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5.1 Introduction 

We define prognostics here strictly as the predicting of Remaining Useful Life (RUL) of a 

component or system. The prediction is typically performed only after the “health” of the 

component or system deteriorates beyond a certain threshold. Often times, that threshold is 

tripped because a fault occurs. A fault is a state of a component or system that deviates from the 

normal state such that the integrity of the component is outside of its required specification. A 

fault does not necessarily imply that the overall system does not operate anymore; however, the 

damage that characterizes the fault often grows under the influence of operations to a failure. The 

latter is the state at which the component or system does not meet its desired function anymore. 

It is the task of prognostics to estimate the time that it takes from the current time to the failed 

state, conditional on anticipated future usage. This would give operators access to information 

that has significant implications on system safety or cost of operations. Where safety is impacted, 

the ability to predict failure allows operators to take action that preserves the assets either 

through rescue operation or through remedial action that avert failure altogether. Where 

minimizing cost of operations is the primary objective, predictive information allows operators 

to avert secondary damage, or to perform maintenance in the most cost-effective fashion. Often 

times, there is a mix of objectives that need to be optimized together, sometimes weighted by 

different preferences. 

 

Predicting remaining component or system life can be accomplished in several ways. 

Where sufficient historical run-to-failure trajectories are available, data mining techniques can be 

employed to perform the predictions. Traditionally reliability based predictions have been used 

widely in the manufacturing industry to schedule preventive maintenance. In contract, the focus 

of this chapter is mainly on condition based prognostic systems for a particular monitored unit 

under test (UUT). Instead of considering the entire population for a statistical life estimates, one 

can employ physics-based models to perform the predictions or a combination of models and 

history data. In either case, predictions are conditional on future conditions and are subject to 

significant amounts of uncertainty. Methods for prognostics ideally express their confidence of 

their own prediction based on an assessment of the various uncertainty sources. Besides 

uncertainty of future usage, uncertainty also comes from the current state assessment, the models 

used, measurement noise, etc. 

Metrics can be understood as a standardized language by which technology developers 

and users communicate their findings and compare results. This aids in allowing the proper 

expression of requirements as well as the dissemination of scientific information. Two surveys 

on methods for prognostics, one on data-driven methods (Schwabacher, 2005) and one on 

artificial-intelligence-based methods (Schwabacher & Goebel, 2007) reveal a lack of 

standardized methodologies for performance evaluation or a lack of performance methods 

altogether. The most recent ISO standard by International Organization for Standards (ISO, 

2004) for prognostics in condition monitoring and diagnostics of machines does not even provide 

a firm definition of any such method. Nonetheless, there has been recently a significant push 

towards crafting suitable metrics to evaluate prognostic performance (Saxena et al., 2010). These 

metrics address primarily evaluation of algorithmic performance for prognostics applications. 

They are mostly focused on tackling offline performance evaluation methods for applications 

where run-to-failure data are available and true End-of-Life (EoL) is known a priori. They are 

therefore particularly useful for the algorithm development phase where feedback from the 

metrics can be used to fine-tune prognostic algorithms. It needs to be appreciated that these 
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metrics are continuously evolving. Efforts are also underway towards designing on-line 

performance metrics although they have not reached a significant level of maturity.  

 

This chapter presents a discussion on prognostics metrics. After a review of performance 

assessment for prediction/forecasting applications a categorization of prognostic metrics into 

several classes is performed. This categorization suggests that there can be various different 

objectives that drive improvements in prognostic performance and correspondingly different set 

of metrics may be used to obtain performance feedback. 

 

5.2 Background 

As more diverse research communities and practitioners start adopting PHM techniques it 

becomes imperative to use standardized prognostic methodologies (Uckun et al., 2008) as well as 

to use metrics to measure performances. However, since prognostics is a developing field, the 

challenges in developing standards and metrics are numerous (Engel, 2008; Engel et al., 2000).  

We start out by providing an overview of prognostic concepts that are used in a variety of 

domains. 

5.2.1 Prediction Categorization 

Prior to delineating the methods to assess prognostic performance it may be useful to 

provide a brief discussion about different types of applications in which predictions are 

employed. Based on an analysis of aerospace, medicine, nuclear energy, finance, weather and 

automotive domains, it was found that one can distinguish roughly between forecasting and 

prognostics.  

5.2.1.1 Forecasting 

Forecasting is found in applications where predictions are made to describe expected future 

behavior without predicting a fixed target. That is, there is no notion of “end of life” and 

consequently there s no concept of RUL. Example application areas are weather or finance 

domains. The prediction format can be either quantitative (e.g., prediction of exact numbers) or 

qualitative (e.g., high or low demands) in nature. Furthermore, the data trends are generally non-

monotonic in such applications. Predictions may be discrete (e.g., forecasting market demand for 

a particular month) or continuous (e.g., variation of temperature over the period of next week). 

Details and more references to such applications in various domains can be found in (Saxena et 

al., 2008). 

5.2.1.2 Prognostics 

The other class of applications makes use of critical thresholds such that if the system under test 

crosses this threshold it is declared to have failed or lost its functional capability. This class of 

applications – e.g. medicine, nuclear, mechanical and electrical industrial systems, – involves 

predictions of RUL and involves decay or fault propagation models to capture the behavior of 

the system.  

