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Abstract—Automated health management is a critical 
functionality for complex aerospace systems. A wide variety 
of diagnostic algorithms have been developed to address 
this technical challenge. Unfortunately, the lack of support 
to perform large-scale V&V (verification and validation) of 
diagnostic technologies continues to create barriers to 
effective development and deployment of such algorithms 
for aerospace vehicles. In this paper, we describe a formal 
framework developed for benchmarking of diagnostic 
technologies. The diagnosed system is the Advanced 
Diagnostics and Prognostics Testbed (ADAPT), a real-
world electrical power system (EPS), developed and 
maintained at the NASA Ames Research Center. The 
benchmarking approach provides a systematic, empirical 
basis to the testing of diagnostic software and is used to 
provide performance assessment for different diagnostic 
algorithms.1 2   
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1. INTRODUCTION 
The complexity of some modern systems, especially those 
related to the aerospace field, has motivated the 
development of automated health management technologies. 
NASA’s spacecraft and aircraft contain multiple sub-
systems including navigation systems, power systems, and 
propulsion systems, and it is essential to keep these systems 
healthy during a mission.  

A crucial enabling technology to address this need is 
diagnostic algorithms. These algorithms are designed to 
detect and isolate anomalies of either a component or the 
whole system based on observations received from a 
complex system. In recent years, a wide range of 
algorithms, both model-based and data-driven, have been 
developed to increase autonomy and improve system 
reliability and affordability.  

Unfortunately, the lack of support for comparative analysis 
of different diagnostic algorithms still continues to create 
barriers to effective development and deployment of such 
algorithms for aerospace vehicles. This makes it difficult to 
understand the pros and cons of different alternatives, which 
might lead to sub-optimal design choices being made, with 
obvious unfortunate consequences for system performance 
and safety.   

Moreover, there is a lack of systematic approaches to 
perform large-scale V&V (verification and validation) of 
aerospace software - including diagnostic technologies - that 
is closely aligned with V&V and reliability activities as they 
relate to hardware. This difficulty hinders the transition of 
techniques and algorithms from state of the art into the state 
of practice. 

In this paper, we describe an architecture and a formal 
framework developed for benchmarking of diagnostic 
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technologies. The diagnosed system is the Advanced 
Diagnostics and Prognostics Testbed (ADAPT), a real-
world electrical power system (EPS), developed and 
maintained at the NASA Ames Research Center. The 
benchmarking approach provides a systematic, realistic 
approach to perform V&V, in the form of testing, of 
diagnostic software. In particular, the approach is suitable 
for systems that combine hardware (like EPS) and software 
(like EPS diagnosis). While in this work we use the ADAPT 
EPS, other integrated hardware and software systems can be 
treated in a similar fashion. 

2. ADVANCED DIAGNOSTICS AND PROGNOSTICS 
TESTBED  

The Advanced Diagnostics and Prognostics Testbed 
(ADAPT) at the NASA Ames Research Center is a unique 
facility designed to test, measure, evaluate, and mature 
diagnostic and prognostic health management technologies. 
Reflecting the importance of electrical power systems (EPS) 
in aerospace [1,2], ADAPT provides a representative 
aerospace vehicle EPS that enables automated diagnosis in a 
complex domain. The main functions and layout of the 
ADAPT power system is shown in Fig. 1. The EPS can 
deliver AC (Alternating Current) and DC (Direct Current) 
power to loads, which in an aerospace vehicle would 
include subsystems such as the avionics, propulsion, life 
support, and thermal management systems. 

ADAPT contains elements common to many aerospace 
applications: power generation, power storage, and power 
distribution. Three power generation sources are connected 
to three sets of batteries, which in turn supply two load 
banks. Each load bank has provisions for 6 AC loads and 2 

DC loads.  

The two sources of power generation include two battery 
chargers. The battery chargers are connected to appropriate 
wall outlets through relays. Hardware relay logic prevents 
connecting one charge source to more than one battery at 
the same time, and from connecting one charging circuit to 
another charging circuit. 

