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Next-generation aircraft with a large number of actuators will require advanced control allocation methods to

compute the actuator commands needed to follow desired trajectories while respecting system constraints.

Previously, algorithms were proposed to minimize the l1 or l2 norms of the tracking error and of the actuator

deflections. This paper discusses the alternative choice of the l1 norm, or the sup norm. Minimization of the control

effort translates into the minimization of the maximum actuator deflection (min–max optimization). This paper

shows how the problem can be solved effectively by converting it into a linear program and solving it using a simplex

algorithm. Properties of the algorithm are also investigated through examples. In particular, the min–max criterion

results in a type of loadbalancing,where the load is the desired commandand the algorithmbalances this load among

various actuators. The solution using the l1 norm also results in better robustness to failures and lower sensitivity to

nonlinearities in illustrative examples. This paper also discusses the extension of the results to a normalized l1 norm,

where the norm of the actuator deflections are scaled by the actuator limits. Minimization of the control effort then

translates into the minimization of the maximum actuator deflection as a percentage of its range of motion.

I. Introduction

C ONTROL allocation is the problem of distributing control
effort among multiple, redundant actuators. In conventional

flight-control system design, the issue is resolved through the
concept of ganging or mixing of the control surfaces. Specifically,
pseudoeffectors v are defined so that

u�Gv (1)

where v is the vector of pseudoeffectors, u is the vector of actuator
commands, and G is a ganging matrix. For example, it is typical to
define a single elevator command �e and a single aileron command �a
so that
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where �el and �er are the left and right elevator commands, �al and �ar
are the left and right aileron commands, and �r is the rudder
command. An elevator command �e produces symmetric left and
right elevator commands, and an aileron command �a produces
antisymmetric left and right aileron commands. This ganging
typically results in a mostly decoupled response of the aircraft from
the elevator, aileron, and rudder commands to the pitch, roll, and yaw
responses.

In control design for future vehicles, reasons to look for
alternatives to ganging include cases where 1) the vehicle has a large
number of actuators, making it less intuitive how the ganging matrix
should be defined; 2) the vehicle has unconventional control
effectors, with a significant degree of nonlinearity and of interaction
between the effectors, againmaking it difficult to develop an intuitive
solution; 3) the effectiveness of the actuators is limited, making it
important to optimize their use within their position and rate limits;
and 4) the control system is designed to be reconfigurable or adaptive
so that control allocation must be computed in real time.

The application of optimization methods to control allocation
problems was proposed in [1]. However, the definition of control
allocation only emerged with the seminal paper of Durham [2],
where the concept of direct allocation was introduced. Although the
concept was mathematically formulated, algorithms to solve the
problem numerically in the general case were only later developed
[3]. In the meantime, Buffington [4] proposed an alternative
formulation minimizing the norm of the error between desired and
achieved commands. Similar to [1], Buffington [4] showed how the
problem could be converted to a linear program and solved exactly
using standard linear programming software. Ikeda and Hood [5]
also reported the application of l1 optimization, although with fewer
details. Nevertheless, it became clear that the solution of optimal
control allocation problems was feasible in real time. In [6], it was
shown that the direct allocation problem could also be solved using
linear programming and that a considerably smaller linear program
could be obtained for the l1 optimization problem, comparedwith the
formulation given in [7]. Timing data showed that solutions of the
problem could be comfortably performed in real time, even for large
numbers of actuators, and that the optimal solution improved
performance significantly over simpler, approximate methods.

Solutions of the optimal control allocation problems using the l2
norm were also proposed, with an early solution provided through
the fixed-point method of [8]. The fixed-point algorithm was
extremely simple, and many of the computations needed to be
performed only once before iterations started. Remarkably, the
algorithm also provided an exact solution to the optimization
problem and was guaranteed to converge. Numerical tests, however,
showed convergence of the algorithm could be very slow and
depended strongly on the problem (the number of iterations required
could vary by orders of magnitude, depending on the desired
command). An elegant alternative to this algorithm was proposed by

Presented as Paper 2009-6270 at the AIAA Guidance, Navigation, and
Control Conference, Chicago, IL, 10–13 August 2009; received 10 August
2010; revision received13October 2010; accepted for publication 14October
2010. This material is declared a work of the U.S. Government and is not
subject to copyright protection in the United States. Copies of this paper may
be made for personal or internal use, on condition that the copier pay the
$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 0731-5090/11 and $10.00 in
correspondence with the CCC.

