it is rebuilt using network sampling. The eventual correctness and
superb scalability of this algorithm makes it an idea candidate for analyzing
the data generated by the high throughput data streams such as LSST.

1.5 Conclusion

Parallel and distributed data mining will play an important role in anal-
ysis od modern astronomy datasets which are often too large and/or dis-
tributed at different geographical locations. In this chapter we have discussed
several strategies for scaling up data mining algorithms for handling large
datasets using parallel techniques. These techniques leverage the computation
and storage power of many computers such as computing clusters. We have
also discussed how distributed data mining algorithms can be deployed if the
data is inherently located at different geographic locations. We feel that we
have barely scratched the surface of this exciting area. We hope interested
readers will explore this area based on the references given. It offers plenty of
room for development for both novel algorithm development and astronomical
discoveries.

Acknowledgements

This research is supported by the NASA SSAT project under NASA Aero-
nautics Mission Directorate.

18 Book title goes here

Bibliography

[1] N. Amado, J. Gama, and F. Silva. Parallel Implementation of Deci-
sion Tree Learning Algorithms. In Proceedings of the 10th Portuguese
Conference on Artificial Intelligence on Progress in Artificial Intelli-
gence, Knowledge Extraction, Multi-agent Systems, Logic Programming
and Constraint Solving, pages 6–13, 2001.

[2] N. M. Ball and R. J. Brunner. Data Mining and Machine Learning in
Astronomy. arXiv:0906.2173v1, 2009.

[3] Sanghamitra Bandyopadhyay, Chris Giannella, Ujjwal Maulik, Hillol Kar-
gupta, Kun Liu, and Souptik Datta. Clustering Distributed Data Streams
in Peer-to-Peer Environments. Information Science, 176(14):1952–1985,
2006.

[4] Y. Ben-Haim and E. Tom-Tov. A Streaming Parallel Decision Tree Al-
gorithm. J. Mach. Learn. Res., 11:849–872, March 2010.

[5] K. Bhaduri, K. Das, and C. Giannella. Distributed Monitoring of the R2

Statistic for Linear Regression. In Proceedings of SDM’11 (accpeted for
publication), 2011.

[6] K. Bhaduri and H. Kargupta. A Scalable Local Algorithm for Distributed
Multivariate Regression. Stat. Anal. and Data M. J., 1(3):177–194, 2008.

[7] K. Bhaduri and A. N. Srivastava. A Local Scalable Distributed Ex-
pectation Maximization Algorithm for Large Peer-to-Peer Networks. In
Proceedings of ICDM’09, pages 31–40, 2009.

[8] K. Bhaduri, R. Wolff, C. Giannella, and H. Kargupta. Distributed Deci-
sion Tree Induction in P2P Systems. Stat. Anal. and Data M., 1(2):85–
103, 2008.

[9] K. Borne. Distributed Data Mining in the National Virtual Observa-
tory. SPIE Data Mining and Knowledge Discovery: Theory, Tools, and
Technology V, 5098:211–218, 2003.

[10] K. Borne. Scientific Data Mining in Astronomy. In Next Generation of
Data Mining, chapter 5, pages 91–114. CRC press, 2009.

19

20 Book title goes here

[11] K. W. Bowyer, L. O. Hall, T. Moore, N. Chawla, and W. P. Kegelmeyer.
A Parallel Decision Tree Builder for Mining Very Large Visualization
Datasets. In Proceedings of IEEE International Conference on Systems,
Man, and Cybernetics, 2000, volume 3, pages 1888–1893, 2000.

[12] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip Algorithms:
Design, Analysis and Applications. In Proceddings Infocom’05, pages
1653–1664, Miami, March 2005.

[13] J. Branch, B. Szymanski, C. Gionnella, R. Wolff, and H. Kargupta. In-
Network Outlier Detection in Wireless Sensor Networks. In Proceedings
of ICDCS’06, Lisbon, Portugal, July 2006.

[14] Leo Breiman. Bagging Predictors. Machine Learning, 24(2):123–140,
1996.

[15] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.

[16] D. Caragea, A. Silvescu, and V. Honavar. A Framework for Learning from
Distributed Data Using Sufficient Statistics and Its Application to Learn-
ing Decision Trees. International Journal of Hybrid Intelligent Systems,
1(1-2):80–89, 2004.

[17] P. K. Chan and S. Stolfo. Experiments on Multistrategy Learning by
Meta-learning. In Proceedings of the second international conference on
Information and knowledge management, pages 314–323, 1993.

[18] Phillip K. Chan and Salvatore J. Stolfo. Toward Parallel and Distributed
Learning by Meta-Learning. In Working Notes of AAAI Workshop on
Knowledge Discovery in Databases, pages 227–240, 1993.

[19] E. Y. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, and H. Cui. PSVM:
Parallelizing Support Vector Machines on Distributed Computers. In
Proceedings of Neural Information Processing Systems, 2007.

