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The paper presents an algorithm for control and safe landing of impaired multi-rotor

drones when one or more motors fail simultaneously or in any sequence. It includes

three main components: an identi�cation block, a recon�gurable control block, and a

decisions making block. The identi�cation block monitors each motor load characteris-

tics and the current drawn, based on which the failures are detected. The control block

generates the required total thrust and three axis torques for the altitude, horizontal

position and/or orientation control of the drone based on the time scale separation and

nonlinear dynamic inversion. The horizontal displacement is controlled by modulating

the roll and pitch angles. The decision making algorithm maps the total thrust and

three torques into the individual motor thrusts based on the information provided by

the identi�cation block. The drone continues the mission execution as long as the

number of functioning motors provide controllability of it. Otherwise, the controller is

switched to the safe landing mode, which gives up the yaw control, commands a safe
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landing spot and lands the drone while maintaining the horizontal attitude.

I. Introduction

Drones are becoming increasingly popular for research, commercial and military applications

due to their a�ordability resulting from their small size, low cost and simple hardware structure.

One of the critical aspects of these uses is the reliability of the drones while maintaining their

a�ordability. In particular, the civilian applications of drones are subject to safety requirements for

the drones themselves and for the environment they are operating in [22]. Due to weight and cost

constraints, the hardware redundancy is not an option in improving the reliability and safety of the

drones, which make them vulnerable to motor failures leading to potentially unsafe operations or

collisions.

Majority of the existing approaches is related to the fault estimation and control problems of

impaired drones with partial loss of actuator e�ectiveness and employ robust, adaptive and gain

scheduling control strategies to follow desired commands. A review of some early results on the

control problem of multi-rotor drones with actuator faults can be found in [19], and experimental

results on some of the actuator fault-tolerant control techniques for a quadrotor can be found in [4].

Recent reports in the �eld of the fault tolerant control design use both direct and indirect

approaches. In the �rst case, the controller is designed without explicitly identifying the faults.

In [15], a proportional-integral-derivative (PID) controller is designed o�-line for each fault of the

quadrotor's actuators and a gain scheduling is implemented on-line assuming that the fault is known.

In [17], an adaptive feedback linearization technique is presented for fault recovery of a quadrotor

that is subject to a partial loss of e�ectiveness in one or more actuators. A dynamic inversion

controller augmented with an o�-line trained single network adaptive critic is applied to control

an uncertain quadrotor in [18], where the uncertainties are estimated on-line using another neural

network. In [1], a fault tolerant control scheme for multi-rotor drones with high actuator redundancy

is presented, which is based on the integral sliding mode and �xed control allocation. A quaternion-

based adaptive attitude control for a quadrotor in the presence of external disturbances and partial
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loss of rotor e�ectiveness is proposed in [20]. A cascaded controller for a hexacopter is presented

in [8] using an extended state observer, which estimates modeling errors and propulsion e�ciency

degradation.

In the indirect approach, �rst the faults are estimated, then proper controllers are designed. In

many case the main tool is Thau observer (see for example [10], [11], [3]). In [10], Thau observer is

used to design a fault diagnostic system while stabilizing the quadrotor at low speed with a controller

based on the nested saturation. Thau observer based actuator faults detection and isolation scheme

for a hexacopter is presented in [11]. In [3], an adaptive Thau observer is used to estimate the

quadrotor actuator faults, to rate them based on the prede�ned fault-tolerant boundaries and to

compensate for depending on the severity levels. Other approaches use model-based observations

([12]), Kalman �lter ([21]), interacting multiple model �lter and switching multi-model predictive

control ([2]) and polynomial observer ([5]).

On the other hand, the identi�cation and control of multi-rotor drones get more complex when

one or more motors completely fail leading to controllability loss of one or more degrees of freedom.

Few approaches have been reported in this case.

When the drone has enough actuator redundancy, for example as in an octocopter, and the

failures are known, control allocation schemes can be used to handle rotor failure [14]. Otherwise,

not all degrees of freedom can be controlled properly. In [13], a controller is presented for the case

of a single rotor failure in quadrotor vehicles using robust feedback linearization sacri�cing the yaw

directional controllability and assuming that the failure is known. Periodic solutions for a quadrotor

with a known single, two opposing, or three propellers lost are presented in [16]. In each case, the

drone spins about an axis found from some equilibrium conditions and �xed in the body frame. Only

in two motor failure case this axis is vertical permitting a safe landing, which essentially resembles

the solution in [13]. In [6], an iterative on-line optimization method is applied to a quadrotor way

point tracking with single and double rotor failure. However, the real-time convergence may be

an issue for small drones with restricted computational power. In [9], an algorithm for the on-line

detection of a single motor failure and a control allocation technique is proposed, assuming that

inertial forces and torques acting on the multi-rotor vehicle and motor thrusts can be measured,
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which may not be the case for some drones.