Predictions can be made in two forms: 1.) an event prediction where the time for EoL is 

estimated; and 2.) a decay prediction where the complete future trajectory is predicted until EoL 

is reached. It must be noted, however, that EoL criteria need not always be a complete loss or 

failure. In safety critical applications EoL is often a degraded state where performance level has 

deteriorated to cross a predetermined safety margin even though the component may still retain 

partial functionality. For example, in the electronics domain, EoL of a switching device (such as 
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a MOSFET) is not necessarily the complete loss of the switching functionality. Instead, it could 

be a decrease in the switching frequency below a certain threshold level.  

There are two main types of applications where predictions for system health are made: 

These include, predicting wear of a system or predicting failure in the event of a fault. 

Failure Predictions: An otherwise healthy system may encounter a fault that grows due 

to continued usage (or exposure to adverse conditions) that may result into a failure. In such 

cases it is critical to detect the presence of a fault (ideally shortly after it happens), the particular 

fault mode, its severity and rate of growth, so that appropriate decisions may be taken to avoid 

undesired, possibly catastrophic, events. Here the task of prognosis is to estimate expected End-

of-Life (EoL), i.e., determine when the system will no longer operate under specifications. In 

some cases it is not only important to know when the system will break but also how it will 

approach the failure. In those cases, instead of predicting just the event of EoL, a complete 

trajectory may be predicted, where the end point of the trajectory also determines the EoL. 

Examples of such applications include structural faults like cracks in metallic structures or die-

attach degradation in power semiconductor devices. 

Wear Predictions: There are many situations where systems undergo expected normal 

wear and need to be maintained or replaced whenever the wear levels impact functionality. In 

these cases, the system does not experience a fault condition even under the degraded 

performance. Therefore, the health of the system is tracked from the very beginning of system 

deployment and detection and diagnosis are not predecessors for prognostics. As stated earlier, 

the end point of these trajectories can be used to determine the EoL point so appropriate 

decisions may be taken. Examples of such applications include battery capacity degradation and 

valve leakage due to wear. 

5.2.2 Prediction Methods 

There are several ways to carry out prognostics. In some cases a detailed physical model 

of the unit under observation can be used. The model captures the unit’s behavior under 

operational and environmental conditions and provides an expected response that describes the 

current and (given the proper input) future states. Alternative to a physics-based model, historical 

data can be utilized to estimate expected time to failure. The key is to either have access to a 

sufficient amount of existing historical data (e.g., medicine) or to be able to experimentally 

generate run-to-failure trajectories (e.g., for some mechanical systems). Then, a variety of data-

driven or statistical techniques can be applied.  

The availability of run-to-failure data allows the straightforward evaluation of prediction 

performance by comparing the predicted EoL to the actual EoL. However, there are many 

applications where run-to-failure experiments cannot be afforded or where very little failure 

history data are available (e.g., aerospace). It becomes somewhat more difficult to assess the 

performance in such cases due to the absence of knowledge about the future outcomes. Methods 

are tested on experimental or simulated data and, when fielded, are expected to perform similarly 

on real systems. However, algorithm functionality does rarely translate without loss of 

performance from simulation environment or lab to the field. Indeed, validation and verification 

of prognostic methods remains a thorny issue. 

5.2.3 Performance Evaluation Methods 

Techniques employed for prediction or forecasting in the application areas enumerated 

above use metrics that are based on accuracy and precision with several slight variations 

(Saxena, et al., 2008). Mostly, they are customized to better serve a particular domain. In 
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medicine and finance, for example, several statistical measures are used to benefit from the 

availability of large datasets. In contrast, predictions in medicine are commonly evaluated based 

on hypothesis testing methodologies. And in the finance domain, errors are calculated based on 

reference prediction models. The precision and accuracy metrics include, for example, mean 

squared error (MSE), standard deviation (SD), mean absolute deviation (MAD), median absolute 

deviation (MdAD), mean absolute percentage error (MAPE) and similar variants. Other domains, 

like aerospace, electronics, and nuclear are less mature with respect to fielded prognostics 

applications. There, metrics from other system health techniques, like diagnostics, have been 

used with the goal to capture the characteristics of prognostics (with varied success). Metrics 

used include false positives, false negatives and receiver operator characteristics (ROC) curves 

(Goebel & Bonissone, 2005). Other metrics include those from the reliability domain like mean 

time between failures (MTBF) or the ratio mean time between unit replacements 

(MTBF/MTBUR). Adaptations include for example the augmentation with business metrics such 

as Return on Investment (ROI) (Sandborn, 2005), Technical Value (TV) (Byington et al., 2005), 

Net Present Value (NPV) (Kacprzynski et al., 2001) and Life Cycle Cost (LCC) (Luna, 2009).   