[20] R. Chen, K. Sivakumar, and H. Kargupta. Collective Mining of Bayesian
Networks from Distributed Heterogeneous Data. Knowledge and Infor-
mation Systems, 6(2):164–187, 2004.

[21] W. Chen, Y. Song, H. Bai, C. Lin, and E. Chang. Parallel Spectral Clus-
tering in Distributed Systems. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 99(RapidPosts), 2010.

[22] The Class X project. http://heasarc.gsfc.nasa.gov/classx/.

[23] K. Das, K. Bhaduri, S. Arora, W. Griffin, K. Borne, C. Giannella, and
H. Kargupta. PADMINI: A Peer-to-Peer Distributed Astronomy Data
Mining System and a Case Study. In Proceedings of CIDU’10, pages
245–256, Mountain View, CA, 2010.

Scalable and distributed data mining 21

[24] Kamalika Das, Kanishka Bhaduri, Kun Liu, and Hillol Kargupta. Dis-
tributed Identification of Top-l Inner Product Elements and its Applica-
tion in a Peer-to-Peer Network. IEEE Transactions on Knowledge and
Data Engineering (TKDE), 20(4):475–488, 2008.

[25] S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kargupta. Dis-
tributed Data Mining in Peer-to-Peer Networks. IEEE Internet Comput-
ing Special Issue on Distributed Data Mining, 10(4):18–26, 2006.

[26] S. Datta, C. Giannella, and H. Kargupta. K-Means Clustering over Large,
Dynamic Networks. In Proceedings of SDM’06, pages 153–164, Maryland,
2006.

[27] W. Day and H. Edelsbrunner. Efficient Algorithms for Agglomerative
Hierarchical Clustering Methods. Journal of Classification, 1:7–24, 1984.

[28] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Commun. ACM, 51:107–113, January 2008.

[29] I. Dhillon and D. Modha. A Data-Clustering Algorithm on Distributed
Memory Multiprocessors. In Revised Papers from Large-Scale Parallel
Data Mining, Workshop on Large-Scale Parallel KDD Systems, SIGKDD,
pages 245–260, 2000.

[30] Haimonti Dutta, Chris Giannella, Kirk D. Borne, and Hillol Kargupta.
Distributed Top-K Outlier Detection from Astronomy Catalogs using the
DEMAC System. In SDM, 2007.

[31] Martin Eisenhardt, Wolfgang Müller, and Andreas Henrich. Classifying
Documents by Distributed P2P Clustering. In GI Jahrestagung, pages
286–291, 2003.

[32] An Interoperable Framework for Data Mining and Analysis of Space Sci-
ence Data . http://aisrp.nasa.gov/projects/bf2354d0.html.

[33] A. Fred and A. Jain. Data Clustering Using Evidence Accumulation. In
Proceedings of ICPR’02, page 40276, Washington, DC, USA, 2002.

[34] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive Logis-
tic Regression: A Statistical View of Boosting. The Annals of Statistics,
38(2):337–374, 2000.

[35] Sukumar Ghosh. Distributed Systems: An Algorithmic Approach. CRC
press, 2006.

[36] C. Giannella, H. Dutta, K. Borne, R. Wolff, and H. Kargupta. Distributed
Data Mining for Astronomy Catalogs. In Proceedings of SDM’06 work-
shops, 2006.

22 Book title goes here

[37] C. Giannella, K. Liu, T. Olsen, and H. Kargupta. Communication Effi-
cient Construction of Deicision Trees Over Heterogeneously Distributed
Data. In Proceedings of ICDM’04, pages 67–74, Brighton, UK, 2004.

[38] GRIST: Grid Data Mining for Astronomy. http://grist.caltech.edu/
index.html.

[39] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Pro-
gramming with the Message Passing Interface. MIT Press, Cambridge,
MA, 1996.

[40] D. E. Hershberger and H. Kargupta. Distributed Multivariate Regression
Using Wavelet-based Collective Data Mining. Journal of Parallel and
Distributed Computing, 61(3):372–400, 2001.

[41] T. Hinke and J. Novotny. Data Mining on NASA’s Information Power
Grid. In Proceedings of HPDC’00, page 292, 2000.

[42] Mrk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based Ag-
gregation in Large Dynamic Networks. ACM Transactions on Computer
Systems (TOCS), 23(3):219–252, August 2005.

[43] R. Jin and G. Agrawal. Communication and Memory Efficient Parallel
Decision Tree Construction. In SDM, 2003.

[44] Erik L. Johnson and Hillol Kargupta. Collective, Hierarchical Clustering
from Distributed, Heterogeneous Data. In Revised Papers from Large-
Scale Parallel Data Mining, Workshop on Large-Scale Parallel KDD Sys-
tems, SIGKDD, pages 221–244, London, UK, 2000.

[45] H. Kargupta, B. Park, D. Hershbereger, and E. Johnson. Collecttive Data
Mining: A New Perspective Towards Distributed Data Mining. In Hillol
Kargupta and Philip Chan, editors, Advances in Distributed and Parallel
Knowledge Discovery. AAAI/MIT Press, 1999.

