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Optimal Level-Crossing Prediction for Jump Linear
MIMO Dynamical Systems

Rodney A. Martin, Member, IEEE

Abstract—In this article, the theoretically optimal prediction
of level-crossings for a jump linear MIMO (multi-input multi-
output) dynamical system driven by operator input is investi-
gated. The study of this problem is motivated by the practical
implications for design of an optimal alarm system as applied to
the advance prediction of fuel flow overages, which will elicit the
fewest false alarms for a fixed detection probability. This work
also introduces the use of a hidden Markov model (HMM) to
allow for the modeling of operator input dynamics in tandem
with the jump linear MIMO dynamical system that represents
aircraft dynamics. It is shown that using an HMM to model
operator input dynamics results in better prediction performance
and qualitatively has a higher model fidelity than when using a
jump linear MIMO dynamical system for the same function.

Index Terms—Alarm systems, Hidden Markov models, Kalman
filtering, Level-crossing problems, Prediction methods

I. INTRODUCTION

AN article recently published [1] introduced a novel ap-
proach of combining the practical appeal of Kalman

filtering with the design of an optimal alarm system for the pre-
diction of level-crossing events. However, practical application
of this technique to the prediction of adverse events in aviation
data required the use of a serial architecture to preprocess a
full feature space, implicitly reducing it to a univariate signal
while retaining salient dynamic characteristics [2]. This step
was necessary due to existing technical constraints implicit
in the use of the method as introduced in [1]. As such, data
reduction was performed by using a regression algorithm to
predict a target value relevant to safe operation based upon the
full feature space. The resulting residual had properties which
were favorable for use as training data to learn the parameters
of a linear dynamical system.

In this paper these restrictions are lifted so as to allow for
exposure to a broader class of models while also potentially
helping to characterize mode-dependent nonlinearities that
may be found in the data. Specifically, the basic technique is
extended to allow for the use of a switched multi-input/multi-
output (MIMO) linear dynamical system. Unlike jump linear
dynamical systems or the switched Kalman filter whose dy-
namics switch according to the evolution of a Markov chain,
switching will take place in a purely deterministic fashion. The
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determinism is governed by a potentially exponential number
of modes as a consequence of the total number of available
discrete inputs, which can be selected by an operator. The
former type of jump linear dynamical system is well known
and has been studied in previous work [3]-[4].

Even though the number of modes can potentially scale in
an exponential fashion, the actual number of modes typically
scale in a favorable manner due in part to natural operational
and practical constraints. Thus, the proposed technique implic-
itly yet fundamentally extends previous variants to allow for
the processing of multivariate heterogeneous (both discrete and
continuous) data in lieu of just univariate continuous data. This
also obviates the need for the use of a preprocessing regression
algorithm in serial with the linear dynamical system having a
univariate output as presented in [2]. However, all potential
system nonlinearities must now be characterized purely upon
mode changes rather than upon the underlying model itself due
to the absence of a nonlinear regression algorithm that acts as
a static nonlinear transformation of input data. In future work
a static nonlinear mapping may be placed in series with the
jump MIMO linear dynamical system, as was performed in [5].
The purpose of doing so will be to characterize the underlying
system nonlinearities in addition to those governed by mode
switches, rather than for use in generating a residual.

In this paper, forecasts of level-crossings associated with
residuals generated by the divergence between future val-
ues for a specifically designated monitored target and the
predicted model value are abandoned in favor of a much
more intuitive and practically relevant detection paradigm.
Ostensibly, the former method captures the ability to predict
future excursions of how well the monitored process adheres
to the model, so the success of the technique relies heavily
on having substantially high model fidelity. However, the
new paradigm involves predicting excursions of future values
of the monitored process itself, outside of predetermined
envelopes in multiple dimensions. As such, the event to be
predicted is associated with actual monitored values rather than
a residual associated with a single monitored value. Model
fidelity is still quite important in using the new paradigm,
nonetheless, but the characterization operates on a different
layer of abstraction. Quite simply, the model representing the
underlying governing dynamics of the human-machine system
requires a high fidelity in contrast to the need for high fidelity
modeling of the dynamics embedded in a residual.

However, due to the fact that human operator input is
now part of the problem construction, it is also necessary to
develop models to generate forecasts of these future inputs.
This requires the development of a cascading, serial end-to-
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Fig. 1. Block diagrams two modeling representation for the human-machine
system connected in a serial architecture

end collection of two models, the first characterizing human
operator input, and the second one representing the aircraft
dynamics as illustrated in Fig. 1. For this first model of human
input, both a simple linear dynamical system and a standard
Hidden Markov Model (HMM) will be investigated (shown as
interchangeable blocks as Case #1 and Case #2 in Fig. 1) for
the benefit of a contrasting performance assessment. The use
of the HMM method to model human input is very similar to
what was presented in previous work by Pavlovic et al. [6].
The performance of the overall system as quantified by the
AUC (area under the ROC curve), and applied to the problem
of fuel flow consumption initially studied by Srivastava [7]
will be investigated, comparing both Cases #1 and #2.

II. METHODOLOGY

A multivariate level-crossing event is defined by the hyper-
box ×ny

i=1 [`i, υi], where `i and υi are critical levels assumed
to have a fixed, static values for each dimension. The primary
objective of this paper is to predict when the trajectory of
critical parameters represented by a vector-valued dynamic
process, yk ∈ Rny leaves the hyperbox at some point in
the future, for any dimension. This process will be modeled
as a stationary multi-input multi-output (MIMO) jump linear
dynamical system. The theory that follows is based upon this
standard representation of the optimal level-crossing problem.
The state-space formulation for the aircraft dynamics is shown
in Eqns. 1-3, demonstrating propagation of both the state,
xk ∈ Rnx which is corrupted by process noise wk ∈ Rnx ,
and the state covariance matrix, Px

k , which evolve with the
time-varying (mode dependent) system matrix A(zk).