 It becomes apparent that there are several types of metrics for prognostics based on the 

purpose of prognostics and the end user. A categorization with these objectives in mind allows a 

more targeted choice of appropriate metrics. Coble & Hines (Coble & Hines, 2008) categorized 

prognostic algorithms into three categories based on type of models/information used for 

predictions. Wheeler et al.  (Wheeler et al., 2009) categorized end users from a health 

management stakeholder’s point of view. The top-level user groups were: Operations, 

Regulatory, and Engineering. We combine and expand on these notions and categorize 

prognostic metrics based both on their goal as well as end users (see Table 1).  
Table 1 - Categorization of Prognostic Metrics based on End Usage 

 Operations Engineering Regula-

tory 

Metrics Assessment 

Goals 

Program 

Manager 

Plant 

Manager 

Operator Maintainer Designer Researcher Policy 

Maker 

Certification 

Metrics 

Assess conformance 

to safety assurance 

and certification 

requirements 

X      X 

Cost-Benefit 

Metrics 

Assess the 

economic viability 

for specific 

applications before 

It can be approved 

or funded 

X      X 

Reliability 

Based Metrics 

Assess probabilities 

of failures based on 

statistical evidence 

from multiple 

systems 

  X  X  X 

Algorithm 

performance 

Metrics 

Assess performance 

of prediction 

algorithms in 

predicting EoL 

X X X X  X X 

Computational 

Performance 

Metrics 

Assess 

computational 

requirements 

    X X  

 

A favorable Cost-Benefit case is the hinge pin of a successfully fielded prognostic solution and 
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cost-benefit metrics allow a quantification of the degree of fulfillment. Similarly, verifiability 

and certification metrics determine the degree to which a prognostic solution conforms with 

safety assurance and certification requirements. Both these top level metrics categories require 

prognostic estimates to satisfy stringent performance metrics, which are often derived from 

reliability analysis or condition-based prognostic methods. Computational performance metrics 

are important for implementation and figure in the trade space of cost-benefit analysis and 

algorithmic performance. Often, most of the metrics mentioned are connected through a 

requirement specification process.   

 

5.3 Metrics for Prognostic Applications 

In this section, the various prognostic metrics are presented by categories in more detail. 

Particular emphasis is given to performance metrics.  

5.3.1 Certification Metrics 

Regulatory bodies (such as the FAA) are concerned with whether a fielded system might 

negatively impact (directly or indirectly) overall system safety. Associated metrics can be 

expressed as the logical conjunction of an exhaustive set of safety related use cases. 

5.3.2 Cost Benefit Metrics 

Establishing cost benefits of prognostics is an important step in integrating the health 

management practices into fielded applications. Thus, metrics that measure economic viability of 

prognostics have started gaining in importance. Some of the most common Cost-Benefit metrics 

include: 

5.3.2.1 MTBF to MTBUR Ratio: This reliability statistics-based method expresses the efficiency 

of a maintenance operation by measuring the ratio between the lengths of time a component is 

expected to last and the length of time for which it was used before it was replaced(Teal & 

Larsen, 2003).  

5.3.2.2 Life Cycle Cost (LCC): LCC is fundamentally the sum of acquisition cost and cost of 

operations. To assess the value of prognostics, LCC is compared with and without prognostics 

(Wilkinson et al., 2004).  

5.3.2.3 Return on Investment (ROI): In an ROI calculation the difference between return and 

investment (the gain) is divided by the investment. It is one of the most commonly used metrics 

(not just in the context of prognostics) that assesses the benefits of deploying a PHM system.  

5.3.2.4 Technical Value: The benefits achieved through accurate detection, fault isolation and 

prediction of critical failure modes are weighed against the costs associated with false alarms, 

inaccurate diagnoses/prognoses, and resource requirements of implementing and operating 

specific techniques. (Dzakowic & Valentine, 2006; Vachtsevanos et al., 2006).  

5.3.2.5 Total Value: Given the coverage a PHM system provides for multiple fault modes in a 

system, total value quantifies the usefulness of a PHM technology in a particular application. 

Total value is defined as the summation of the benefits prognostics provides over all the failure 

modes that it can diagnose or prognose, minus the implementation cost, operation and 

maintenance cost, and consequential cost of incorrect assessments. This metric connects the 

algorithm performance in a PHM system to the management and operational performance.  
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5.3.3 Metrics for Computational Performance 

Computational performance is one of the most closely related factors to actual implementation of 

a system. It provides a mechanism to negotiate between computational and time resources that 

are demanded and the required fidelity and accuracy of the PHM system. Most of the metrics 

that can be used to quantify computational performance come from theoretical computer science 

and computer engineering. These are not specific to prognostics and are just mentioned here for 

completeness. Computational performance metrics include: Computational Complexity, CPU 

Time, Memory Size, and Data Rate.  Depending on the length of the prediction horizon in a 

prognostic application, data processing capabilities are of greater significance from the design 

and implementation point of view. All the above metrics help specify the hardware requirements 

or otherwise specify constraints within which a software must work and still satisfy algorithmic 

performance requirements. 

5.3.4  Metrics for Reliability Analysis 

Referring again to table 1, reliability analysis metrics are chiefly used by operators, designers, 

and policy makers. Reliability analysis stems from statistical evidences aggregated from 

historical data. Failure rates and distributions are extracted from history data or experimental 

data, which are then used to make failure predictions for a system under test. While prognostics 

is the science of prediction based on condition and usage of the monitored UUT, the reliability 

analysis predicts  failures based on expected outcome from the observed statistic over a 

population of the UUT. It has been the traditional way to use these metrics to assess the costs and 

the risks of using a system. Used correctly, reliability metrics are connected to system 

improvement due to prognostic performance. 