This paper presents an algorithm for control and safe landing of impaired multi-rotor drones

when one or more motors fail simultaneously or in any sequence. It includes three main components:

an identi�cation block, a recon�gurable control block, and a decisions making block. The identi�-

cation block monitors each motor load characteristics and the current drawn, based on which the

failures are detected. The control block generates the required total thrust and three axis torques

for the altitude, horizontal position and/or orientation control of the drone based on the time scale

separation and nonlinear dynamic inversion. The altitude is directly controlled by the total thrust

generated by the motors. The horizontal displacement as well as the orientation of the drone are

controlled using time scale separation and nonlinear dynamic inversion, where the torques are used

to control the fastest variables, that is angular rates, which are used to control the corresponding

orientation angles. The last step is to use roll and pitch angles to control the horizontal displace-

ment of the drone. The decision making algorithm maps the total thrust and three torques into the

individual motor thrusts based on the information provided by the identi�cation block. The drone

continues the mission execution as long as the remaining healthy motors deliver su�cient thrust for

the control of its altitude and orientation. Otherwise, the controller is switched to the safe mode,

which gives up the yaw control, commands a safe landing spot and descent rate while maintaining

the horizontal attitude.

Our approach extends the result of [16], [13] and [9] by allowing more than one failure at a time

and introducing more reliable and computationally inexpensive identi�cation method. In addition,

if a failed motor starts producing a thrust, our algorithm detects the change and appropriately

recon�gures the controller.

II. Dynamic Model

The mathematical model of the drone is obtained using Newton-Euler formalism considering

only rigid body motions. Let the position of the center of mass of the drone in the inertial frame

FI with vertical z-axis be

r = xi+ yj + zk , (1)
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where i, j, k are the corresponding unit vectors. The translational dynamics of the drone satisfy

the equation

M r̈(t) = LB/I(t)T (t) +D(t) +Mg , (2)

where M is the mass,

LB/I =


cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ

 ,

is the rotation matrix from the body frame FB to FI with φ, η, ψ being the associated Euler angles

(see for example [7], p. 313), T (t) is the total thrust vector generated by the motors, D(t) is the

atmospheric drag force, and g = [0 0 − g]> is the gravity acceleration.

It is assumed that FB frame is aligned with the drone's principle axis of inertia, all motors

generate thrust in the z-direction in FB frame, that is T = [0 0 T ]> in FB , where T =
∑n
i=1 fi, fi

is the thrust generated by the i-th motor, and the atmospheric drag force is proportional to inertial

velocity, that is D(t) = −ktv(t). With this assumptions the translational dynamics can be written

as

ṙ(t) = v(t) (3)

M v̇(t) = T (t)L
(3)
B/I(t)− ktv(t) +Mg ,

where L
(3)
B/I denotes the third column of matrix LB/I .

The rotational dynamics of the drone are given in the frame FB as follows [16]

Jω̇(t) + Jr

n∑
i=1

Ω̇i(t) = −ω(t)×

[
Jω(t) + Jr

n∑
i=1

(ω(t) + Ωi(t))

]
+ τ (t) + τD(t) , (4)

where ω = [p q r]> is the angular rate of FB with respect to the inertial frame FI expressed in

FB , J = diag(J1, J2, J3) is the inertia matrix of the drone, Jr = diag(0, 0, Jr3) is the inertia

matrix of the rotors (assuming identical for all of them), Ωi = [0 0 Ωi]
> is the i-th rotor angular

rate in the frame FB , τ is the torque generated by the motors, τD is the aerodynamic drag torque.

Assuming that the aerodynamic drag torque is linear in angular rate τD = −krω, and neglecting

the contribution of the rotors on the left hand side of (4), we write the rotational dynamics as

Jω̇(t) = −ω(t)× Jω(t) + Jr3Ω(t)ω̄(t) + τ (t)− krω(t) , (5)
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where we denote Ω =
∑n
i=1 βiΩi (βi = 1 for motors rotating counterclockwise and βi = −1 other-

wise) and ω̄ = [−q p 0]>. The angular rate ω is related to the Euler angles E = [φ θ ψ]> by

means of the kinematic equations

Ė(t) = H(t)ω(t) , (6)

where we denote

H =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

 .