Switching among model parameters such as the time-
varying (mode dependent) system matrix is governed by
zk ∈ Z+

m
4
= [1, . . .m], where there are m observed operational

modes. This switching is completely deterministic in nature,
and governed by operation of all discrete inputs by the
human operator. As such, the method described herein is fully
capable of processing heterogeneous data. Note that the current
representation for the operational mode, zk, is as a discrete
scalar value. A more formal vector-valued representation of
the operational modes can be given by zk ∈ Bm ≡ {0, 1}m,
which may represent m binary switches in the cockpit of an
aircraft, or if necessary zk ∈ Zmnl

≡ {0, . . . , nl−1}m, where nl
represents the number of discrete levels of the input variable.

The more formal vector-valued representation for zk will be
used hereafter.

The output, yk ∈ Rny is multivariate, and is corrupted by
measurement noise vk ∈ Rny . The input, uk ∈ Rnu is also
multivariate, thus there are nu inputs and ny outputs for the
jump linear MIMO dynamical system (LDS). The state space
formulation for the human operator input is provided in Eqns.
4 - 6 when using a linear dynamical system (LDS) repre-
sentation, and Eqns. 5, 7-10 when using an HMM (Hidden
Markov Model) representation. In the latter case, for Eqn. 8
there are M possible hidden states of human operation such
that qk ∈ Z+

M . Eqn. 5 can be used to represent the resulting
input for either the HMM or the LDS. When human operation
is modeled as an LDS, propagation of both the state and
covariance matrix evolve in a similar manner to the equations
that govern aircraft dynamics. In this case however, the state,
qk ∈ Rnq is corrupted by process noise ηk ∈ Rnq , and evolves
with the time-varying system matrix G(zk), as does the state
covariance matrix, Pq

k. The output of this dynamical system,
uk ∈ Rnu is multivariate, and naturally also acts as the input
to the equations governing the aircraft dynamics as illustrated
in Fig. 1. Eqn. 5 provides the formula for modeling uk ∈ Rnu

, which is also corrupted by measurement noise γk ∈ Rnu .

xk+1 = A(zk)xk + B(zk)uk + wk (1)
yk = C(zk)xk + D(zk)uk + vk (2)

Px
k+1 = A(zk)Px

kA
>(zk) + Q(zk) (3)

qk+1 = G(zk)qk + ηk (4)
uk = H(zk)qk + γk (5)

Pq
k+1 = G(zk)Pq

kG
>(zk) + Q(zk) (6)

p(qk+1|qk) = q>k+1G(zk)qk (7)

πk
4
= p(qk) ≡

264 p(qk = 1)
...

p(qk = M)

375 (8)

p(q0) = π0 (9)
πk+1 = G>(zk)πk (10)

where

wk ∼ N (0,Q(zk)), Q(zk) � 0

vk ∼ N (0,R(zk)), R(zk) � 0

ηk ∼ N (0,Ω(zk)), Ω(zk) � 0

γk ∼ N (0,Γ(zk)), Γ(zk) � 0

x0 ∼ N (µx(z0),Px
0(z0))

q0 ∼ N (µq(z0),Pq
0(z0))

A summary of the basic mathematical notation not defined
elsewhere is provided in Table I. There is great flexibility
in constructing a mathematical representation for the level-
crossing event, Ck. Ostensibly, the target application will drive
the definition of this event. As such, in this paper the event of
interest is shown in Eqn. 11, in consideration of the motivating
factors described in [1]. This level-crossing event represents
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Fig. 2. Dynamic Bayesian Network

Mathematical
Representation

Nomenclature

� Positive semi-definite
(•)′ Not (Set complement)
I Universe of all events
(•)> Transpose
P (•) Probability
E[•] or µ• Expected Value
•̂k+j|k E[•|y0, . . . , yk] (Conditional Expectation)
•̃k Orthonormal rotation of •k in vector space
•∗ Result of vector space orthonormal rotation in

probability or event space
N (µ,Σ) Gaussian distribution with mean µ and covariance

Σ
N (x;µ,Σ) Gaussian distribution evaluated at x with mean µ

and covariance Σ

TABLE I
SUMMARY OF MATHEMATICAL NOTATION

at least one exceedance outside of the hyperbox specified by
S4= ×ny

i=1 [`i, υi] of the process yk within the specified look-
ahead prediction window, d.

Ck
4
=

d[
j=1

Sk+j =
d[
j=1

E′k+j = I \
d\
j=1

Ek+j (11)

where

Ek+j
4
= {yk+j ∈ S}, ∀j ≥ 1

Sk+j
4
=

�
E′k+j j = 1Tj−1

i=1 Ek+i, E
′
k+j ∀j > 1

Developing algorithms for models that have a level of
complexity characterized by Eqns. 1-10 above can often be

complemented by a more intuitive expression with the aid of
a probabilistic graphical model, or DBN (Dynamic Bayesian
Network). This allows for the expression of topological invari-
ance inherent in using either of the cases illustrated in Fig. 1.
An illustration of the jump MIMO linear dynamical system
representing either case is provided in Fig. 2.

