
1

Flight Software for the LADEE
Mission

Aerospace Control and Guidance Systems
Committee Meeting #116

Howard Cannon
NASA Ames Research Center
Howard.N.Cannon@nasa.gov

October 14, 2015

Objective

• Measure Lunar Dust

• Examine the Lunar atmosphere

Key parameters

• Launched in September 2013

• Science Data Acquisition: 146 days

• Lunar Impact April 18,2014

Spacecraft

• Type: Small Orbiter - Category II, Enhanced Class D

• Provider: ARC/GSFC

Instruments

• Science Instruments: NMS, UVS, and LDEX

• Technology Payload: Lunar Laser Communications Demo

Launch Vehicle: Minotaur V

Launch Site: Wallops Flight Facility

Lunar Atmosphere and Dust Environment Explorer

2

Spacecraft Components - External

LDEX

NMS

UVS

LLCD
Optical Module

MG Antenna

Star Tracker Cameras

RCS

OCS
(Main Thruster)

Omni
Antenna

CSS Mounted
on Solar Panels

Spacecraft Components - Internal

UVS

LDEX

Star Tracker
Cameras

MG Antenna

Omni
Antenna

Payload Module

RWA x4

Top of

Radiator

SEPIA

Transponder

Battery

Star Tracker
DPU

IAU

IMU

Bottom of

Radiator

VDU

Propulsion

Module

LLST

NMS

3

LADEE in I&T

LADEE in Flight Configuration

4

LADEE Encapsulation

LADEE Launch – 9/7/2013

- Launched from Wallops Flight Facility
- First launch on Minotaur V
- Spectacular night launch visible

along Eastern Seaboard

5

LADEE’s Journey to the Moon

LADEE As-Flown Trajectory (Earth Inertial Frame)

9

• Earth “Phasing Loop” trajectory approach used to account for
uncertainty in launch vehicle performance

• Three and a half loops performed over the course of 29 days
(9/6/13 – 10/6/13)

Lunar Orbit Insertion Burn #1: 10/6/2013

• LOI-1 Burn was critical – if unsuccessful or delayed ,
could have resulted in not meeting science objectiv es

• Final approach out of view from earth
• Start burn within 5 minutes of coming into view
• Burn duration approximately 3 minutes

10

Delay Impact to Mission

5 min Mission still meets most science objectives.

10 min Mission meets many science objectives, but

doesn’t achieve full success.

15 min Mission meets only minimum science

objectives.

20+

min

Mission doesn’t meet science objectives.

6

Lunar Orbit

As flown vs. Planned

14
 A

pr

Predicted

Eclipse

100th Day of Science

Lowest Altitudes

Lunar Impact
Apr 17, 2014
Lunar Impact
Apr 17, 2014

Lunar LaserComm
Demonstration

7

LADEE L1 Science Requirements

Min. mission
Nominal mission

13

LADEE Flight Software Overview

Low Cost Approach:
• Leverage Heritage Software

– GSFC OSAL, cFE, cFS, ITOS
– Broad Reach Drivers, VxWorks
– Mathworks Matlab/Simulink & associated toolboxes

• Development Approach

– Model Based Development Paradigm (prototyped process using a “Hover Test
Vehicle”)

– 5 Incremental Software Builds, 2 Major Releases before launch, 1 Minor Release
after launch.

• Scope
- Onboard Flight Software (Class B)
- Support Software and Simulators (Class C)
- Non-Safety Critical (launch powered off)

• Key Features
- Attitude Control (RW & Thrusters)
- Power & Battery Management
- Thermal Management
- Safe Mode Control
- Command & Data Handling

8

Hover Test

Use of Core Flight System

• Low Cost Mission and fixed schedule demanded low cost
flight software development leveraging
COTS/GOTS/MOTS.

• The Core Flight System (cFS) is a platform-independent,
mission-independent, reusable Flight Software
environment (Product Line)
– core Flight Executive (cFE)
– Operating System Abstraction Layer (OSAL)
– CFS Applications (cFE-compliant)

– All of the above were developed and managed by
Flight Software Branch GSFC Div. 582

9

cFS Key Features

• Layered architecture
– Reusable components

– Platform Independent

– Supports advances in technology without changes to the framework

cFS Core Services

Executive Services

– Manages the software system

Software Bus Services

– Provides publish/subscribe software bus messaging interface

Time Services

– Provides spacecraft time

Event Services

– Provides interface for sending, filtering, and logging event messages

Table Services

– Provides interface to manage table images

The cFS core layer is the system glue. It provides the common software functions that

are needed by all missions.