The power storage consists of three battery modules, which 
are used to store energy for operation of the loads. Each 
“battery” consists of two 12-volt sealed lead acid batteries 
connected in series to produce a 24-volt output. Two battery 
sets are rated at 100 amp-hrs and the third set is rated at 50 
amp-hrs.  

Any of the three batteries can be used to power any of the 
two load banks in the power distribution element. This 
design gives the ADAPT EPS basic redundancy and 
reconfiguration capability. Electromechanical relays are 
used to route the power from the sources to the batteries, 
and from the batteries to the AC and DC loads. All relays 
are of the normally-open type. An inverter converts the 24-
volt DC battery input to a 120-volt rms AC output. Circuit 
breakers are located at various points in the distribution 
network to prevent overcurrents from causing unintended 
damage to the system components. 

A data acquisition and control system sends commands to 
and receives data from the EPS. Testbed operator stations 
are integrated into a software architecture that allows for 
nominal and faulty operations of the EPS, and includes a 
system for logging all relevant data. The instrumentation 
allows for monitoring of voltages, currents, temperatures, 

 

 

Fig. 1. ADAPT Testbed components and the system configuration 
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switch positions, light intensities, and AC frequencies, and 
includes over 100 sensors. (More information on the 
ADAPT testbed can be found in [2].) 

3. BENCHMARKING ARCHITECTURE  
Several researchers have attempted to demonstrate 
benchmarking capability on different systems [3-5]. Among 
these, Orsagh et al. [3] provided a set of 14 metrics to 
measure the performance and effectiveness of prognostics 
and health management algorithms for US Navy 
applications [4]. Bartys et al. [5] presented a benchmarking 
study for actuator fault detection and identification (FDI). 
This study, developed by the DAMADICS Research 
Training Network, introduced a set of 18 performance 
indices used for benchmarking FDI algorithms on an 
industrial valve-actuator system. Simon, et al. [6] introduced 
a benchmarking technique for gas path diagnostic methods 
to assess the performance of engine health management 
technologies.  

The benchmarking methodology presented here extends 
prior work [7-10, 3-5] by defining a number of novel 
benchmarking indices [11], by providing a generic, 
application independent architecture that can be used for 
different monitoring and diagnostic algorithms, and by 
facilitating the use of real process data on a large-scale, 
complex engineering system.   

The detailed architecture of the developed framework is 
presented in Fig. 2. The physical system is the Advanced 
Diagnostics and Prognostics Testbed (ADAPT). The EPS 
problem domain contains both discrete and continuous 
faulty behavior, which are defined under a standardized 
fault catalog. The fault catalog establishes a common 
baseline as to what failure modes and faulty behavior are 
required to be modeled by individual diagnostic algorithm 
developers.  

The experimental testing procedure is usually scenario-
based, where each scenario may have single or multiple 

faults injected into the system. This is unlike other 
benchmarking methods [3-6], which are mostly restricted to 
single fault assumption. To detect faults, each diagnostic 
algorithm has access to real-time data from the ADAPT 
EPS. Moreover, a standardized output scheme is enforced 
on the diagnostic algorithms to ensure the generation of 
common data sets for the calculation of metrics. The data 
from the testbed and this output of the diagnostic system are 
saved to a database, and the diagnostic algorithm 
performance is evaluated according to a predefined set of 
metrics.  

4. TEST SCENARIOS 
The ADAPT testbed offers a number of challenges to health 
management applications. The electrical power system 
shown in Figure 1 is a hybrid system with multiple system 
configurations made possible by switching among the 
generation, storage, and distribution units. Timing 
considerations and transient behavior must be taken into 
account when designing diagnosis algorithms. When power 
is input to the inverter there is a delay of a few seconds 
before power is available at the output. For some loads, 
there is a large current transient when the device is turned 
on. System voltages and currents depend on the loads 
attached, and noise in the sensor data becomes more 
pronounced as more loads are added [2]. Due to the low 
probabilities of failure, injection of faults is needed. Using 
the testbed software architecture, it is possible to inject 
multiple faults into the system. 