The event Ck can be represented as the union of disjoint
subevents, Sk+j , or as the union of overlapping subevents,
E′k+j . However, due to DeMorgan’s theorem, the latter can
be expressed in a more compact fashion via a single term
when computing the probability of the overall event. This
obviates the need for use of the inclusion/exclusion rule for the
realization of all relevant terms in a probability computation
based upon the union of overlapping subevents, E′k+j , where
the number of terms would be exponential in d. It also
obviates the need for computing the probability based upon
the former union of disjoint subevents, Sk+j , where there is
no need for use of the inclusion/exclusion rule. However, the
number of terms would still be linear in d, as the probability
computation of the union of disjoint subevents is represented
by the sum of terms involving Sk+j . Thus Eqn. 12 represents
the unconditional probability of the level-crossing event in its
most compact representational form.

P (Ck) = 1−
Z υ1

−`1
· · ·
Z υny

−`ny| {z }
1

· · ·

· · ·
Z υ1

−`1
· · ·
Z υny

−`ny| {z }
d

N (yd;µyd
,Σyd

)dyd (12)

where
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yd
4
=

264 yk+1

...
yk+d

375
Refer to Figs. 8 and 10 for Case #1 (the cascaded linear

dynamical systems), and Fig. 11 for Case #2 (the HMM
in series with the linear dynamical system), both located in
Appendix A, for expressions of µyd

and Σyd
. Σyd

can also
be approximated by substituting the steady-state versions of
the Lyapunov equation given previously as Eqns. 3 and 6,
PL
xx, in place of Px

k and PL
qq, in place of Pq

k, which agrees
with the assumption of stationarity. Also, specific to Case #2,
the stationary Markov distribution, πqq is used in place of πk,
which is also the solution to Eqn. 10 when making the appro-
priate steady-state substitution. The solution, πqq , is nothing
more than the eigenvector corresponding to the eigenvalue
λ(G>(zk)) = 1. The approximations are shown in Figs. 8,
10 and 11 located in Appendix A. Note that µyd

and Σyd
are

still dependent upon zk, and ostensibly counter the argument
of stationarity. However, the parameters associated with zk
are unique to each instance of the corresponding operational
mode. As such, the assumption of “local” stationarity is valid
for each operational mode as defined by zk.

These approximations, while introducing error with regards
to the probability of a level-crossing event, P (Ck) at a specific
point in time, k, is negligible and will provide for a great
computational advantage in the design of an alarm system.
Instead of designing an alarm system for each time step, a
single alarm system is designed for all time steps. The approx-
imation is based upon the limiting statistics that are reached at
steady-state, which greatly reduces the computational burden.
An enabling theorem which can be found in [1] provides the
mathematical underpinnings for the optimal alarm condition
corresponding to the level-crossing event, shown here as Eqn.
13. Alternatively, the optimal alarm condition derived in [1]
can be expressed in terms of the subevents Ek+j , as shown in
Eqn. 14.

P (Ck|y0, . . . ,yk) ≥ Pb (13)

⇔ P

 
d\
j=1

Ek+j |y0, . . . ,yk

!
≤ 1− Pb (14)

The optimal alarm condition has therefore been derived
from the use of the likelihood ratio resulting in the conditional
inequality as given in Eqn. 13. This basically says “give alarm
when the conditional probability of the event, Ck, exceeds the
level Pb.” Here, Pb represents some optimally chosen border or
threshold probability with respect to a relevant alarm system
metric. It is necessary to find the alarm regions in order to
design the alarm system. This alarm region is parameterized
by future process output predictions and covariances, for the
aircraft dynamics, Case #1, and Case #2.

A. Optimal Alarm System
A more formal representation of the optimal alarm region is

shown in Eqn. 46 of Fig. 6, which essentially defines a sublevel

set of g(ŷd)
4
=P

�Td
j=1Ek+j |y0, . . . ,yk

�
as a function of ŷd.

Eqn. 15 of Fig. 3 gives the multivariate normal probability
computation to be performed via numerical integration, re-
quired for enabling the optimal alarm condition.

The feasible region for values of Pb can easily be de-
termined by applying an intermediate value theorem from
calculus which provides sufficient conditions for finding a
level set solution. The sufficient conditions are shown as Eqns.
17-18, and the resulting level set shown as Eqn. 19 represents
the locus of points that spans both the prediction horizon as
well as the space spanned by yk ∈ Rny .

g(µyd
) ≥ 1− Pb (17)

lim
|ŷd|\ŷi

k+j|k→∞
g(ŷd) < 1− Pb, ∀j ∈ [1, . . . , d] (18)

LA
4
=

(
d\
j=1

ny\
i=1

ŷik+j|k : g(ŷd) = 1− Pb

)
(19)

The notation that represents the limiting condition shown in
Eqn. 18 is |ŷd|\ ŷik+j|k →∞, and is meant to indicate that all
elements of ŷd other than ŷik+j|k approach ±∞. Application
of this condition yields Pb < 1, which is true by definition,
and application of the sufficient condition shown in Eqn. 17
yields Pb ≥ 1 − g(µyd

). Thus the feasible region for Pb is
Pb ∈ [1− g(µyd

), 1].
It is not possible to obtain an exact closed-form representa-

tion of the parametrization for the optimal alarm region shown
in Eqn. 46. As such, a Monte Carlo approach must be used to
provide the best approximation of the exact alarm region, given
sufficient samples. This allows the ROC curve statistics to be
estimated empirically with observational truth data generated
from the existing model and corresponding computations of
the conditional probability of level-crossing events given by
Eqn. 15.

B. Aircraft Dynamics

Process output predictions and covariances for the aircraft
dynamics can be derived from standard Kalman filter Eqns.
20 - 25 as shown in Fig. 4. PR

xx is the combined steady-state
version of Eqns. 24 and 25, or the discrete algebraic Riccati
equation, and P̂R

xx is the steady-state a posteriori covariance
matrix given in Eqn. 31. Eqn. 32 is also used in Eqn. 31, which
is the steady-state version of the Kalman gain from Eqn. 23.