∗Professor, Electrical and Computer Engineering Department, 50 South
Central Campus Drive, Room 3280. Senior Member AIAA.

†Computer Engineer, Intelligent Systems Division, Mail Stop 269-3.
Member AIAA.

JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 34, No. 2, March–April 2011

380

http://dx.doi.org/10.2514/1.51952


Harkegård, using the theory of active sets [9]. The algorithm was
similar to the simplex algorithm used for l1 optimization by [6], and it
had the same advantage of completing in finite time and with a small
number of iterations.

Interior-point methods were also studied to solve large control
allocation problems, both for the l1 norm [10] and for the l2 norm
[11]. The computational requirements of these methods scaled better
with the number of actuators, but the number of actuators had to be
quite large (greater than 15) before the advantages became apparent.

Among recent work, one may note several papers considering the
application of control allocation to hypersonic vehicles, including
some flight tests [12–14], the problems posed by nonlinear actuator
effectiveness (e.g., [15,16]), modifications to account for the
dynamic response of the actuators (e.g., [17,18]), and the combin-
ation of control allocation with adaptation (e.g., [19,20]). New
aircraft (for example, those with blended wing body configurations
[21]) have been identified as presenting control allocation challenges
due to novel actuators, distributed actuators with low control
authority, interactions between control effectors, and interactions
between propulsion and control surfaces. Interestingly, control
allocation is also emerging in other applications, including land and
marine vehicles [22–24].

II. Optimization Formulations of Control Allocation

A. Control Allocation in Model Reference Control

Control allocation is introduced here in the context of model
reference control (a form of dynamic inversion). However, solutions
may be used in a variety of control design methods. To state the
problem mathematically, consider the state-space model

_x A � AAxA � Bu� d; yA � CxA (3)

where xA 2 Rn, d 2 Rn, u 2 Rp, and yA 2 Rq. For the control of
aircraft, the states are given by the vector xA and may include the
angle of attack, the pitch rate, the angle of sideslip, the roll rate, and
the yaw rate (n� 5). The output vector yAmay contain the pitch rate,
the roll rate, and the yaw rate (q� 3). The control input vector u
consists of the commanded actuator positions. In a conventional
aircraft, these commands are the deflections of the two elevators, the
two ailerons, and the rudder (p� 5). The vector d represents the
forces and moments that the control surfaces must cancel in order to
trim the aircraft (i.e., to create an equilibrium of the dynamical
system).

For the purpose of example, consider a simple model reference
control law. The method relies on a reference model that represents
the desired dynamics of the closed-loop system,

_yM � AMyM � BMrM (4)

where rM is a reference input vector (the pilot commands) and yM
represents the desired output of the system. Since the derivative of y
is given by

_y A � CAAxA � CBu� Cd (5)

the objective may be achieved by setting

CBu��CAAxA � Cd� AMyA � BMrM ≜ ad (6)

where ad represents the desired vector to bematched byCBu. If y is a
vector composed of the rotational rates (as is often the case), ad
represents desired rotational accelerations to be produced by the
control input.

Obtaining u from ad requires that one solve a system of linear
equations with more unknowns than equations. Solving such a
system is easy, but the difficulty in control allocation is that the vector
u is constrained. The limits generally have the form

umin;i � ui � umax;i for i� 1; . . . ; p (7)

or umin � u � umax in vector form. There may be additional
constraints due to the maximum rate of deflection of the actuators. In

a digital implementation, rate constraints may be incorporated as
additional position constraints:

u0;i � _umax;iTS � ui � u0;i � _umax;iTS; for i� 1; . . . ; p (8)

where u0;i is the current position of actuator i, _umax;i is the maximum
rate of deflection of actuator i, and TS is the sampling period.
Constraints in Eqs. (7) and (8) can be combined by taking the
intersection of the two ranges.