[46] H. Kargupta and K. Sivakumar. Existential Pleasures of Distributed Data
Mining. Data Mining: Next Generation Challenges and Future Directions.
AAAI/MIT press, 2004.

[47] Hillol Kargupta and Philip Chan, editors. Advances in Distributed and
Parallel Knowledge Discovery. MIT Press, 2000.

[48] Hillol Kargupta, Weiyun Huang, Krishnamoorthy Sivakumar, and Erik L.
Johnson. Distributed Clustering Using Collective Principal Component
Analysis. Knowledge and Information Systems, 3(4):422–448, 2001.

[49] Hillol Kargupta, Byung-Hoon Park, and Haimonti Dutta. Orthogonal
Decision Trees. IEEE Trans. on Knowl. and Data Eng., 18(8):1028–1042,
2006.

Scalable and distributed data mining 23

[50] David Kempe, Alin Dobra, and Johannes Gehrke. Computing Aggregate
Information using Gossip. In Proceedings of FOCS’03, Cambridge, 2003.

[51] M. Klusch, S. Lodi, and G. L. Moro. Distributed Clustering Based on
Sampling Local Density Estimates. In Proceedings of IJCAI’03, pages
485–490, Mexico, August 2003.

[52] Wojtek Kowalczyk, Márk Jelasity, and A. E. Eiben. Towards Data Min-
ing in Large and Fully Distributed Peer-to-Peer Overlay Networks. In
Proceedings of BNAIC’03, pages 203–210, University of Nijmegen, 2003.

[53] D. Krivitski, A. Schuster, and R. Wolff. A Local Facility Location Algo-
rithm for Large-Scale Distributed Systems. Journal of Grid Computing,
5(4):361–378, 2007.

[54] A. Lazarevic, D. Pokrajac, and Z. Obradovic. Distributed Clustering and
Local Regression for Knowledge Discovery in Multiple Spatial Databases.
In Proceedings of ESANN’00, pages 129–134, Bruges, Belgium, April
2000.

[55] LSST: Large Synoptic Survey Telescope. http://www.lsst.org/lsst.

[56] Ping Luo, Hui Xiong, Kevin Lü, and Zhongzhi Shi. Distributed Classi-
fication in Peer-to-Peer Networks. In Proceedings of SIGKDD’07, pages
968–976, 2007.

[57] S. M McConnell and D. Skillicorn. Distributed Data Mining for Astro-
physical Datasets. In Proceedings of Astronomical Data Analysis Software
and Systems XIV, page 360, 2005.

[58] Mortada Mehyar, Demetri Spanos, John Pongsajapan, Steven H. Low,
and Richard Murray. Distributed Averaging on Peer-to-Peer Networks.
In Proceedings of CDC’05, Spain, 2005.

[59] C. F. Olson. Parallel Algorithms for Hierarchical Clustering. Parallel
Comput., 21:1313–1325, August 1995.

[60] B. Park, H. Kargupta, E. Johnson, E. Sanseverino, D. Hershberger, and
L. Silvestre. Distributed, Collaborative Data Analysis from Heteroge-
neous Sites Using a Scalable Evolutionary Technique. Applied Intelli-
gence, 16(1):19–42, 2002.

[61] J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A Scalable Parallel
Classifier for Data Mining. In Proceedings of the 22th International Con-
ference on Very Large Data Bases, pages 544–555, 1996.

[62] J. Shi and J. Malik. Normalized Cuts and Image Segmentation. In
Proceedings of CVPR’97, page 731, 1997.

24 Book title goes here

[63] Salvatore J. Stolfo, Andreas L. Prodromidis, Shelley Tselepis, Wenke Lee,
Dave W. Fan, and Philip K. Chan. JAM: Java Agents for Meta-Learning
over Distributed Databases. In Proceedings of KDD’97, pages 74–81,
Newport Beach, CA, 1997.

[64] Alexander Strehl and Joydeep Ghosh. Cluster Ensembles — AKnowledge
Reuse Framework for Combining Multiple Partitions. Journal of Machine
Learning Research, 3:583–617, 2003.

[65] R. Wolff, K. Bhaduri, and H. Kargupta. A Generic Local Algorithm for
Mining Data Streams in Large Distributed Systems. TKDE, 21(4):465–
478, 2009.

[66] R. Wolff and A. Schuster. Association Rule Mining in Peer-to-Peer Sys-
tems. IEEE Transactions on Systems, Man and Cybernetics - Part B,
34(6):2426 – 2438, December 2004.

[67] Mohammed Javeed Zaki. Parallel and Distributed Association Mining:
A Survey. IEEE Concurrency, 7(4):14–25, 1999.

[68] Mohammed Javeed Zaki. Parallel and Distributed Data Mining: An In-
troduction. In Revised Papers from Large-Scale Parallel Data Mining,
Workshop on Large-Scale Parallel KDD Systems, SIGKDD, pages 1–23,
London, UK, 2000.