10

cFS Applications

Application Function

CF/CFDP Transfers/receives file data to/from the ground

Checksum Performs data integrity checking of memory, tables and files

Command Ingest Lab Accepts CCSDS telecommand packets over a UDP/IP port

Data Storage Records housekeeping, engineering and science data onboard for downlink

File Manager Interfaces to the ground for managing files

Housekeeping Collects and re-packages telemetry from other applications.

Health and Safety Ensures that critical tasks check-in, services watchdog, detects CPU hogging, and calculates CPU

utilization

Limit Checker Provides the capability to monitor values and take action when exceed threshold

Memory Dwell Allows ground to telemeter the contents of memory locations. Useful for debugging

Memory Manager Provides the ability to load and dump memory.

Software Bus Network Passes Software Bus messages over Ethernet

Scheduler Schedules onboard activities via (e.g. HK requests)

Scheduler Lab Simple activity scheduler with a one second resolution

Stored Command Onboard Commands Sequencer (absolute and relative).

Telemetry Output Lab Sends CCSDS telemetry packets over a UDP/IP port

cFS Open Source

• cFE open Internet access at
http://sourceforge.net/projects/coreflightexec/
– Source code
– Requirements and user guides
– Tools

• OSAL open Internet access at http://sourceforge.net/projects/osal/
– Source code
– Requirements and user guides
– Tools

• cFS application suite is also available on sourceforge

• For more information, contact:
Dave McComas
NASA GSFC/Code 582 Flight Software Branch
Dave.C.McComas@nasa.gov

11

Model Based Development

• Issues:
– Low Cost Mission and fixed schedule demanded rapid, low cost flight software

development process

– Simulations needed for FSW Verification and Mission Operations development,
training, and command verification.

• Solution:
– Use model based development approach

• Automatic conversion of Models to FSW allows development and testing of algorithms which
then becomes Software. Avoids “throwing it over the fence to be coded”.

– Developed multiple simulators of varying degrees of fidelity (WSIM, PIL, HIL)

– Developed Simulink Interface Layer
• Allows immediate translation from models to Code allowing rapid turnaround

– Developed an automated test harness for rapid turnaround of verification results

• Result:
– Model Based Development coupled with “push button” code generation and

testing was highly effective for rapid software development.

– Models and Simulations used extensively in Mission Operations.
• WSIM provided faster than real time capability for rapid command verification.

• Processor in the Loop and Hardware in the Loop simulations provided high fidelity simulations
for critical maneuver verification, Ops training, and debugging anomalies

• Fully Coupled Simulations (Power, Thermal, Propulsion, Attitude Control) provided better
insight for coupled problems.

Simulink Interface Layer (SIL)

• Higher level Flight Software Modules modeled in
Simulink

• C-Software generated from Models using Real Time
Workshop Embedded Coder
– Template for Target Language Compiler (TLC) developed

with Mathworks
• Turns Specified Simulink Input/Output ports into cFE Message

structures
– I/O ports must be Simulink non-virtual buses

• Creates C Header file that defines message interfaces and entry
points

– Specific Data Structures

– Macros that identify key functions

– Simulink Interface Layer (SIL) provides CFE compatible
app functionality:

• Uses message and entry point definitions from generated .h file

• Input Messages – Subscribed to and recv’d from Software Bus

• Output Messages – Registered and Published to Software Bus

• Event Output – Custom Block with Trigger and Format String

• Table Management – Mapped from tunable params

• Housekeeping – General Meta-Data about App

– Simulink Interface being made available in the CFS
Community repository

Simulink
Interface

Layer

(SIL)

C Code
Module

Target
Language
Compiler

(TLC)

Simulink
Interface

Header File

Simulink
Algorithmic

C Code
Functions

Simulink

cFE App

Instance

12

LADEE FSW Architecture

Cmd
& Mode

Processor

Actuator
Manager

State
Estimator

Safe Mode
Controller

Attitude
Control
System

Thermal
Control
System

Power
Control
System

Scheduler
Limit

Checker
Stored

Commands
Memory
Scrub

Memory
Manager

Memory
Dwell

Hardware
I/O

Health &
Safety

Data
Storage

File
Manager

Telemetry
Output

CCSDS File
Delivery

Checksum
Command

Ingest

House-
keeping

Software Bus

Telemetry
Gnd Cmds

Sensor Data

Hdwr Cmds

OFSW

System Support and O/S Services

Battery
Charge
System

FSW Internal

FSW External
Simulink

Task
cFS
Task

Hand
Written
Task

KEY

GSFC OSAL, cFE, cFS, ITOS (GOTS)
Broad Reach Drivers (MOTS)
Simulink/Matlab, VxWorks (COTS)

Page 24

Simulink Application Summary

Application Function

Command & Mode
Processor (CMP)

Decodes and latches commands for other Simulink modules, and handles mode
transitions.