The problem of finding a vector u that is the best possible solution
of Eq. (6) within the constraints of Eqs. (7) and (8) will be referred to
as the control allocation problem. Given the constraints, the control
allocation problem may be such that many solutions exist, only one
solution exists, and no exact solution exists. One is naturally drawn to
finding solutions that minimize the error CBu � ad. Indeed,
providing all the control authority available maymake the difference
between amaneuver being achievable or not and between an unusual
condition being recoverable from or not. However, the question also
arises as towhich solution is themost desirablewhenmany solutions
exist. Therefore, control allocation typically consists both in error
minimization and control optimization.

B. Formulations of Control Allocation

The fundamental control allocation problem can be formulated as
the following error-minimization objective.

For error minimization, given a matrix CB, find a vector u, such
that

J� kCBu � adk (9)

is minimized, subject to umin � u � umax.
The problem is solved exactly if J� 0. However, regardless of

whether an exact solution exists, the following control minimization
problem may be considered as well.

For control minimization, given a matrix CB, a vector up, and a
vector u1, such that umin � u1 � umax, find a vector u, such that

J� ku � upk (10)

is minimized, subject to

�CB�u� �CB�u1 (11)

and umin � u � umax.
The control minimization problem is a secondary optimization

objective to be satisfied if the solution of the primary objective, given
byu1, is not unique. Thevectorup represents some preferred position
of the actuators (e.g., zero deflections). After a solution yielding
minimum error is obtained, the solution with minimum deviation
from the preferred position is picked among all equivalent solutions.
For both problems, weighting of the elements of the vectors may be
inserted in the norms, either to prioritize the axes or to prioritize the
actuators.

The norm used in the optimization criteria is a design choice that
has more consequences than might be expected. The l1 norm of a
vectorx is the sumof the absolute values of the elements of thevector,

kxk1 �
Xn
i�1
jxij (12)

while the l2 norm is the usual Euclidean norm:

kxk2 �
�����������������Xn
i�1
jxij2

s
(13)

Algorithms have been proposed for both norms, and the results of the
optimization problems are sometimes quite different.

A possible implementation of optimization for control allocation
consists in the sequential minimization of the error vector and of the
control vector. Specifically, the error is minimized first, and then the
control vector is minimized among all equivalent solutions. In [7],
the control minimization problemwas solved only when the solution
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of the primary error-minimization problem was J� 0. However, it
should be noted that, unless the matrix CB satisfies specific
conditions (any q � q submatrix of CB must be nonsingular), the
solution is not necessarily unique, and this is true even if the desired
vector ad is not feasible. Given this fact, mixed optimization
(described next) makes sense, and it has several advantages over
sequential optimization.

For mixed optimization, given a matrix CB and a vector up, find a
vector u such that

J� kCBu � adk � "ku � upk (14)

is minimized, subject to umin � u � umax.
The mixed optimization problem combines the error and control

minimization problems into a single problem through the use of a
small parameter ". If the parameter " is small, priority is given to error
minimization over control minimization, as is normally desired.
Often, the combined problem may be solved faster, and with better
numerical properties, than when the error and control minimization
problems are solved sequentially [6].

C. Optimization Using the l1 Norm

This section reviews how the mixed l1 optimization problem can
be converted to a linear program of small size, following the
presentation of [6]. Further derivations coming later in the paper will
build on this background.

A standard linear programming problem consists of finding a
vector x such that

J� cTx (15)

is minimized, subject to

0 � x � h (16)

and

Ax� b

In Eq. (16), vector inequalities are to be interpreted element by
element. Alternative formulations exist, replacing 0 � x � h by
x � 0 and Ax� b by Ax � b. However, these differences are not
significant, and the present form is preferable for the control
allocation problem.

For the conversion of the mixed optimization problem, define the
function s�x�,

s�x� � x if x > 0; s�x� � 0 otherwise (17)

This function is to be interpreted element by element in the vector
case. It is assumed that the preferred vector satisfies umin �
up � umax. This condition may be eliminated without much
difficulty once the technique is understood. Define

u� � s�u � up�; u� � s�up � u� (18)

so that

u� u� � u� � up; 0 � u� � umax � up;
0 � u� � up � umin (19)

Similarly, define

e� CBu � ad; e� � s�e�; e� � s��e� (20)

so that

e� e� � e�; 0 � e� � emax; 0 � e� � emax (21)

where emax is some upper bound on the achievable error; e.g.,
emax � kCBup � adk1.