The approximations shown in Eqns. 28 and 30 will provide
for a great computational advantage in design of the optimal
alarm system and its corresponding approximations for reasons
stated previously. Due to the approximation of Px

k|k with P̂R
xx

shown in these equations, the Kalman filter will be suboptimal,
as cited by Lewis [8]. However, the assumption of stationarity
is required for the design of an optimal alarm system as defined
by the respective enabling theorem cited in [1], and holds here
as well.

C. Case #1 (LDS Model of Operator Input)

Process output predictions and covariances for Case #1 can
be derived from standard Kalman filter Eqns. 33- 38 as shown
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P

 
d\
j=1

Ek+j |y0, . . . ,yk

!
=

Z υ1

−`1
· · ·
Z υny

−`ny| {z }
1

· · ·
Z υ1

−`1
· · ·
Z υny

−`ny| {z }
d

N (yd; ŷd, Σ̂yd
)dyd (15)

=
Z υ1−ŷ1

k+1|k

−`1−ŷ1
k+1|k

· · ·
Z υny−ŷ

ny

k+1|k

−`ny−ŷ
ny

k+1|k| {z }
1

· · ·
Z υ1−ŷ1

k+1|k

−`1−ŷ1
k+1|k

· · ·
Z υny−ŷ

ny

k+1|k

−`ny−ŷ
ny

k+1|k| {z }
d

N (yd; 0d, Σ̂yd
)dyd

ŷd
4
= E[yd|y0, . . . ,yk] =

264 ŷk+1|k
...

ŷk+d|k

375 (16)

where ŷd is as defined in Eqn. 16, and Σ̂yd
for both Cases #1 and #2 can be found in App. A.

Fig. 3. Conditional Level-Crossing Probability

x̂k+1|k = A(zk)x̂k|k + B(zk)uk (20)
ŷk|k = C(zk)x̂k|k + D(zk)uk (21)

x̂k+1|k+1 = x̂k+1|k + Fxk+1|kε
x
k+1 (22)

Fxk+1|k
4
= Px

k+1|kC
>(zk)

�
C(zk)Px

k+1|kC
>(zk) + R(zk)

�−1
(23)

Px
k+1|k = A(zk)Px

k|kA
>(zk) + Q(zk) (24)

Px
k+1|k+1 =

�
Inx
− Fxk+1|kC(zk)

�
Px
k+1|k (25)

where

x̂k|k
4
= E[xk|y0, . . . ,yk]

Px
k|k

4
= E[(xk − x̂k|k)(xk − x̂k|k)>|y0, . . . ,yk]

εxk
4
= yk −C(zk)x̂k|k−1 −D(zk)uk

Relevant predictions, covariances and cross-covariances are given below as Eqns. 26- 32, respectively.

ŷk+j|k = C(zk)A(zk)jx̂k+j|k + Zjq̂k|k (26)

Px
k+j|k = A(zk)j(Px

k|k −PL
xx)(A>(zk))j + PL

xx (27)

≈ A(zk)j(P̂R
xx −PL

xx)(A>(zk))j + PL
xx (28)

Px
k+i,k+j|k = A(zk)i(Px

k|k −PL
xx)(A>(zk))j + PL

xx

�
A>(zk)

�j−i
(29)

≈ A(zk)i(P̂R
xx −PL

xx)(A>(zk))j + PL
xx

�
A>(zk)

�j−i
(30)

P̂R
xx = (Inx − FxxC(zk)) PR

xx (31)

Fxx = PR
xxC

>(zk)
�
C(zk)PR

xxC
>(zk) + R(zk)

�−1
(32)

where Zj and PL
xx are as defined in Appendix A.

Fig. 4. Kalman Filter Formulae for Aircraft Dynamics

in Fig. 5. As before, PR
qq is the combined steady-state version

of Eqns. 37 and 38, and P̂R
qq is the steady-state a posteriori

covariance matrix given in Eqn. 44. Eqn. 45 is used in Eqn. 44,
which is the steady-state version of the Kalman gain from Eqn.
36. Again, using these steady-state substitutions introduces
suboptimality and thus yields (negligible) error, however doing
so allows for a reduction in alarm system design time.

For Case #1, ROC curve statistics can be generated by
numerically integrating expressions for the computation of
relevant multivariate normal probabilities with the aid of an
approximation. As such, computationally intensive simulation
runs using Monte-Carlo empirical estimation can be avoided.
These multivariate probability computations are performed
by using an adaptation of Genz’s algorithm [9], which is
based upon a robust and computationally efficient technique
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q̂k+1|k = G(zk)q̂k|k (33)
ûk|k = H(zk)q̂k|k (34)

q̂k+1|k+1 = q̂k+1|k + Fqk+1|kε
q
k+1 (35)

Fqk+1|k
4
= Pq

k+1|kH
>(zk)

�
H(zk)Pq

k+1|kH
>(zk) + Γ(zk)

�−1
(36)

Pq
k+1|k = G(zk)Pq

k|kG
>(zk) + Ω(zk) (37)

Pq
k+1|k+1 =

�
Inq − Fqk+1|kH(zk)

�
Pq
k+1|k (38)

where

q̂k|k
4
= E[qk|u0, . . . ,uk]

Pq
k|k

4
= E[(qk − q̂k|k)(qk − q̂k|k)>|u0, . . . ,uk]

εqk
4
= uk −H(zk)q̂k|k−1

Relevant predictions, covariances and cross-covariances are given below as Eqns. 39- 45, respectively.