 Broadly classifying there are two types of reliability metrics as described below (Wood, 

2001):5.3.4.1 Constant Rate Reliability Metrics: these are the most popular reliability metrics in 

the electronics industry as they represent a good approximation of the flat region of the reliability 

bathtub curve. Mean life metrics usually assume an exponential distribution, which makes them 

equivalent to constant rate metrics. These rates are typically measured from field data and are 

simple and intuitive to explain. Some common examples of these metrics are: Mean Time 

Between Failure (MTBF), Mean Time to Failure (MTTF), Part Return/Repair Rate, Part 

Replacement Rate, Mean Time Between Service Call (MTBSC) and Mean Time Between 

Maintenance Action (MTBMA). 5.3.4.2 Probability of Success Metrics: When systems do not 

show constant failure rates, specifying mean times does not suffice. In such cases a better way is 

to specify probability of success or, in other words, the probability that a system performs a 

required function under stated condition for a stated period of time. Another way to specify 

probability of success is to measure the percentage of population that survives a specific 

duration. Therefore, these metrics are usually time dependent, i.e., the probability of success will 

depend on the length of the mission. These may be specified as the percentiles of the 

distributions. A common example used in mechanical systems domain is Lx Life which specifies 

the number of hours after which at least x% of the population would have failed. Other metrics 

commonly used are Failure Free Operating Time, Maintenance Free Operating Time, Mean 

Mission Duration, etc.  More discussion on reliability based metrics may be found in (IEEE-

Standard1413, 2002). 

5.3.5 Metrics for Prognostics Algorithm Performance 

Before using performance metrics, an a priori analysis should be conducted to identify the 

relevant factors in a given application and address them appropriately. A good set of metrics 
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should accommodate all or most of these factors. In this context the challenges surrounding 

prognostics (as compared to, say, diagnostics) should be discussed. It should also be noted that 

the metrics detailed in this chapter are continuously evolving as the field matures further. 

5.3.5.1 Challenges 

Prognostics requires special consideration in a number of areas. These include the acausality 

phenomenon, need for run-to-failure data, online performance evaluation, and expression of 

estimation uncertainty.  

 

Acausality: An acausal system is defined as a system with outputs and internal states that depend 

on future input values. Prognostics has acausal properties. It requires input from future events 

(for instance knowledge about operational conditions and load profiles) in order to make 

accurate predictions. To accurately assess the performance (both accuracy or precision), one 

must also know the true EoL to compare with the predicted EoL estimates. In some cases, future 

operating conditions are well known. This is the case for example for stationary applications 

with constant operating conditions. However, in non-stationary applications and where 

knowledge about future events is not available, estimates may be derived based on past usage 

history, the expected mission profile, and predictions for future operating and environmental 

conditions that are not controllable (e.g., weather conditions). This however, adds uncertainty to 

the overall process and complicates prognostic performance evaluation.  

Run-to-Failure Data from Real Applications: Assessing the correctness of prognostics benefits 

greatly from allowing the system to fail such that the prediction can be confirmed. For many 

systems, this is not feasible because it may be too expensive or because it negatively impacts 

system safety. But if a corrective action (such as maintenance or repair) is taken, on has just 

removed the ability to assess how early the prediction was. This is sometimes referred to as the 

“paradox of prognostics”.  

Online Performance Evaluation: The aforementioned considerations lead to an argument in 

favor of controlled run-to-failure (RtF) experiments for the algorithm development phase. While 

this may allow offline performance evaluation, some issues remain: First, it is difficult to extend 

the results of offline conditions to a real-time scenario; Second, a RtF experiment needs often 

times frequent disassemblies to gather ground truth data. This assembly-disassembly process 

creates variations in the system performance and the EoL point shifts from what it may have 

been in the beginning of the experiment. Since actual EoL is observed only at the end there is no 

guarantee that a prediction made based on initial part of data will be very accurate. Whereas, this 

does not necessarily mean that prognostic algorithm is poorly trained, it is difficult to prove 

otherwise. Therefore, one must be careful while interpreting the performance assessment results. 

Third, even controlled subscale RtF experiments can be very expensive and time consuming, in 

particular if one seeks to conduct statistically significant number of experiments for an 

exhaustive set of components and fault modes. 

Uncertainty in Prognostics: The quantification of prediction confidence is indispensable in 

prognostics. Consider a remaining life estimate of, say, 5 hours. If one knew that the confidence 

bounds for a given risk acceptance level are also 5 hours, then reactive action has to be taken 

immediately. If, however, the confidence bounds are at plus/minus 1 hour, then a completely 

different set of action can be taken. Without such information any prognostic estimate is of 

limited use and cannot be incorporated in mission critical applications (Uckun, et al., 2008). 

Uncertainties arise from various sources in a PHM system (Coppe et al., 2009; Hastings & 

McManus, 2004; Orchard et al., 2008). Some of these sources include: 
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• Model uncertainties (errors in the representation and parameters of both the 

system model and fault propagation model),  
• Measurement uncertainties (these arise from sensor noise, ability of sensor to 

detect and disambiguate between various fault modes, loss of information due to 

data preprocessing, approximations and simplifications),  
• Operating environment uncertainties,  
• Future load profile uncertainties (arising from unforeseen future and variability in 

usage history data),  
• Input data uncertainties (estimate of initial state of the system, variability in 

material properties, manufacturing variability), etc.  

Assessing the levels and characteristics of uncertainties arising from each of these sources is 

often times not a trivial task. It is even more difficult to determine how these uncertainties 

combine at different stages of the prognostic process and propagate through the – possibly 

complex and non-linear – system. On top of that, statistical properties may not follow any known 

parametric distributions, therefore complicating analytical solutions.  

 Owing to all of these challenges Uncertainty Representation and Management has 

become an active area of research in the field of PHM (DeNeufville, 2004; Ng & Abramson, 

1990; Orchard, et al., 2008; Sankararaman et al., 2009; Tang et al., 2009). Methods for 

prognostic performance evaluation, then, must be able to incorporate various expressions of 

uncertainties.   