With these definitions, the optimization problem involves a system
of n linear equations,

e� � e� � CBu� � CBu� � CBup � ad (22)

and the cost criterion,

J�
Xq
i�1

e�i �
Xq
i�1

e�i � "
Xp
i�1

u�i � "
Xp
i�1

u�i (23)

Therefore, defining the vector xT � � e� e� u� u� �, the linear
programming problem is specified by

A� � I �I �CB CB �; b� CBup � ad;
cT � � 1 	 	 	 1 " 	 	 	 " �;
hT � � emax emax umax � up up � umin � (24)

Note that vector c implements an equal weighting of the elements
within the vector ad and within u. However, the elements of the
vector c can be changed to account for various objectives. For
example, [7] showed howvarious choices could bemade tominimize
drag, wing loading, radar signature, or the use of thrust vectoring.
Interestingly, different weights can even be applied for positive and
negative values.

Note that the A matrix of the linear programming problem has as
many rows as the CB matrix. For the standard case with a three-
dimensional vector ad, the number of rows is only three. This size is
very small in linear programming, so the problem can be solved in a
few iterations using, for example, the simplex algorithm. The
algorithm is guaranteed to find an optimal solution in a finite period
of time, it is easy to code, and it works well in practice. Speed of
algorithm execution can be minimized by taking advantage of
particular aspects of the control allocation problem. Because the
number of columns in the Amatrix is typically much greater than the
number of rows, the problem is well suited for the so-called revised
simplex method. The number of computations in this method
depends only moderately on the number of columns. Because most
variables of the vector x naturally have both upper and lower bounds,
it is also advantageous to implement a simplex algorithm with both
bounds, as opposed to themore commonmethodwith lower bounds,
which requires a large number of so-called slack variables.

Speed of execution may also be improved significantly by
initializing the simplex algorithm with a so-called basic feasible
solution.Without this special feature, an initialization phase has to be
added, requiring the use of another implementation of the simplex
algorithm. A basic feasible solution is a vector x that solves Ax� b
and is such that all elements of x are at their limits except q elements,
where q is the number of rows of A. The mixed optimization
algorithm can be initialized withu� up as a feasible solution, so that

u� � 0; e� � s�CBup � ad�;
u� � 0; e� � s��CBup � ad� (25)

In general,q elements of e� and e� will be equal to zero, leaving only
q elements (or fewer) different from zero. These elements are the
basic variables of the initial feasible solution.Other useful techniques
for the implementation of the revised simplex algorithm include the
Sherman–Morrison–Woodbury formula to reduce the size of the
matrices to be inverted and anticycling procedures to avoid infinite
loops [6].

D. Implementation of Control Allocation Solutions

As the implementation of optimal control allocation methods in
real time has become feasible, it is likely that obstacles will lie solely
with validation and certification issues [21]. Generally, active sets
and simplex methods require a finite number of steps for
convergence, but the theoretical maximum is significantly greater
than the typical number required. Furthermore, the theoretical
maximum assumes perfect computations. In the near term, the most
viable implementation of optimal control allocation may be in the
form of table lookup [25]. Control allocation may also be
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implemented as an add-onmodule that is engaged onlywhen failures
are detected.

An issue for implementation of control allocation algorithms is the
rate limits of the actuators. These can be accommodated by reducing
the position limits umin and umax by the amount imposed by the rate
limits, as shown in Sec. II.A. The preference vectormay also be set to
be the current actuator position or an achievable position that would
favor the actuators moving to a zero deflection position.

III. Control Allocation with Load Balancing

A. Properties of l1 Optimization Problems and Load Balancing

Linear programming theory implies certain properties of the
solution of the mixed l1 optimization problem. Specifically, if the
matrix CB has three rows, all the elements of the optimal vector x
except threewill be either at their upper limit or at their lower limit. In
terms of the control vector, this property implies that all but three
control variables will be either at the upper limit, at the lower limit, or
at the preferred position. If the vector ad cannot be achieved in any
direction, all the control variables will be at one of the limits or at the
preferred positions. The desirability of this property may be debated:
on the one hand, it makes sense if the algorithm does not use
ineffective surfaces, but on the other hand, it is desirable to see all
surfaces move together to achieve the desired moment. A more
balanced distribution of the required effort to the control surfaces
reduces the chances of encountering the control surface rate limits.