ûk+j|k = H(zk)G(zk)jq̂k+j|k (39)

Pq
k+j|k = G(zk)j(Pq

k|k −PL
qq)
�
G>(zk)

�j
+ PL

qq (40)

≈ G(zk)j(P̂R
qq −PL

qq)
�
G>(zk)

�j
+ PL

qq (41)

Pq
k+i,k+j|k = G(zk)i(Pq

k|k −PL
qq)
�
G>(zk)

�j
+ PL

qq

�
G>(zk)

�j−i
(42)

≈ G(zk)i(P̂R
qq −PL

qq)
�
G>(zk)

�j
+ PL

qq

�
G>(zk)

�j−i
(43)

P̂R
qq =

�
Inq
− FqqH(zk)

�
PR
qq (44)

Fqq = PR
qqH

>(zk)
�
H(zk)PR

qqH
>(zk) + Γ(zk)

�−1
(45)

where PL
qq is as defined in Appendix A.

Fig. 5. Kalman Filter Formulae for Case#1

designed to be used for integrations in multiple dimensions
for multivariate normal distributions. This provides a tool
necessary for the design of approximations to an optimal alarm
system that was explored in previous work [1], in which the
tradeoff between computational burden and accuracy for two
approximations were compared. However, in this paper only
the least computationally burdensome (“closed-form”) approx-
imation will be implemented. For detail on theoretical aspects
regarding this approximation, the interested reader is directed
to [1]. Implementation of the “closed-form” approximation
translates here to the MIMO case without loss of generality.

However, the resulting implementation for the MIMO case
will be reviewed briefly. The optimal alarm region, Ak, is
approximated by an alarm region specified by

Sd
j=1

Sny

i=1A
i,j
k ,

with a successive approximation on Ai,jk ; Ai,jk is defined in
Eqn. 49. Fundamentally, the approximation can be constructed
by solving for asymptotic bounds on the exact alarm region.

Ai,jk = {ŷik+j|k : P
�
Eik+j |y0, . . . ,yk

�
≤ 1− Pb} (49)

where
Eik+j

4
=`i ≤ yik+j ≤ υi

The successive approximation is required in order to obtain
a closed-form representation and parametrization of the alarm
region without having to resort to root-finding required for
solving P (Eik+j |y0, . . . ,yk) ≤ 1−Pb, which is equivalent to
P (yik+j ≥ υi|y0, . . . ,yk) + P (yik+j ≤ `i|y0, . . . ,yk) ≥ Pb.
This second approximation is given by Eqn. 47 shown in Fig.
6, which breaks this condition into the union of two consti-
tutive inequalities. By using this successive approximation,
the alarm region can now be represented in “closed-form,”
given by Eqn. 48 which is also shown in Fig. 6. Φ−1(·)
represents the inverse cumulative normal standard distribution
function, and V ik+j|k is an element of Vk+j|k defined in App.
A. Both Li,j and Ui,j ∀j ∈ [1, . . . , d] and ∀i ∈ [1, . . . , ny]
represent the limits of integration for Eqns. 51-54 (not shown).
These equations are valid for computing Pd and Pfa in
order to construct an ROC curve using the “closed-form”
approximation.

The domain of feasibility for this approximation now
changes, and Pbcrit takes on a new value, which differs from
Pbcrit = 1 − g(µyd

) corresponding to the feasibility regions
for the optimal alarm region. Using an argument similar to
the one presented in [1], the “closed-form” approximation
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Ak
4
=

(
d\
j=1

ŷk+j|k : P (Ck|y0, . . . ,yk) ≥ Pb

)
(46)

4
=

(
d\
j=1

ny\
i=1

ŷik+j|k : P (
d\
j=1

Ek+j |y0, . . . ,yk) ≤ 1− Pb

)
Ai,jk ≈

¦
ŷik+j|k : P (yik+j ≥ υi|y0, . . . ,yk) ≥ Pb

[
P (yik+j ≤ `i|y0, . . . ,yk) ≥ Pb

©
(47)

Ak ≈
d[
j=1

ny[
i=1

Ai,jk ≈
d[
j=1

ny[
i=1

`i −
È
V ik+j|kΦ−1(Pb)| {z }
Li,j

≥ ŷik+j|k ≥ υi +
È
V ik+j|kΦ−1(Pb)| {z }
Ui,j

(48)

Fig. 6. Alarm Condition

yields a value for Pbcrit
given in Eqn. 50. The alarm region

and its approximation will have a similar appearance to the
illustrations provided in [1], however the multidimensional
alarm region will span both the parameter space and time,
in lieu of just time (i.e. the prediction horizon).

Pbcrit
= max

i
Φ

�
`i − υi

2
È
V ik+d|k

�
(50)

It is possible to generate formulae for the true and false
positive rates as a function of Li,j and Ui,j by appealing
to Eqns. 51-52, where in place of Ak its approximation toSd
j=1

Sny

i=1A
i,j
k may be used. The formula for P (Ck) has

already been introduced in Eqn. 12, and holds regardless of
the alarm system approximation. Thus, only the additional
expressions for P (Ck, Ak) and P (Ak) are necessary for
computing Pd and Pfa. Formulae for supporting probabilities
P (A′k) and P (C ′k, A

′
k) in Eqns. 53-54 are given in Fig. 9 of

App. A (shown with the limits of integration).