ADAPT supports the repeatable injection of faults into the 
system in one of three ways: 

Hardware-Induced Faults: These faults are physically 
injected at the testbed hardware. A simple example is 
tripping a circuit breaker using the manual throw bars. 
Another is using the power toggle switch to turn off the 
inverter. Relays may be failed by short-circuiting the 
appropriate relay terminals. Faults may also be introduced in 
the loads attached to the EPS. For example, the valve can be 
closed slightly to vary the back pressure on the pump and 
reduce the flow rate. 

Software-Induced Faults: In addition to fault injection 
through hardware, faults may be introduced via software. 
Software fault injection includes one or more of the 
following: 1) sending commands to the testbed that were not 
intended for nominal operations; 2) blocking commands 
sent to the testbed; and 3) altering the testbed sensor data. 
The sensor data can be altered in a number of ways, as 
illustrated in Figure 3. For a static fault, the data are frozen 
at previous values and remain fixed. An abrupt fault applies 
a constant offset to the true data value. An incipient fault 
applies an offset that starts at zero and grows linearly with 
time. Excess sensor noise is introduced by adding Gaussian 
or uniform noise to the measured value. It is also possible to 
inject intermittent data faults, data spikes, and to combine 
more than one fault type for a given sensor at the same time. 

 

 
 

Fig. 2. The benchmarking architecture 
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By using these approaches to software fault injection, fault 
scenarios may be constructed that represent a diverse range 
of sensor faults. 

Real Faults: In addition the aforementioned two methods, 
real faults may be injected into the system by using actual 
faulty components. Simple examples are a blown light bulb 
or a degraded battery.  

Since some fault scenarios may be costly, dangerous, or 
impossible to introduce in the actual ADAPT hardware, a 
simulation module called VIRTUAL ADAPT also provides 
fault injection capabilities. For example, degradation in the 
batteries can be simulated as an incipient change in a battery 
capacitance parameter. Other parametric faults can also be 
injected and simulated. In addition, VIRTUAL ADAPT 
permits experimentation with fault scenarios that cannot be 
realized in the hardware, such as an inverter malfunction. 
Currently, mostly discrete failures (e.g., relay failures) and 
sensor errors are introduced into ADAPT, so the simulation 
provides added functionality by enabling injection of other 
types of fault scenarios. 

The faults that are injected to the testbed are listed in Table 
1. 

Table 1. Faults injected into the ADAPT testbed 

Component Fault Description 
Battery  
 Degraded 
Boolean Sensor  
 Stuck at Value 
 Random Value 
Circuit Breaker  
 Tripped 
 Failed Open 
 Stuck Closed 
Inverter  
 Failed Off 
Relay  
 Stuck Open 

 Stuck Closed 
Sensor  
 Random Value 
 Drift Slope 
 Stuck Value 
 Offset 

 
 Noise 
Pump (Load)  
 Flow Blocked 
 Failed Off 
Fan (Load)  
 Over Speed 
 Under Speed 
 Failed Off 
Light Bulb (Load)  
 Failed Off 

 

5. EXPERIMENTAL PROTOCOL 
The algorithms are tested against a number of diagnostic 
scenarios. Each diagnostic session defines some standard 
key points and intervals, which are best illustrated by Figure 
4. Figure 4 splits the diagnostic session into three time 
intervals: Δstartup, Δinjection, Δshutdown. During the first interval, 
the diagnostic algorithm is given time to initialize, read data 
files, etc. Though sensor observations may be available 
during Δstartup, no faults will be injected at this time. Fault 
injection and diagnosis takes place during Δinjection. Finally, 
to promote good programming practices, the algorithms are 
given some time to gracefully terminate during Δshutdown. 
After this time, live diagnostic processes are killed and the 
system is recycled for the next diagnostic experiment. 

Below are some notable points for the example diagnostic 
scenario from Fig. 4: 

tinj  - A fault is injected at this time; 

 

 

Fig. 3. Example fault types [2] 

 

 

 

Fig. 4. Key time points, intervals, and signals 
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tfd  - The diagnostic algorithm has detected a fault; 

tffi  - The diagnostic algorithm has isolated a fault for the 
first time; 

tlfi  - The diagnostic algorithm has converged to an isolated 
fault; 

At the end of the diagnostic session the scenario recorder 
collects the following time-series and (actual and 
hypothesized) fault data to be used in the metrics 
computation: 

Tinj  - Fault injection signal; 

Tfd  - Fault detection signal; 

ω* - An actual fault set (once all faults are injected); 

 Ω = {ϖ1, ϖ2, …., ϖn}  - A (possibly empty) set of candidate 
diagnoses. 