In this section, control minimization is considered using the l1
norm,

kuk1 �max
i
juij (26)

The l1 norm of a vector is the maximum of the absolute values of the
elements of the vector. It is also called the sup norm. For control
optimization, use of the l1 norm in

J� ku � upk1 (27)

leads to an optimization criterion referred to as a min–max criterion,
since the objective is to minimize the maximum value (in absolute
terms) of the elements of the vector. This criterion has been used in a
variety of networking control problems, including communication
networks [26] and computer networks [27]. Typically, this criterion
arises when attempting to balance the loads among multiple
resources, such as processors or communication nodes. The l1 or
min–max criterion has also been used in control design [28],
although not as frequently as the l2 criterion.

In control allocation, use of the l1 norm implies that one attempts
to minimize the deflection of the actuators in the min–max sense. It
does not matter how many actuators move: the maximum deflection
should just be as small as possible. The solution that is obtained
reflects this choice by providing a more balanced distribution of the
deflections thanwith the l1 norm. Interestingly, the control allocation
problems using the l1 norm can be converted to linear programs that
are similar to the l1 linear programs, and they can be solved using the
same algorithms.

B. Mixed l1 � l1 Optimization

Consider first the optimization of the criterion

J� kCBu � adk1 � "ku � upk1 (28)

In other words, the l1 norm is used for the error minimization and the
l1 norm is used for control minimization, with both criteria mixed in
a single, mixed optimization criterion. A small modification of the
approach used for mixed l1 optimization yields the desired linear
program [29].

An additional variable u
 is introduced, which is intended to
become the l1 norm of u � up. Next, vectors of slack variables �u�
and �u� are introduced such that

�u� � u
 � u�; �u� � u
 � u� (29)

Using the same notation as for the l1 optimization, a linear program
can be defined with the cost criterion

J�
Xq
i�1

e�i �
Xq
i�1

e�i � "u
 (30)

and the optimization vector

xT � � e� e� u� u� �u� �u� u
 � (31)

The linear program to be solved is
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0p�q 0p�q Ip�p 0p�p Ip�p 0p�p �1p�1
0p�q 0p�q 0p�p Ip�p 0p�p Ip�p �1p�1

0
B@

1
CA

b�
CBup � ad

0p�1

0p�1

0
B@

1
CA

cT ��11�q 11�q 01�p 01�p 01�p 01�p " �
hT�
�emax emax umax � up up � umin umax � up up � umin u
max �

(32)

where Ia�b is the identity matrix of dimension a � b, 0a�b is a matrix
of dimension a � b filled with zeros, 1a�b is a matrix of dimension
a � b filled with ones, and

u
max �max�kumax � upk1; kup � umink1� (33)

Since the mixed l1 � l1 control allocation problem can be
converted to a linear program, standard algorithms can be applied to
solve it efficiently. Initialization with a basic feasible solution can be
performed, as for the l1 optimization, by adding to the original basic
variables the new variables �u� and �u�. The major drawback is that
the number of rows has grown considerably in the process. From q
rows (typically three), the number has grown to q� 2p (where p is
the number of actuators). Nevertheless, such problems can still be
solved very quickly on standard computing hardware.

C. Mixed l1 Optimization

The mixed l1 control allocation problem is defined by the
criterion

J� kCBu � adk1 � "ku � upk1 (34)

This problem can be converted to a linear program using similar
techniques as the mixed l1 � l1 control allocation problem.
Specifically, define an additional variable e
, which is intended to
become the l1 norm of e. Next, introduce vectors of slack variables
�e� and �e� such that

�e� � e
 � e� �e� � e
 � e� (35)

A linear program can be defined with the cost criterion

J� e
 � "u
 (36)

and the optimization vector

xT � � e� e� u� u� �u� �u� u
 �e� �e� e
 �
(37)
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The linear program to be solved is

A�

Iq�q �Iq�q �CB CB 0q�p 0q�p 0q�1 0q�q 0q�q 0q�1
0p�q 0p�q Ip�p 0p�p Ip�p 0p�p �1p�1 0p�q 0p�q 0p�1
0p�q 0p�q 0p�p Ip�p 0p�p Ip�p �1p�1 0p�q 0p�q 0p�1
Iq�q 0q�q 0q�p 0q�p 0q�p 0q�p 0q�1 Iq�q 0q�q �1q�1
0q�q Iq�q 0q�p 0q�p 0q�p 0q�p 0q�1 0q�q Iq�q �1q�1