True positive rate:

Pd = P (Ck|Ak) =
P (Ck, Ak)
P (Ak)

(51)

False positive rate:

Pfa = P (Ak|C
′

k) =
P (C

′

k, Ak)
P (C ′

k)
(52)

=
P (Ak)− P (Ck, Ak)

1− P (Ck)

P (Ak) ≈
¨
P
�Sd

j=1

Sny

i=1A
i,j
k

�
Pb > Pbcrit

1 Pb = Pbcrit

(53)

≈

(
1− P

�Td
j=1

Tny

i=1

�
Ai,jk

�′�
Pb > Pbcrit

1 Pb = Pbcrit

P (Ck, Ak) =
§
P (Ck)− P (A′k) + P (C ′k, A

′
k) Pb > Pbcrit

P (Ck) Pb = Pbcrit

(54)

D. Case #2 (HMM Model of Operator Input)

For Case #2, the Kalman filter predictor/corrector equations
do not hold since an HMM is used for inferring the state qk.

This distinction from Case #1 will have ramifications for alarm
system design. As such, using the definitions provided in Eqns.
57-59 can be used for inference, which are governed by the
evolution of the Markovian dynamics via Eqn. 60. The state
estimate πk|k is easily found with the use of standard forward
recursion formulae typically used for these purposes as found
in [10]. Eqns. 55 and 56 provide the basic constructs.

Λk+1 = diag(Υk+1)G>(zk)Λk (55)
Λ0 = diag(Υ0)π0 (56)

πk|k
4
= E[qk|u0, . . . ,uk] = p(qk|u0, . . . ,uk) (57)

≡

264 p(qk = 1|u0, . . . ,uk)
...

p(qk = M |u0, . . . ,uk)

375 (58)

=
Λk

p(u0, . . . ,uk)
=

ΛkPM
i=1 α(qt = i)

(59)

πk+1|k = G>(zk)πk|k (60)

where

α(qt = i)
4
= p(u0, . . . ,ut, qt = i)

Λk =

264 α(qk = 1)
...

α(qk = M)

375
Υk =

264 p(uk|qk = 1)
...

p(uk|qk = M)

375
p(uk|qk = i) = N (uk;µi(zk),Γ(zk))

Note: H(zk) =
�
µ1(zk) . . . µM (zk)

�
The alarm system design ramifications that come as a result

of the distinction between Cases #1 and #2 are tied to the fact
that no closed-form or any other type of approximation is
possible. This is due to the nature of the unique mathematical
representation of the conditional mean and covariance when
incorporating the HMM statistics. Furthermore, the covariance
matrix Σ̂yd

provided in Fig. 11 of App. A is time varying.
Thus, the benefit of making approximations of the type given
by using PL

xx in place of Px
k are lost. As such, the conditional

probability of a level-crossing event, P (Ck|y0, . . . ,yk) must
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be computed for each point in time, k, since a single alarm
system cannot be designed for all time steps. Recall the fact
that ŷd of Eqn. 16 and Σ̂yd

are dependent upon zk, but did not
counter the argument of stationarity. The parameters associated
with zk were unique to each instance of the corresponding
operational mode, hence allowing for “local” stationarity of the
conditional distribution for each operational mode as defined
by zk.

For Case #2, this issue has no bearing on our results; the
claim of local stationarity cannot be made due to the fact
that Σ̂yd

is time varying (provided in Fig. 11 of App. A).
However, Px

k is assumed to be stationary by using PL
xx in its

place, just as for Case #1. In Case #1, this assumption was
used for the purposes of simplifying alarm system design. This
unique assumption of stationary, however, is unnecessary for
Case #2 since it will not reduce the computational burden. The
conditional level-crossing probability needs to be computed at
each time step anyway, and thus making the substitution only
serves to introduce error and suboptimality, even though it is
negligible. Nonetheless, this simplifying assumption will be
used for the sake of consistency with Case #1.

The assumption of local stationarity is necessary however,
when implicitly invoking the unconditional probability of a
level-crossing event, P (Ck). Note that there is no need for
using Eqns. 51-54 to generate ROC curve statistics for Case
#2 due to the fact that no closed-form or any other type of
approximation is possible. Instead, the Monte Carlo method
described previously is used to compute the conditional level-
crossing probability for bootstrapping the construction of an
ROC curve along with observational truth data generated by
model simulation. However, use of this method implicates
the use of the alarm condition defined by Eqn. 13, which
tacitly assumes stationarity of the unconditional distribution
governing the level-crossing event as proven in [1]. Otherwise,
the more general form of the alarm condition shown as Eqn.
61 used to derive Eqn. 13 in [1] will be needed.

P (C
′

k|y0, . . . ,yk)P (Ck)
P (Ck|y0, . . . ,yk)P (C ′

k)
≤ λ (61)

This more general form of the alarm condition is based
upon the use of a non-stationary probability distribution of
the level-crossing event P (Ck). However, using this condition
for alarm system design requires much more computational
effort than when making the assumption of stationarity of the
unconditional distribution of the level-crossing event, P (Ck).
As such, alarm system design must rely upon use of the
stationary distribution, which is implicit in application of Eqn.
13.

III. RESULTS & DISCUSSION

The example to be used for presentation of the results has
a specific application to the problem of fuel flow consump-
tion for commercial aircraft, which was initially studied by
Srivastava [7]. Both the average throttle position controlled
by the pilot and corrected wind (the component of the relative
wind aligned with the aircraft’s heading) are used as predictors
for the fuel flow on both engines of the twin engine aircraft.