Performance metrics for prognostics can be classified into accuracy, precision, and 

robustness. We use the working definition for accuracy as those that assess the degree of 

closeness of predictions to the actual failure time. Precision is defined as the spread of 

predictions performed at the same time. Robustness is defined as the sensitivity of the 

predictions with changes of algorithm parameter variations or external disturbances. There are a 

large number of prognostic performance metrics that have been used. However, as discussed 

earlier, most of these metrics do not take into consideration the particular challenges of 

prognostics. Hence, we feature here only a subset of general metrics especially suitable for 

prognostics. For a comprehensive list of performance metrics, the reader is referred to (Saxena et 

al., 2008). 

 

5.3.6 Error-based Metrics 

Many metrics are based on the assessment of the error, i.e., the deviation of the actual output 

from the target. One example of such an error metric is the average scale independent error. This 

metric provides an exponential weight of the errors in RUL predictions and averages over several 

UUTs (Vachtsevanos et al. 2006, Hyndman and Koehler 2006);  


 











 


L

l

l

D

i

L
iA

1 0

)(
exp

1
)(

 (1)

 

Where, Δ is the error and D0 is a normalizing constant whose value depends on the magnitudes 

in the application.  The range of A(i) varies between 0 and 1 where 1 represents perfect score. 

Other error-based metrics include Root Mean Squared Error (RMSPE), and Mean Absolute 

Percentage Error (MAPE). 

 

5.3.6.1 FP, FN, and ROC 

FP and FN are at heart also error-based metrics, but they deserve special consideration. A 
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common way to assess performance is to treat predictions as dichotomous forecasts by means of 

categorizing them into false positives (FP), false negatives (FN), true positives (TP) and true 

negatives (TN) (Goebel & Bonissone, 2005). FP assesses unacceptable early predictions and FN 

assesses unacceptable late predictions at specified time instances. User must set acceptable 

ranges (tFN and tFP) for prediction. Early predictions result in excessive lead time, which may 

lead to unnecessary corrections. Also note that, a prediction that is late more than a critical 

threshold time units (tc) is equivalent to not making any prediction and having the failure 

occurring. Mathematically, FP is defined as 
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where FPt  = user defined acceptable early prediction. While false negative (FN) is defined as 
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where FNt  = user defined acceptable late prediction. 

FP and FN both can vary between values is 0 and 1 where 1 represents perfect score. FP and FN 

can then be compiled into Receiver Operating Characteristic (ROC) curve. The ROC allows to 

assess the tradeoff between false positives (FP) and false negatives (FN) (Ebert 2007, Palmer et 

al. 2004) in a comprehensive fashion by plotting (1 - false negatives) over the false positives (see 

Figure 1). The ideal curve would have zero false positives and zero false negatives, but such a 

curve cannot realistically be achieved for real-world problems. Use of Time dependent ROC has 

been suggested that depicts ROC obtained for forecasts made for different time horizons. Also 

each point on the ROC curve may be associated with a point wise fixed width confidence bounds 

to indicate confidence in predictions. Tuning the prognostic algorithm such that a ROC can be 

generated may prove difficult in practice (e.g., due to lack of data or lack of tuning 

“parameters”).  

 
Figure 1 - ROC curve. 

 

5.3.6.2 Spread-Based Metrics 

Spread-based metrics measure the dispersion/spread of the error. The most basic spread-based 
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metric is the sample deviation which considers the error dispersion with respect to the error 

sample mean (Hoaglin et al., 1983; Vachtsevanos, et al., 2006).  
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where M is the sample mean of the error. This metric is restricted to the assumption of normal 

distribution of the error. It is, therefore, recommended to carry out a visual inspection of the error 

plots. SD can vary between 0 and ∞, where the perfect score is 0. Other spread-based metrics 

include the Mean Absolute Deviation from Sample Median (MAD) and the Median Absolute 

Deviation from the sample median (MdAD). 

 

5.3.6.3 Anomaly Correlation Coefficient (ACC) 

This metric is used to measure correspondence or phase difference between prediction and 

observations, subtracting out the historical mean at each point and is frequently used to verify 

output from numerical prediction models (Ebert, 2007). ACC is not sensitive to error or bias, so 

a good anomaly correlation does not guarantee accurate predictions. In the PHM context, ACC 

computed over a few time-steps after tP can be used to modify long term predictions. However, 

the method requires computing a baseline from history data which may be difficult to come by. 

Mathematically, ACC can be represented as follows: 

  

   
,

)()()()|(

)()()()|(

2

#*

2

#

#*#

 







izizizji

izizizji
ACC

l

l





 (5) 

where, )(* iz  is a prediction variable (e.g. )(* if l

n
 or )(* ihl ), and )(# iz  is the corresponding history 

data value. ACC can vary between -1 and 1 where 1 represents perfect score. 

Thus, ACC averages the absolute percentage errors in the predictions of multiple UUTs at the 

same prediction horizon. The percentage is computed based on the mean value of the prediction 

and ground truth. This prevents the percentage error from being too large for the cases where the 

ground truth is close to zero. This metric is computed at a particular time and does not capture 

performance variation with time. 