0
BBBB@

1
CCCCA; b�

CBup � ad
0p�1
0p�1
0q�1
0q�1

0
BBBB@

1
CCCCA;

cT � � 01�q 01�q 01�p 01�p 01�p 01�p " 01�q 01�q 1 �;
hT � � emax emax umax � up up � umin umax � up up � umin u
max emax emax emax �

(38)

An issue with this new formulation is that the computations grow
even more due to the further increase in the number of rows. It is
possible that a smarter implementation will produce a more efficient
algorithm (especially considering all the ones and zeros in the A
matrix). Reference [30] has an algorithm that is said to be more
efficient than the simplex algorithm, but constraints are not included.

Evaluation of the mixed l1 criterion in specific examples by the
authors has not shown significant differences with the solutions
obtainedwith themixed l1 � l1 optimization criterion. One reason is
that any difference can only be noticed for nonfeasible acceleration
vectors (an achievable vector yields a zero error nomatter what norm
is used). Another reason is that the error vector has a small dimension
compared with the control vector, while differences between the
norms only become apparent when the dimensions of the vectors are
large.

IV. Numerical Results

A. Low Dimension Example

First, the aircraft model used by Durham [2] is considered, which
comes from NASA Dryden’s controls design challenge, for a flight
condition at Mach 0.5 and 10,000 ft altitude. The CB matrix and
actuator limits are given by

CB� 7:35 7:55 �1:35
0:856 5:13 �13:7

� �
(39)

umax � �20; 20; 30�0; umin ��umax (40)

The originalCBmatrix was multiplied here by 10�4 for numerical
reasons, and the outputs associated with CB are moments instead of
accelerations, but these differences are insignificant for this example.
The rows of theCBmatrix are associatedwith roll and yawmoments,
and the commands are the ailerons, the differential horizontal tail,
and the rudder. Note that rate limits are not considered in the
examples of this paper, which focuses on the properties of control
allocation solutions in general terms.

Figure 1 shows the results of three control allocation algorithms
for a roll command. The x axis gives the roll command as a
percentage of the maximum achievable pure roll command. The top
plot shows the aileron command, and the bottom plot shows the
differential horizontal tail command. The plots show the results of
mixed l1 optimization using the algorithm of [6] (solid), of mixed l2
optimization using the algorithm of [9] (dashed), and of mixed
l1 � l1 optimization using the algorithm of [6] modified as indicated
in this paper (dotted). For mixed l2 optimization, the criterion that is
optimized is

J� kCBu � adk22 � "2kuk22 (41)

subject to umin � u � umax. Note that the norms are squared, as well
as the control weighting parameter ". The parameter "was set to 10�3

for mixed l1 optimization and mixed l1 � l1 optimization and 10�6

for mixed l2 optimization. A smaller parameter valuewas set in the l2
optimization to avoid solutions with acceleration errors.

The top plot in Fig. 1 shows that themixed l1 optimization uses the
most effective surface (the ailerons) to achieve the desired result for
commands up to 50%. Once the position limit is reached, the second
most effective surface (the differential tail) is used. Note that the
differential horizontal tail is actually slightly more effective at
producing a roll moment. However, the significant yaw moment it
producesmakes it less effective than the aileron in the sense specified
by the optimization criterion. The mixed l2 optimization and mixed
l1 � l1 optimization produce similar results, using both actuators
from the beginning of the plot to the end.However, themixed l1 � l1
optimization produces equal deflections of the two actuators. In this
case, optimal load balancing results in load equalization (this is not
always true for control allocation).

As pointed out in [25], the fact thatmixed l1 optimization only uses
the most effective actuator may cause problems if the main actuator
for a given axis fails. Figure 2 shows the acceleration that is achieved
in the case of an aileron failure (top) and differential horizontal tail
failure (bottom). Since only the ailerons are used in the case of a small
command, the aileron failure results in a loss of response when using
the mixed l1 optimization. In fact, a small negative response is
observed due to negative moment produced by the rudder (which is
applied to compensate for the yaw moment that would arise if the
ailerons were effective). For larger commands, the system responds
when the differential horizontal tail commences to be employed.