Actuator Manager (ACT) Manages which module talks to the thruster & reaction wheel hardware.

State Estimator (EST) Estimates the attitude and rates of the spacecraft.

Safe Mode Control (SMC) Controls the spacecraft orientation and rates while in Safe Mode and Rate Reduction
Modes.

Attitude Control System
(ACS)

Controls the spacecraft orientation and rates while in DeltaV, FinePoint, or DeltaH
Modes.

Thermal Control System
(TCS)

Turns heaters on and off based on set points.

Power Control System
(PCS)

Turns electrical switches on and off as commanded. Provides current limit protection
and load shedding.

Battery Charge System
(BCS)

Monitors and Controls battery voltage.

13

Hardware Test Systems

WSIM

Workstation
Simulations

Simulink on
Windows, Mac, or
Linux computers

•Models of GN&C, Prop, Power, & Thermal

•Faster than Real Time

•Used by FSW to generate and test algorithms.

•Used by MOS for standard command uplink
verification.

PIL

Processor-in-
the-Loop

PPC750
Processor(s) in
Standalone
chassis

•Includes all flight software functionality. Runs on 1 or 2
processors.

•Run in real time

•Multiple copies maintained by FSW as inexpensive
system for real time software & fault management
development.

•Used by MOS for maneuver simulations

HIL

Hardware-in-the-
Loop

Avionics EDU
with simulated
vehicle hardware.

•Highest fidelity simulators includes hardware
interfaces.

•Run in real time.

•Travelling Road Show used to test payload interface s
early in development cycle

•Authoritative environment for verification of FSW
requirements

Iterative Development

• Develop Models of FSW, Vehicle, and Environment
• Automatically generate High-Level Control Software
• Integrate with hand-written and heritage software.
• Iterate while increasing fidelity of tests – Workstation Sim (WSIM), Processor-In-The-Loop (PIL),

Hardware-in-the-Loop (HIL)
• Automated self-documenting tests providing traceability to requirements

Requirements

Design/Algorithm
Development

Flight Software
Modeling

Vehicle &
Environment

Modeling

Heritage
Software

Workstation
Simulations

(eg. Simulink)

Code
Generation

Integrated
Tests

Processor-in-the-Loop
Hardware-in-the-Loop

Verification

Heritage
Models

Iterate Early and Often

Unit
Tests

Automated
Reporting

Analysis

Hand
Developed

Apps

14

Automated Testing

• Need to verify the integrated flight software, not just the models.

– 144 top level requirements to assess

• Test as we fly!

– Telemetry is the normal indicator of the software health during flight so verify

L4 requirements on the telemetry stream using same tool-chain as in flight.

– Scenarios developed exercising each flight phase. Software response to

identified fault conditions tested in Fault Management scenarios.

– Assertions applied to telemetry stream and software artifacts to verify level 4s.

• Regression test cycle within one week.

– Scenarios themselves take a “long weekend” to compute (in real time).

– Reduction of 70 Gb of scenario data takes an additional day.

– Automated test report for analysis

Automated Test Report

15

Conclusions

LADEE Mission Highly Successful
•Lowest science operations conducted under 2 Km over the moon’s surface
•Successful Laser Communications demonstration: 622Mbs downlink rate. Very
useful to be able to download a SDRAM partition in less than 2 minutes.
•Survived an eclipse!
•188 days of lunar orbit, with approximately 200% of planned science data
returned to the earth. All science goals met.

LADEE Flight Software
•Delivered on time and within budget.

• Use of Heritage Software
• Model Based Development
• Automated Testing

•Software performed well throughout mission
• Flexibility in design allowed unanticipated use cases
• 2 software patches to account for emergent star tracker behavior
• 1 unanticipated reboot (Interrupt Handling)

Final Resting Place
April 18, 04:31 UTC
Orbit #2292
11.8407o latitude, -93.2521o longitude – visible from Earth between 5 and 9 days each lunar cycle
Mission Ops in communication and retrieving science data at impact