III. Identi�cation

The mathematical model of the rotors, which are driven by the identical DC motors, is given

by the Kircho�'s current law

Li̇j(t) +Rij(t) = vj(t)− kbΩj(t) , (7)

where L is the motor inductance, R is the motor resistance, ij(t) is the current �owing through j-th

motor, vj(t) is the voltage input to the j-th motor, kb is the back EMF constant, and Ωj(t) is the

j-th motor angular rate, which satis�es the di�erential equation

Jr3Ω̇j(t) + kdΩj(t) = kmij(t)− τ lj(t) , (8)

where kd is the damping (friction) coe�cient, and τ lj(t) is the load torque experienced by the j-th

motor. Combining the two equations (7) and (8) in Laplace domain, we can write

(Ls+R)ij(s) = vj(s)−
kb

Jr3s+ kd

[
kmij(s)− τ lj(s)

]
, (9)

solving which for ij(s) we obtain

ij(s) =
Jr3s+ kd

(Jr3s+ kd)(Ls+R) + kbkm
vj(s) +

kbkm
(Jr3s+ kd)(Ls+R) + kbkm

τ lj(s) . (10)

Assuming the motors are small with low inductances, the equation (10) can be simpli�ed as

ij(s) =
Jr3s+ kd

RJr3s+Rkd + kbkm
vj(s) +

kbkm
RJr3s+Rkd + kbkm

τ lj(s) . (11)
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It can be noticed that the transfer function

kbkm
RJms+Rkd + kbkm

is strictly positive real and the corresponding impulse response function

h(t) =
kbkm
RJr3

e−
Rkd+kbkm

RJr3
t

is always positive. Therefore, the load torque contribution in the motor current is always positive.

This implies that the motor current sharply drops when the load torque vanishes, that is when

the propeller has separated from the drone's body. Hence, this type of failure can be identi�ed by

comparing the motor current with a threshold obtained a priori for each type of motor.

Alternatively, when the motor stops rotating, that is Ωj(t) = 0, it follows from (7) that ij(t) =

vj(t)/R, which is the maximum current �owing through the motor for a given input voltage vJ(t).

The above considerations make the bases for a simple but conservative failure identi�cation

algorithm, which mainly pertains to the drones with limited computational capabilities. It requires

the measurements of the motor input voltage and output current for each motor. The ratio ρj(t) =

ij(t)
vj(t) is always less than 1/R. Therefore, the inequality ρj(t) > 1/R − δ1, where the threshold δ1

can be experimentally determined based on the sensor characteristics, implies that the j-th motor

stopped operating. On the other hand, when the external load τ lj is zero, it follows from the equation

ij(s) =
Jr3s+ kd

(Jr3s+ kd)(Ls+R) + kbkm
vj(s) (12)

that

|ij(t)| ≤
kd

Rkd + kbkm
max
t∈[t1,t2]

[vj(t)] (13)

for any time interval t1 ≤ t ≤ t2, where kd
Rkd+kbkm

is the H∞ norm of the transfer function

Jr3s+kd
(Jr3s+kd)(Ls+R)+kbkm

. Therefore, the inequality

ij(s) ≤
kd

Rkd + kbkm
vj(t) + δ2,

where the threshold δ2 can be experimentally determined for each type of motor, implies that the

propeller of the j-th motor failed.
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The second scheme, which can be used by the drones with more computational power, is based

on the generation of the reference current values according to the equations

inrj (t) =
1

Ls+R
vj(t) (14)

ipoj (t) =
Jms+ kd

(Jms+ kd)(Ls+R) + kbkm
vj(t) .

which are driven by the same voltage input as the corresponding motors. The reference current

inrj (t) corresponds to the non-rotating motor, and ipoj (t) corresponds to the motor current with the

propeller o�. Comparing the measurements of the actual motor current with inrj (t) and ipoj (t) we

can determine if the corresponding motor is healthy, stopped rotating or the propeller has separated

from the drone's body.

IV. Control Design

In this section we design controllers for the nominal multi-rotor drone using the total thrust

T (t) and three components of the torque τ (t) generated by the motors as control input. Since there

are only four independent inputs, we are able to track four independent external commands for the

nominal drone. These can be the drone's 1) inertial position and yaw angle or camera direction

commands (Position control mode), 2) inertial velocity and yaw angle commands (Velocity control

mode), or 3) altitude and orientation angles commands (Attitude control mode). Here, we adopt a

cascaded control architecture, which is justi�ed by the time scale separation between slow position,

fast attitude and faster angular rate variables.