Conversely, a failure of the differential tail does not degrade the
performance of the system with mixed l1 optimization for small roll
commands, because the actuator is not used. Degradation is found
when the commands become large. The mixed l2 optimization and
the mixed l1 � l1 optimization degrade more gracefully, reducing
the response for either failure but maintaining a monotonically
growing response throughout the range. The mixed l1 � l1
optimization actually maintains a linear response, although with
reduced magnitude, throughout the range of operation and for both
failures. Of course, this conclusion assumes that no fault detection or
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reconfiguration is applied to compensate for the failure, a case in
which optimal control allocation would be particularly useful
regardless of the norm.

B. Tailless Aircraft Example

The second example is based on Lockheed’s innovative control
effector tailless aircraft model, found in [4]. It has 11 actuators: left
elevon, right elevon, pitch flaps, left all-moving tip, right all-moving
tip, pitch thrust vectoring, yaw thrust vectoring, left spoiler slots,
right spoiler slots, left outboard leading-edge flaps, and right
outboard leading-edge flaps. The CB matrix corresponding to an
output vector composed of pitch rate, roll rate, and yaw rate is given
in [4] as

CB�
�2:5114 �2:5115 �1:9042 �0:9494 �0:9494 	 	 	 �1:1329 0 1:5046 1:5046 �0:0003 �0:0004
3:7830 �3:7830 0 1:8255 �1:8255 	 	 	 0 0:0790 �2:0956 2:0957 �0:3067 0:3067
0:0453 �0:0453 0 �0:2081 0:2081 	 	 	 0 �0:8038 �0:0283 0:0283 0:0937 �0:0937

0
@

1
A
(42)

for a flight condition at Mach 0.4 and 15,000 ft altitude. The position
limits are given in [7] as

umax � � 30 30 30 60 60 10 10 10 10 40 40 �0
(43)

umin � ��30 �30 �30 0 0 �10 �10 0 0 0 0 �0
(44)

Note that the limits of the spoiler slot deflectors were lowered from
60 to 10 deg in [7] to reduce nonlinear interactions between the
spoiler slot deflectors and the elevons. The same limits were used
here, although the nonlinear coupling effects were not part of the
evaluation.

Figure 3 shows the l1, l2, and l1 norms of the control vector as
functions of the percentage of maximum yaw acceleration. As may
be expected, the l1 norm is minimized for the mixed l1 optimization,
the l2 norm is minimized for the mixed l2 optimization, and the l1
norm is minimized for the mixed l1 � l1 optimization. This is not
necessarily true, due to the mixed nature of the optimization criteria.
However, for a sufficiently small ", it was found that all three
algorithms resulted in a zero error within the numerical precision of

the computer whenever a zero tracking error was feasible, so that the
control minimization was actually achieved.

In Fig. 3, one finds that the growth of the l1 norm of the control
vector is considerably delayed with the mixed l1 � l1 optimization
compared with the other methods, even though the l1 and l2 norms
are quite comparable. The extra room that is provided away from the
limits may be useful, for example, to add additional excitation for the
purpose of real-time parameter identification (e.g., the null space
injection discussed in [7]).

Figure 4 shows how the reduction in the magnitude of the control
vector with the mixed l1 � l1 optimization may yield better
performance by avoiding end-of-range nonlinearities in the actuator
effectiveness. Specifically, the figures assume that the actual
acceleration vector produced is of the form

a� CB�u � �u3� (45)
In other words, a small cubic nonlinearity reduces the actuators’

effectiveness uniformly as the deflections increase. The functionu3 is
to be interpreted element by element. The constant � was set so that
the effectiveness of a given element was reduced by 5% when the
magnitude of the element of u was 60 deg. This is a fairly small
amount of nonlinearity, especially since most surfaces are limited
well before 60 deg.

The nonlinearity only yields a reduction of yaw acceleration of the
order of 3% at the end of the range. However, note that a significant
cross-coupling error occurs in the roll axis. Nevertheless, one finds
that the mixed l1 � l1 optimization criterion yields the lowest error
by virtue of the smaller actuator commands that result from its
solution.