 

5.3.6.4 Prognostic Horizon 

The Prognostic Horizon (PH) can be formally defined as the difference between the time index i 

when the predictions first meet the specified performance criteria (based on data accumulated 

until time index i) and the time index for EoL. PH can be considered as a robustness metric.  The 

basic notion behind the metric is that a longer PH implies more time to act based on a prediction 

that has some credibility. The performance requirement is specified in terms of an allowable 

error bound (α) around the true EoL where the choice of α depends on the estimate of time 

required to take a corrective action.  PHs are typically determined offline during the validation 

phase for an algorithm-application pairing. PH performance is then used as a guideline for 

algorithm deployment where actual EoL is not known in advance. 

iEoLPH   (6)  

where: 

    ).()().(|min ** EoLrjrEoLrPjji     

P is a set of all time indices for which a prediction is made 

r* is the true RUL 

r(j) is the predicted RUL at time index j 



160 

  

 is the accuracy modifier 

EOL is the ground truth End of Life point 

PH output is a score that is characterized by both the length of remaining life of a system and the 

time scales in the problem at hand. As shown in Figure 2, the desired level of accuracy with 

respect to the EoL ground truth is specified as ±α-bounds. A remaining life estimate within those 

bounds has sufficient utility to a user (it is not too far off from the target to be actionable). The 

PH for an algorithm is declared as soon the corresponding predictions enter the -bounds. RUL 

values can be superimposed for various algorithms, thus providing an easy aid in their 

comparison. As evident from Figure 2, the algorithm A1 has a longer PH than algorithm A2.  

 
Figure 2 – Prognostic Horizon 

 

5.3.6.5 α-λ Performance 

 metric quantifies the prediction quality by determining whether the prediction falls within 

specified limits at particular times with respect to a performance measure. The evaluation times 

may be specified either as a ratio to the total remaining life from the point the first prediction is 

made or it may be specified as a given absolute time interval before EoL is reached.  α-λ 

performance could be expressed either as  α-λ accuracy, as α-λ precision, or as α-λ robustness 

metric. In the discussion below we delineate α-λ performance without loss of generality as an 

accuracy performance measure.  
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Figure 3 - α-λ Performance 

 

Here we define α-λ accuracy as the prediction accuracy to be within α % of the actual RUL at 

specific time instance expressed as a fraction of time between the point when an algorithm starts 

predicting and the actual failure (Figure 3). Consider an example case where this metric 

determines whether a prediction falls within 20% accuracy (i.e., α=0.2) halfway to failure from 

the time the first prediction is made, (i.e., λ= 0.5). The α-λ accuracy metric is defines as, 

         



 


otherwise0

11if1 ** iririr
Accuracy

l 
    (7) 

Where α: accuracy modifier 

 λ: time window modifier such that )( PEoLP tttt    
For illustrating the usage of this performance measure several prediction algorithms employed in 

(Goebel et al., 2008; Liu et al., 2010; Saxena et al., 2009) are compared in Figure 4. Here this 

metric evaluates whether predictions made by various algorithms lie within 10% error when 

evaluated at halfway to the EoL. 
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Figure 4 - α-λ Performance Comparison 

 

5.3.6.6 Relative Accuracy 

RA is defined as a measure of error in RUL prediction relative to the actual RUL.   

   

 




ir

irir
RA

l

*

*

1




         (8)

 

where                          

λ is the time window modifier such that )( PEoLP tttt  
, 

l is the index for l
th

 unit under test (UUT), 

r*(iλ) is the ground truth RUL at time index iλ, 

)( ir is an appropriate point estimate of the predicted RUL distribution at time index iλ. 

 

5.3.6.7 Cumulative Relative Accuracy 

RA conveys information at a specific time. In order to estimate the general behavior of the 

algorithm, RA can be evaluated at multiple time instances to provide an aggregate accuracy level 

or the Cumulative Relative Accuracy (CRA). 

 











 i

RAirwCRA )(
1

 (9) 

where: 

w(r(i)) is a weight factor as a function of RUL at all time indices,  

lλ is the set of all time indexes when a prediction was made 

 It may be desirable to give more weight to RA evaluated at times closer to EoL since 

good performance close to EoL is important for condition-based decision making. Therefore, one 

would expect that λ is chosen in a meaningful fashion, e.g., the time required to apply a 

corrective action. RA evaluated at λ = 0.5indicates the time when a system is expected to have 

consumed half of its remaining life. Alternatively, RA could be evaluated at time instances 

where the damage magnitude has reached 50% of the failure threshold. This metric is also useful 
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in comparing different algorithms for a given λ in order to get an idea on how well a particular 

algorithm does at significant times. 

 

5.3.6.8 Convergence 

Convergence expresses the rate at which any metric (M) – like accuracy or precision – improves 

with time. The error of different algorithm metric evaluation is connected into a curve. 

Convergence is then defined as the distance between the origin and the centroid of the area under 

the curve for a given metric. 

 ,)(
22

cPcM ytxC 
 (10)

 

where: 

CM is the Euclidean distance between the center of mass (xc, yc) and (tP, 0) 

M(i) is a non-negative prediction accuracy or precision metric with a time varying value 

 (xc, yc) is the center of mass of the area under the curve M(i) between tP and tEoUP, defined as 

following 
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       (11) 

EoUP is the time index for last useful prediction made. Alternatively one may use EoP, but 

EoUP makes sure that performance is evaluated only based on those predictions that are useful 

from a practical view point since any prediction made after EoUP does not leave enough time to 

carry out any corrective measure. (Saxena et al., 2009). 