Mathematically, the average throttle position and corrected
wind represent the inputs uk, and the fuel flow on both engines
represent the outputs yk. The training data consists of 658
flights for 85 aircraft that have flown a specified city pair
route, and the validation data consists of 129 flights for 9
aircraft that have flown 2 distinct city pairs, one which is the
opposite route of the city pair used for training, another which
is a city pair whose destination is the same as for the training
data. There are 368 observed discrete operational modes,
represented mathematically by zk, even though there are 17
discrete inputs. Thus only 368 of a possible 217 = 131072 are
valid operational discrete binary switch configurations. It was
unnecessary to model multi-level switches, since all discrete
inputs were binary, thus nl = 2.

Model training was broken into two distinct phases, based
upon decoupling the DBN given in Fig. 2. The first phase
of training is given by the top and bottom three layers that
represents the continuous aircraft dynamics, excluding only
the second layer of nodes from the top that represents the
discrete or continuous state of the operator input dynamics.
The second phase of training is given by the top three layers
that represents the operator input dynamics, excluding the
bottom two that represent the continuous aircraft dynamics.
It is therefore evident that this phased training represents not
only a topological decoupling but a functional decoupling as
well. The EM algorithm [11]-[12] is used for both phases of
training.

For Case #1 the LDS is used for both phases, where for
Case #2 the LDS is is used only for the first phase, and the
HMM is used for the second phase. As such, for both cases the
first phase LDS model parameters are initialized with N4SID
[13], with the state dimension selected by the same heuristic
model order selection process introduced in previous work
[2] and trained as a “supervised” input/output LDS (for all
368 operational modes). For Case #1, the second phase is
trained as an “unsupervised” output only LDS using the same
initialization and model order selection procedure, again for
all 368 operational modes. For Case #2, the second phase is
trained as an HMM, and initialized using K-means clustering,
with the number of possible hidden states of human operation,
M , determined by minimizing the Davies-Bouldin index [14]
over a set of K-means clusterings. The Davies-Bouldin index
provides a measure of appropriateness of data partitions by
quantifying the similarity of clusters, and is calculated for each
clustering up to a maximum number Mmax =

√
T , where T is

the data length. The means and covariances of the optimized
number of clusters used for initialization purposes are held
fixed throughout training, so that only the Markovian dynamics
are updated during the training process.

Due to the fact that only the running sum of a finite
block of training data needs to be stored in memory, training
can be conducted in a highly scalable fashion. This is due
to the nature of the parameter updates for the “M” step
in the EM algorithm. The finite blocks of data are easily
represented as a single flight, which can easily be loaded into
memory incrementally. Otherwise, it would be impossible to
load all 658 flights into memory for batch training. After
a set of feasible models have been constructed out of the
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(a) Result for Case #1 (b) Result for Case #2

Fig. 7. Results for Cases #1 & #2

possible 368 operational modes, alarm system design can take
place. Reasons for model infeasibility of certain operational
modes may range from having insufficient representation of
data points available for model generation to the types of
stability constraint problems as described in [2]. However,
alarm system design and validation can be conducted for
available feasible models according to the methods described
in the previous section and in [2].

Briefly reviewing the details of validation ROC curve con-
struction from [2], it is bootstrapped by computing the con-
ditional level-crossing probability for each time point, based
upon use of the appropriate model parameters and inference
equations applied to real data. Additionally, the corresponding
binary ground truth vector for each time point is obtained
by advancing the vector forward by the number of indices
corresponding a target 2 second prediction time horizon. Both
of these vectors are necessary and sufficient for construction
of an ROC curve. The design prediction time horizon used was
d = 5 seconds. As in [2], the critical upper and lower threshold
levels used for alarm system design can obtained by selecting
an appropriate p-value associated with a reasonable confidence
interval (p = 0.05) for the underlying Gaussian distribution
made available by the modeling assumptions. However, in
the multivariate case, the mapping from p = 0.05 to `i and
υi, ∀i ∈ [1, . . . , ny] is less mathematically straightforward
than in the univariate case, and requires more sophisticated
optimization methods to find the corresponding values. The
overall alarm system results will be assessed by comparing the
performance of the overall system as quantified by the AUC
(area under the ROC curve) for both training and validation
data, and for both Cases #1 and #2 in the following section.

IV. CONCLUSIONS & FUTURE WORK

The training and validation ROC curves averaged over a
set of 27 and 12 feasible models corresponding to distinct
operational modes for Case #1, respectively, are provided
in Fig. 7(a). Similarly, training and validation ROC curves
averaged over a set of 11 feasible models corresponding to
distinct operational modes for Case #2 are provided in Fig.

7(b). As can easily be discerned, there is a large discrepancy
between the reported training and validation AUC values
for Case #1 as distinct from Case #2 where there is an
almost negligible discrepancy between the reported training
and validation AUC values. Furthermore, the more practically
important result is that the validation AUC value for Case #1
is much higher than for Case #2.

As both Case #1 and #2 share the same modeling paradigm
for aircraft dynamics, the previous observations speak to the
improved ability of using an HMM to accurately characterize
operator input dynamics over a simple LDS. In fact, it is
clear that when using and LDS to model operator input
dynamics the expected performance is overly optimistic as
implied by the large discrepancy between the reported very
high training AUC value and very low validation AUC value
for Case #1. As such, the model fidelity may be low for
this particular human-machine scenario when using cascading
linear dynamical systems. A final conclusion that one may
draw from these observations is that the model fidelity may
be higher for Case #2 due to the improved ability of the
HMM to characterize the human-machine scenario, and more
specifically the operator input dynamics. The is due in part to
the fact that the operator input dynamics are largely influenced
by the initial K-means clustering optimization performed prior
to the learning stage, where no such clustering is possible
using a standard LDS.