A. Position Control

The objective of this controller is to track the reference signal rref (t), which is generated through

a reference dynamics

ṙref (t) = −cr [rref (t)− rcom(t)] , (15)

driven by the external position command rcom(t), where cr > 0 is a design parameter. The control

law is de�ned according to equation

vcom(t) = −crer(t) + ṙref (t) , (16)
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where er(t) = r(t) − rref (t) is the position tracking error. Substituting the control law in the

translational dynamics results in the exponentially stable error dynamics

ėr(t) = −crer(t) . (17)

The obtained control signal vcom(t) is used in the velocity control scheme to obtain the required

total thrust and the roll and pitch attitude commands.

B. Velocity Control

The objective of this controller is to track the reference signal vref (t), which is generated through

a reference dynamics

v̇ref (t) = −cv [vref (t)− vcom(t)] , (18)

where cv > 0 is a design parameter, vcom(t) is the velocity command obtained for the position

control or is an independent external command depending on the mission. The control law is

de�ned according to equation

T (t)L
(3)
B/I(t) = ktv(t)−Mg −Mcvev(t) +M v̇ref (t) , (19)

where ev(t) = v(t) − vref (t) is the velocity tracking error. Substituting the control law in the

translational dynamics results in the exponentially stable error dynamics

ėv(t) = −cvev(t) . (20)

The required total thrust and orientation angle commands are obtained from (19) assuming that

−π/2 < φ, θ < π/2, that is there are no �ip-over maneuvers. This assumption ensures that the

functions cosφ and cos θ are nonzero, and the sinφ and sin θ are one-to-one invertible. It follows

from the equation (19) written component-wise

T (t) [cosφ(t) sin θ(t) cosψ(t) + sinφ(t) sinψ(t)] = ktvx(t)−Mcvevx(t) +Mvxref
(t)

∆
= sx(t)

T (t) [cosφ(t) sin θ(t) sinψ(t)− sinφ(t) cosψ(t)] = ktvy(t)−Mcvevy (t) +Mvyref (t)
∆
= sy(t)

T (t) cosφ(t) cos θ(t) = ktvz(t) +Mg −Mcevz (t) +Mvzref (t)
∆
= sz(t) . (21)
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that the total thrust is readily obtained from the third equation as

T (t) =
sz(t)

cosφ(t) cos θ(t)
. (22)

which basically controls the drone's altitude or vertical speed. Next, we multiply the �rst equation

by cosψ(t), the second equation by sinψ(t), and adding them obtain

T (t) cosφ(t) sin θ(t) = sx(t) cosψ(t) + sy(t) sinψ(t) , (23)

Similarly, we multiply the �rst equation by sinψ(t), the second equation by cosψ(t), and subtracting

them obtain

T (t) sinφ(t) = sx(t) sinψ(t)− sy(t) cosψ(t) . (24)

The attitude angle commands are easily obtained from (24) and (23) by inverting the sin function

φcom(t) = sin−1

(
sx(t) sinψ(t)− sy(t) cosψ(t)

T (t)

)
(25)

θcom(t) = sin−1

(
sx(t) cosψ(t) + sy(t) sinψ(t)

T (t) cosφ(t)

)
.

C. Attitude Control

Now, we derive the control torque for the rotational dynamics (4) and (6) such that the Euler

angle E(t) tracks the reference signal Eref (t) generated through the dynamics

Ėref (t) = −cE [Eref (t)−Ecom(t)] , (26)

where cφ > 0 is a design constant and Ecom(t) = [φcom(t) θcom(t) ψcom(t)]> is the Euler angles

command, which can be as the command obtained from the perspective of the position or velocity

control as well as an independent command depending on the mission. Using time scale separation

and dynamic inversion techniques, we �rst derive an expression for the desired angular rate from

the equation (6)

ωcom(t) = H−1(t)[−cωeE(t) + Ėref (t)] , (27)
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where eE(t) = E(t)−Eref (t) is the attitude angles tracking error, cE > 0 is the control gain, and

H−1(t) is the inverse of the matrix H(t) given by

H−1(t) =


1 0 − sin θ(t)

0 cosφ(t) sinφ(t) cos θ(t)

0 − sinφ(t) cosφ(t) cos θ(t)