 As stated earlier, convergence banks on the implicit assumption that algorithm 

performance should improve with time.  For illustration of the concept, consider three cases that 

converge at different rates in Figure 5. Lower distance implies a faster convergence. 
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Figure 5 - Convergence Metric 

 

5.3.6.9 Robustness 

A robustness metric has the task of quantifying the sensitivity of an algorithm with respect to its 

parameters, such as those found in expressing prior distribution, initial conditions, and training 

data size. Confidence bounds of a robust algorithm are not expected to change much with 

variations of algorithm parameters.  Mathematically, the robustness metric Rb can be defined as  
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where x is the investigated algorithm parameter and f(x) is the confidence bound variation 

function with respect to x. 

The assessment of algorithm robustness is of high value in particular since most of the time an 

accurate prior is difficult to obtain with limited data source and extensive experiments on the 

actual engineering system are often prohibitive due to time and cost constraints (Guan et al., 

2011). 

 

5.3.6.10 RUL Online Precision Index (RUL-OPI) 

 This index quantifies the length of 95%confidence bounds relative to the predicted RUL at any 

given time instant (Orchard et al., 2009). The index is normalized between 0 and 1. It can be 

used as an online performance metric to ensure if I1 remains close to 1 as system deteriorates,  

i.e., EoL approaches: 
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5.3.7 Incorporating Uncertainty Estimates 

Prognostics algorithms typically involve estimating the probability distribution function (pdf) of 

the EoL and RUL rather than single point predictions which enables them to handle uncertainties 

arising from various sources such as noise, loading conditions and so on. They also allow for 

propagation of uncertainties for subsequent predictions (Orchard & Vachtsevanos, 2009). Thus, 

it is necessary to ensure that prognostic performance metrics include these factors. The most 

common form of assessing a pdf output is through estimates of mean and variance of the 

distribution owing to their simplicity and easy interpretation (Goebel et al., 2008). However, in 

reality, these distributions are rarely smooth or symmetric and hence mean and variance are not 

robust enough to evaluate the performance. A combination of mean as the measure of location 

and Quartiles or Inter Quartile Range (IQR) as a measure of spread can provide better estimates 

of the distribution (Hoaglin, et al., 1983). 

The metrics shown in the previous sections do not explicitly accommodate for 

uncertainty estimating capability of the prognostic algorithms. However, a fairly straightforward 

way to do so is to specify an allowable error bound for a given metric. This error bound could be 

asymmetric as shown in Figure 6. In case of prognostics, typically a wider error margin to the 

“left” of the prediction (that is, an early prediction) may be preferred because early predictions 

have lower cost and safety consequences than late ones. 

  

 
Figure 6 - Concepts for incorporating uncertainties (Saxena et al., 2010 CC 3.0) 

 

These concepts can be analytically incorporated into the metrics by calculating the probability 

mass of a prediction falling within the specified α-bounds. As an illustrative example, consider 

again the α-λ accuracy.  The α-bounds are expressed as a percentage of actual RUL r(iλ) at tλ.  
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where:   

r(iλ) is the predicted RUL at time index iλ 
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Figure 7 - α-λ accuracy with the accuracy cone shrinking with time on RUL vs. time plot 

With α = 0.1 and λ = 0.5, the criteria for matching the metric requirement is determined by 

assessing the intersection of the uncertainty with the -cone as shown in Figure 7. Note that 

there may be no prediction assessed at time tλ for a given λ and the corresponding pi   
because 

the set of time indexes (p) where a prediction is made is determined by the frequency of 

prediction step in a prognostic algorithm. In such cases one can make choose λ’ closest to λ such 

that pi ' . To illustrate the application of α-λ accuracy further, refer to Figure 8 where the 

performance of a Recurrent Neural Network algorithm is plotted for every time instant when a 

prediction was made. The figure indicates at any point with either “True” or “False” (written 

above the upper quartiles) whether α-λ accuracy metric is satisfied or not based on β-criterion.  

 
Figure 8 - α-λ accuracy for a particular algorithm with distribution information (Liu, et al., 2010, CC 3.0) 
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5.3.8 Guidelines for Applying Prognostics Metrics 

Given the structure of the prognostics metrics described in this chapter, one can observe a 

progression in the manner how these metrics characterize the algorithm performance. The first 

metric, Prognostic Horizon, identifies whether an algorithm predicts within a specified error 

limits around the actual EoL and, if it does, how much time it allows for any corrective action. 

Therefore if an algorithm does not allow a sufficient PH it may not be meaningful to continue on 

computing other metrics. On the other hand if an algorithm passes the PH test, the next metric, α-

λ Performance, identifies whether the algorithm performs within desired error margins of the 

actual RUL at any given time instant that may be of interest to in a particular application. This is 

a more stringent requirement of staying within a converging cone of the error margins as a 

system nears EoL. If this criterion is also met, the next step is to quantify the accuracy levels 

relative to the actual RUL. This is accomplished by the metrics Relative Accuracy and 

Cumulative Relative Accuracy. These metrics assume that prognostic performance improves as 

more information becomes available with time and hence, by design, an algorithm will satisfy 

these metrics criteria if it converges to true RULs. Therefore, the fourth metric, Convergence, 

quantifies how fast the algorithm converges if it does satisfy all previous metrics. These metrics 

can be considered as a hierarchical test that provides several levels of comparison among 

different algorithms in addition to the specific information these metrics individually provide 

regarding algorithm performance. Of course the use of other metrics such as robustness stands by 

itself to assess sensitivity of any of these or even other metrics with respect to a key system 

parameter. 