6. EVALUATION METRICS 
A set of thirteen metrics has been defined for assessing the 
performance of the diagnostic algorithms. These are listed in 
Table 2. (Detailed definition of the metrics can be found in 
[11].)  

Table 2. Diagnostic Performance Metrics 

In this paper, we focus on 6 of these metrics. Table 3 
provides a summary of the notation used throughout this 
section. These 6 metrics are defined as: 

 

 
 
 
 
 
 

 
 

Table 3. Metrics Notation 

 

Time to Detect (MTD): The reaction time for a diagnostic 
engine in detecting an anomaly [11]. 

     (1) 

Time to Isolate (MTI): The time for isolating a fault [11]. In 
many applications this metric is less important than the 
diagnostic accuracy, but it is important in sequential 
diagnosis, probing, etc. 

     (2) 

where tlfi is the first instance of time when the latest 
persistent fault isolation signal has been issued. 

Detection False Positive Rate (MFPR): The metric that 
penalizes diagnostic algorithms which announce spurious 
faults [11]. The false positive rate is defined as: 

    (3) 

where for each scenario s the “false positive" function mfp(s) 
is defined as: 

€ 

mfp (s) =
1, if t fd < tinj
0, otherwise

 
 
 

where tinj =∞ for a nominal scenario
  (4) 

Detection False Negative Rate (MFNR): The metric that 
measures the ratio of missed faults by a diagnostic 
algorithm [11]. 

    (5) 

where for each scenario s the “false negative" function 
mfn(s) is defined as: 
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€ 

mfn (s) =
1, if t fd =∞

0, otherwise
 
 
 

   (6) 

Fault Detection Accuracy (MFDA): The fault detection 
accuracy is the ratio of number of correctly classified cases 
to the total number of cases [11]. It is defined as: 

   (7) 

Isolation Classification Rate (MICR): Isolation classification 
rate metric measures the accuracy of the fault isolation by a 
diagnostic algorithm [11]. Let us denote the injected fault as 
ϖ*. The isolation classification rate is then defined as: 

  (8) 

where for each scenario s mia(c, ϖ, ϖ*) and |COMPS| are 
defined as: 

  (9) 

|COMPS| is the set of components tested by the scenario s. 

The isolation classification rate is defined based on the 
construction of a confusion matrix [7, 12]. Fig. 5 shows an 
example for a “relay” component. In this example, the 
“relay” can have one healthy (non-fault), and two faulty 
(stuck_open, stuck_closed) modes. The classification 
problem then becomes determining what mode the relay 
will be in. 

The diagonal values in the confusion matrix capture 
correctly isolated cases, whereas the off-diagonal elements 
are incorrect diagnoses. Cumulatively, the confusion matrix 
summarizes an algorithm’s ability to discriminate among 
multiple fault candidates. In most cases, the confusion 
matrix is expressed in a normalized form. When normalized, 
each cell value in the confusion matrix represents an 
estimate of the probability of that case occurring. In 
addition, the non-faulty row and column can be removed 
from the matrix to ensure that the matrix represents a 
measure of discrimination between faults once it has been 
determined that a fault is actually present. In this study, a 
normalized confusion matrix is built for each system 

component, which summarizes the probabilities of a 
component’s classification cases over a series of scenarios.  
The cumulative isolation classification rate of a diagnostic 
algorithm is then calculated by employing a weighted sum 
over isolation classification rates of individual system 
components as defined in (8).  

7. DIAGNOSTIC ALGORITHMS 
The test articles to be evaluated in ADAPT are health 
management applications from industry, academia, and 
government. The techniques employed may be data-driven, 
rule-based, model-based, or a combination of different 
approaches. 