As a concluding comment, it is noted that the results may
in fact be heavily influenced by selection of free design
parameters d, `i and υi, ∀i ∈ [1, . . . , ny], as well as the
heuristics chosen for model order selection. In the case of the
cascaded linear dynamical systems, it was found previously
[2] that the final results were highly sensitive to selection
of the model order. Although the HMM model of operator
input dynamics was also bootstrapped by a heuristic selection
of the number of clusters, the relative sensitivities between
Case #1 and #2 in regards to this issue is worth further
consideration. Thus, in future work these effects will be more
thoroughly investigated. Furthermore, some of the reasons for
the model infeasibility of certain operational modes will be
studied in earnest as well. Specifically, the stability constraint
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problems described in [2] were likely a key contributor to the
large number of infeasible models. As such, future work will
also involve the enforcement of stability throughout the entire
identification and learning process, as suggested in recent work
by [15], [16]. Finally, as mentioned in the introduction, in
future work a static nonlinear mapping may be placed in
series with the jump MIMO linear dynamical system, as was
performed in [5]. Again, the purpose of doing so will be to
characterize the underlying system nonlinearities in addition
to those governed by mode switches, rather than for use in
generating a residual as was already studied in previous work
[2].
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>(zk) + Q(zk)

PL
qq

4
= G(zk)PL

qqG
>(zk) + Ω(zk)

Fig. 10. Formulae for Σyd and Σ̂yd , Case #1
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µyd
= O(zk)A(zk)µx + M(zk)

266666664
H(zk)

�
G>(zk)

�d
H(zk)

�
G>(zk)

�d−1

...
H(zk)G>(zk)

H(zk)

377777775πk = O(zk)A(zk)µx +

264 Z1

...
Zd

375πk

Σyd

4
=

8<: Vk+i ∀i = j ∈ [1, . . . , d]
Vk+i,k+j ∀j > i ∈ [1, . . . , d]
V>k+i,k+j ∀j < i ∈ [1, . . . , d]

Σ̂yd
≈

8<: Vk+i|k ∀i = j ∈ [1, . . . , d]
Vk+i,k+j|k ∀j > i ∈ [1, . . . , d]
V>k+i,k+j|k ∀j < i ∈ [1, . . . , d]

Vk+i
4
= C(zk)Px

kC
>(zk) + R(zk) + Li

�
Ii+1 ⊗

�
diag(πk)− πkπ>k

��
L>i + D(zk)Γ(zk)D>(zk)

+ C(zk)
�
PL
qu −Ai(zk)PL

qu

�
A>(zk)

�i�
C>(zk)

≈ C(zk)PL
xxC

>(zk) + R(zk) + Li
�
Ii+1 ⊗

�
diag(πqq)− πqqπ>qq

��
L>i + D(zk)Γ(zk)D>(zk)

+ C(zk)
�
PL
qu −Ai(zk)PL

qu

�
A>(zk)

�i�
C>(zk)

Vk+i,k+j
4
= C(zk)

h
Ai(zk)(Px

k −PL
xx)
�
A>(zk)

�i
+ PL

xx

�
A>(zk)

�j−ii
C>(zk)

+ Li
�
1i+11>j+1 ⊗

�
diag(πk)− πkπ>k

��
L>j + D(zk)Γ(zk)B>(zk)

�
A>(zk)

�j−i−1
C>(zk)

+ C(zk)
�
PL
qu −Ai(zk)PL

qu

�
A>(zk)

�i��
A>(zk)

�j−i
C>(zk)

≈ C(zk)PL
xx

�
A>(zk)

�j−i
C>(zk) + C(zk)

�
PL
qu −Ai(zk)PL

qu

�
A>(zk)

�i��
A>(zk)

�j−i
C>(zk)

+ D(zk)Γ(zk)B>(zk)
�
A>(zk)

�j−i−1
C>(zk) + Li

�
1i+11>j+1 ⊗

�
diag(πqq)− πqqπ>qq

��
L>j

Vk+i|k
4
= C(zk)Px

k+i|kC
>(zk) + R(zk) + Li

�
Ii+1 ⊗

�
diag(πk|k)− πk|kπ>k|k

��
L>i + D(zk)Γ(zk)D>(zk)

+ C(zk)
�
PL
qu −Ai(zk)PL

qu

�
A>(zk)

�i�
C>(zk)

Vk+i,k+j|k
4
= C(zk)Px

k+i,k+j|kC
>(zk) + C(zk)

�
PL
qu −Ai(zk)PL

qu

�
A>(zk)

�i��
A>(zk)

�j−i
C>(zk)

+ Li
�
1i+11>j+1 ⊗

�
diag(πk|k)− πk|kπ>k|k

��
L>j + D(zk)Γ(zk)B>(zk)

�
A>(zk)

�j−i−1
C>(zk)

Px
k+i|k ≈ A(zk)j(P̂R

xx −PL
xx)
�
A>(zk)

�j
+ PL

xx (Recall Eqn.28)

Px
k+i,k+j|k ≈ A(zk)i(P̂R

xx −PL
xx)
�
A>(zk)

�j
+ PL

xx

�
A>(zk)

�j−i
(Recall Eqn.30)

where Zi+1 = ZiG>(zk) + C(zk)Ai(zk)B(zk)H(zk), Z0 = D(zk)H(zk)

and Li
4
=

266666664

Gi(zk)H>(zk)D>(zk)
Gi−1(zk)H>(zk)B>(zk)C>(zk)

...

GH>(zk)B>(zk)
�
A>(zk)

�i−2
C>(zk)

H>(zk)B>(zk)
�
A>(zk)

�i−1
C>(zk)

377777775

>

, Note Zi = Li (1i+1 ⊗ IM )

Fig. 11. Formulae for µyd , Σyd , and Σ̂yd , Case #2