5.3.8.1 Guidelines on choosing performance parameters 

Time critical nature of prognostic application resulted in metrics for which the performance 

evolves with time and needs to be tracked. This required several special parameters that must be 

specified to define time criticality (λ), confidence level (β), or acceptable error bounds (α). The 

choice of α depends on the estimate of time required to take a corrective action. Depending on 

the situation this corrective action may correspond to performing maintenance (manufacturing 

plants) or bringing the system to a safe operating mode (operations in a combat zone). 

Adjustments to these parameters may translate into significant changes in the cost-benefit-risk 

equation in a process. Therefore, it is suggested that these parameters be chosen carefully to 

clearly specify prognostic requirements ( Saxena et al., 2010). Requirements engineering is a 

discipline that provides guidelines to obtain these requirements in a systematic manner. For 

instance, in a safety critical military application first a Failure Modes Affects and Criticality 

Analysis (FMECA) or Hazard and Operability Analysis (HAZOP) must be conducted to identify 

most critical failures. Then based on available sensors, measurement quality, noise levels, etc. 

desired confidence levels must be derived. For safety critical systems a more conservative failure 

threshold may be chosen, while for commercial applications a less conservative but more cost 

effective threshold is preferred. It must be noted that the choice of metrics and performance 

specifications is an iterative process that negotiates between user requirements and constraints 

originating from performance needs, available resources, established maturity level of PHM, and 

time criticality for that application. 

 

5.3.8.2 Guidelines for dealing with uncertainties 

A Prognostic system models a stochastic process and hence the behavior observed from a 

particular run (single realization of the stochastic process) does not represent the complete 

behavior of the predicted trajectories. Assuming that all measures practically possible for 
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uncertainty reduction have been taken during the algorithm development phase, such 

observations should be treated only as isolated realization of the process. A level of confidence 

or probability of occurrence should be attached to such predictions. Otherwise, multiple 

trajectories should be aggregated from several runs to achieve statistical significance and more 

sophisticated stochastic analyses may be carried out. Another aspect dealing with uncertainties is 

related to prognostic algorithm output. Different algorithms represent uncertainties in different 

ways. Some specify parametric distribution and other as non parametric ones. Furthermore, some 

result in a closed form analytical equation for these distributions and other only result in 

discretized histograms. It is very important to carefully treat these distributions and not loose 

critical information by approximating these by known simpler forms such as normal distribution 

or by computing their statistical moments (Saxena et al., 2009; Saxena, et al., 2010). A common 

practice has been to compute mean and variance for all types of distributions whereas they may 

not be very meaningful for non-normal distributions. Use of more robust estimators like median, 

L-estimator, or M-estimator for expressing central tendency and Inter Quartile Range (IQR), 

Mean Absolute Deviation (MAD), or Median Absolute Deviation (MdAD) for expressing the 

spread is suggested (Devore, 2004). 

5.3.8.3 Guidelines to resolve ambiguities 

In practice, there can be several situations where the definitions discussed above result in 

ambiguity. Some of such situations are very briefly discussed here with suggested resolutions. 

 While applying the PH metric, a common situation encountered is when the RUL 

trajectory jumps out of the ±α accuracy bounds temporarily. Situations like this result in multiple 

time indexes where RUL trajectory enters the accuracy zone to satisfy the metric criteria. A 

simple and conservative approach to deal with this situation is to declare a PH at the latest time 

instant the predictions enter accuracy zone and never comes out thereafter. Another option is to 

use the original PH definition and further evaluate other metrics to determine whether the 

algorithm satisfies all other requirements. As discussed in (Saxena et al., 2009) situations like 

these can occur due to a variety of reasons. 

Inadequate system model: Real systems often exhibit inherent transients at different stages 

during their life cycles. These transients get reflected as deviations in computed RUL estimates 

from the true value if the underlying model assumed for the system does not account for these 

behaviors. In such cases, one must step back and refine the respective models to incorporate such 

dynamics. 

Operational transients: Another source of such behaviors can be due to sudden changes in 

operational profiles under which a system is operating. Prognostic algorithms may show a time 

lag in adapting to such changes and hence resulting in temporary deviation from the real values. 

Therefore, whenever inconsistent behavior of PH metric is observed, one must identify the root 

cause of it and accordingly interpret the results. The situations discussed here are more common 

typically towards the end when a system nears EoL. This is because in most cases the fault 

evolution dynamics are too fast and complex to model or learn from data as the system nears 

EoL. Therefore, RUL curve deviates from the error band near tEoL. To determine whether such 

deviations are critical for post-prognostic decision making, the concept of tEoUP or End-of-

Useful-Predictions (EoUP) is introduced. This index represents the minimum allowable PH that 

is required to take a corrective measure. Any predictions made beyond EoUP are of little or no 

use from a practical viewpoint. 
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5.4 Summary 

This chapter presents several performance metrics for offline evaluation of prognostics 

algorithms. A brief overview of different methods employed for performance evaluation is also 

included. Because metrics developed in the context of forecasting differ from prognostics in the 

systems health management context and to account for the additional considerations, metrics 

specialized for prognostics (but not necessarily for the application) are needed. These metrics 

were introduced and their use was illustrated with recommendations. 
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