The technologies currently integrated with the testbed 
include model-based reasoning tools HyDE – Hybrid 
Diagnostic Engine [13]; FACT – Fault Adaptive Control 
Technology [14]; TEAMS-RT – Testability Engineering 
and Maintenance System Real Time [15]; and ADAPT 
Bayes Net [16]. These tools are from government, 
academia, and industry, respectively. Each diagnosis 
algorithm uses the ADAPT API to connect to the ADAPT 
message server, subscribing to the appropriate commands 
and data, and publishing the diagnosis results. 

Each tool employs different abstraction, modeling, and 
reasoning methodologies. For example, TEAMS-RT 
typically discretizes continuous-valued sensor data into 
pass/fail test results. Cause-effect dependencies in a failure 
space, multi-signal model that link causes (components) to 
effects (test results) are used to isolate the fault. In contrast, 
HyDE uses constraint programming to track the overall 
system behavior using and a conflict-directed best-first 
search to efficiently generate fault hypotheses.  

Using the benchmarking framework, we aim to explore the 
advantages and disadvantages of the different approaches to 
health management to better understand their applicability 
to different fault types and operational contexts. In the next 
section, we show how benchmarking results are generated 
for two of the aforementioned diagnostic algorithms.  

8. PERFORMANCE ASSESSMENT 
As a case study, we consider two of the aforementioned 
diagnostic algorithms, denoted algorithm A and algorithm 
B. Algorithm A has been tested on 16 scenarios, and 
Algorithm B has been tested on 12 scenarios. These 
scenarios are summarized in Table 4.   

In this paper, we report the results of a preliminary study. 
For illustrative purposes, we have focused on a single type 
of sensor failure (sensor value stuck at). Experimentation to 
generate data for the reminder of the fault types is currently 
underway. 

 

 

 

Fig. 5. The confusion matrix [11] 
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Table 4. The summary of experimental scenarios 

 

The results of the experiments with real-world data from 
ADAPT are summarized in Table 5. Our main observations 
regarding the results from the experiments are as follows. 
For algorithm A, in all 16 scenarios, the inserted faults are 
detected. Algorithm B, on the other hand, correctly detects 7 
out of 12 scenarios, and misses the remaining 5 (false 
negative). Algorithm A also does better in isolation 
accuracy.  

Table 5. The summary of calculated metrics 

The temporal metrics (time-to-detect, time-to-isolate) are 
also calculated and the results are presented in Table 5. In 
calculating these metrics, we took the average of the 
algorithm response time over the number of applicable 
scenarios. Based on the results, on average, Algorithm A 
takes 8.997 sec to detect a fault, and 11.567 sec to isolate a 

fault. (For Algorithm B, we couldn’t calculate these values 
due to a processor time clock discrepancy.)  

9. CONCLUSIONS 
In this paper, we described an architecture and a formal 
framework developed for benchmarking of diagnostic 
technologies. The framework defines a number of 
standardized components, which include a fault catalog, a 
library of modular test scenarios, and a common protocol 
for gathering and processing diagnostic data. In addition, it 
uses 13 benchmarking metrics as a basis of evaluation. 
These metrics enable the production of comparable 
performance assessment for different diagnostic 
technologies. The diagnosed system is the Advanced 
Diagnostics and Prognostics Testbed (ADAPT), a real-
world electrical power system (EPS), developed and 
maintained at the NASA Ames Research Center.  

The process of developing advanced diagnostic applications 
is important to the verification and validation of hardware 
systems. ADAPT establishes a problem domain with known 
fault signatures and the capability to inject failures during 
operation of the testbed. The electrical power system 
hardware, together with the software architecture offers 
many challenges to diagnostic applications such as a 
multitude of system modes, transient behavior after 
switching actions, multiple faults, and load-dependent noise.  

By implementing and testing different diagnostic 
approaches on ADAPT, we provide a systematic, realistic, 
empirical approach to perform V&V of diagnostic software, 
and aim to improve performance assessment methods and 
the comparison of diverse health management strategies.  

The results presented here are from a preliminary 
investigation. We have used only a handful of scenarios and 
one fault type. One of our immediate future goals is to 
generate more results by expanding the scope of the 
diagnostic algorithms tested, fault types analyzed, and the 
variety of experimental scenarios run. 
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