V. Normalized Mixed l1 � l1 Optimization

An interesting modification of the mixed l1 � l1 optimization
criterion is obtained when the actuator deflections are divided by the
maximum deflection of the actuator in the computation of the l1
norm. The result is not a trivial rescaling of the control variables,
because the weighting may be different for positive and negative
deflections. Specifically, the criterion becomes
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J� kCBu � adk1 � "kfN�u � up�k1 (46)

where the ith element of the vector function fN�:� is given by

fN;i�u � up� � �ui � up;i�=�umax;i � up;i� if ui � up;i > 0;

fN;i�u � up� � �up;i � ui�=�up;i � umin;i� otherwise (47)

The normalized mixed l1 � l1 optimization problem can be
solved by replacing the matrices of the mixed l1 � l1 optimization
problem by

A�
Iq�q �Iq�q �CB CB 0q�p 0q�p 0

0p�q 0p�q Ip�p 0p�p N�p�p 0p�p �1p�1
0p�q 0p�q 0p�p Ip�p 0p�p N�p�p �1p�1

0
B@

1
CA

N�p�p � diag

�
1

umax;i � up;i

�
; N�p�p � diag

�
1

up;i � umin;i

�

b�
CBup � ad

0p�1

0p�1

0
B@

1
CA;

cT � � 11�q 11�q 01�p 01�p 01�p 01�p " �

hT �
� emax emax umax � up up � umin 	 	 	 	 	 	

umax � up up � umin u
max

�
(48)

where u
max � 1. Initialization with a basic feasible solution can be
performed similarly to the mixed l1 � l1 algorithm. The
computations required are approximately the same as the original
algorithm, and its advantages carry over to the normalized algorithm.

In experiments with the normalized mixed l1 � l1 criterion, the
following was found:

1) Provided " is sufficiently small, the error CBu � ad is zero
whenever a solution with zero error is feasible.

2) If the error CBu � ad is zero, the normalized l1 norm of the
control vector is the same as the normalized l1 norm of the control
vector obtained with direct allocation [1,3].

3) If the error CBu � ad is zero and any q � q submatrix of CB is
nonsingular (whereq is the number of rows ofCB), the control vector
is equal to the control vector obtained using direct allocation.

The first observation appears to be a property of the solution of all
the mixed optimization criteria discussed in this paper, except the l2
criterion with squared norms in Eq. (41). For the l2 criterion with
squared norms, the acceleration error becomes smaller as " becomes
smaller, but the error is not zero, no matter how small " is. For the

other criteria, the error is exactly zero for a sufficiently small but
nonzero ".

For the second observation, recall the definition of direct
allocation: given a matrix CB, find a real number � and a vector u1,
such that J� � is maximized, subject to

�CB�u1 � �ad (49)

and umin � u � umax. If � > 1, let u� u1=�. Otherwise, let u� u1.
If a zero error is feasible, the solutions of direct allocation and

normalized mixed l1 � l1 optimization must have the same
normalized l1 norm; otherwise, a direct allocation solution with
greater � or a normalized mixed l1 � l1 solution with smaller norm
would be feasible. Under the additional condition on the CBmatrix,
the direct allocation solution is known to be unique. The two
solutions must be identical in that case. On the other hand, the
solutions of the two problems outside the attainable set can be quite
different, since direct allocation minimizes the error under the
constraint of matching the desired direction, while mixed l1 � l1
optimization does not. Some advantages of normalized mixed l1 �
l1 optimization in terms of sensitivity are discussed in [31].

VI. Conclusions

The paper first reviewed how the mixed l1 optimization criterion
could be converted into a linear program and solved using a simplex
algorithm. Then, it was shown that the formulation could bemodified
to solve mixed l1 � l1 (l1 for error and l1 for control) and mixed l1
(l1 for error and control) optimization problems. It was argued that
the l1 norm leads to better load balancing, as defined in networks. A
numerical example indeed showed a better balance in the use of the
actuators. Advantages of such a feature were shown to include a
greater resilience to actuator failures and to nonlinear effectiveness
for large actuator deflections. Finally, a modification of the mixed
l1 � l1 algorithm was presented that weighted the control
deflections as percentages of the maximum ranges of motion. It
was shown that, in certain cases, the solutions were identical to those
provided by direct allocation. The goal of the paper was not to prove
that one method was better than another; rather, it was to increase the
number of choices available to the engineer and to increase the
understanding of how the choices relate to important properties of the
solutions.
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