 .

then we derive the required control torque using equation (5)

τ (t) = ω(t)× Jω(t)− Jr3Ω(t)ω̄(t) + krω(t) + J [−cωeω(t) + ω̇ref (t)] , (28)

where cω > 0 is the control gain, eω(t) = ω(t) − ωref (t) is the angular rate tracking error, which

satis�es the exponentially stable dynamics

ėω(t) = −cωeω(t) , (29)

and the signal ωref (t) is generated through the reference dynamics

ω̇ref (t) = −cω [ωref (t)− ωcom(t)] . (30)

V. Decision Making

For a nominal multi-rotor drone, the total thrust and three torques are related to the individual

motor thrusts trough a control allocation matrix B ∈ R4×n, which is de�ned as



T

τ1

τ2

τ3


︸ ︷︷ ︸

u

=



1 1 . . . 1

b11 b12 . . . b1n

b21 b22 . . . b2n

b31 b32 . . . b3n


︸ ︷︷ ︸

B



f1

f2

...

fn


︸ ︷︷ ︸

f

, (31)

where the coe�cients bij , i = 1, 2, j = 1, . . . , n are easily derived from the geometry of the drone,

and b3j = ±d, j = 1, . . . , n, where d is the ratio between the drag and the thrust coe�cients of the

propeller blade, and the sign depends on the direction of rotation. Therefore, the individual thrust

settings can be found by solving the equation (31) for f subject to motor physical constraints

0 ≤ fmin ≤ fj ≤ fmax, j = 1, . . . , n , (32)
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where fmin and fmax are minimum and maximum allowable motor thrusts. In general, B is invertible

for the quadrotor (n = 4), resulting in the unique solution of the equation (31)

f = B−1u . (33)

In this case, violation of the motor constraints implies that the external command cannot be im-

plemented. For n > 4 the equation (31) is under determined, implying that there can be more than

one solution. Therefore a control allocation method can be used to determine the individual motor

thrust.

Here, we use Redistributed Pseudo Inverse (RPI) method, the details of which can be found in

[14] and in references therein. The method iteratively calculates the Moore-Penrose pseudo inverse

solution of (31) by setting the saturated motor thrust to its limit and removing it from subsequent

pseudo inverse solutions. The algorithm initializes a vector a ∈ Rn to zero, stores the original

matrix B in B0, and computes the solution of (31) according to

f = −a+B>(BB>)−1[u+B0a] . (34)

If for any j = 1, . . . , n fmin ≥ fj or fmax ≤ fj , then the algorithm sets aj = −fmin or aj = −fmax

respectively, zeros out the j-th column of B and computes f using the modi�ed a and B in (34).

We modify the RPI algorithm to incorporate our motor failure identi�cation scheme. When

the j-th motor failure is identi�ed, fj is set to zero and removed from the right hand side of (31),

and the j-th column of matrix B is removed before RPI is applied, thus decreasing the size of the

control allocation problem.

The resulting iterative process may output no feasible solution in the presence of the motor

failures. An obvious case is the number of healthy motors reaching three, resulting in the overde-

termined system (31). This is the case for quadrotors with a single motor failure. The loss of

controllability of the multi-rotor drones may occur even with more than three healthy motors, when

the motor failures result in the force imbalance in one or more directions, which is expressed in RPI

�nding no feasible solution for the control allocation problem (31) with constraints (32).

When RPI algorithm gives no solution in the presence of the motor failures, the safe landing

mode is activated. In this mode, our algorithm gives up the yaw control, and commands a safe
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landing of the drone. It is worth to notice that the horizontal position control may still be achievable,

but it requires roll and pitch angle modulation, which is not a safe maneuver when the drone is close

to the ground. For this reason, the safe landing algorithm is executed in two steps. First step is to

maintain a constant altitude while moving the drone in the hovering position over the safe landing

spot. This altitude depends on the environment such as buildings, people, natural obstacles etc., or

on the mission such as carrying a tethered load etc., and is set by the pilot or autopilot. The second

step is to set zcom(t) = 0 (if the reliable altitude measurement is available) or vzcom(t) = −vl, where

vl denotes a safe landing speed, φcom(t) = 0 and θcom(t) = 0 (horizontal attitude), then to compute

the total thrust T (t) according to equation (22), and �rst two components of τ (t) according to

equations (27) and (28). Before computing the individual motor thrusts using RPI, the last row of

the matrix B and τ3 from u are removed. In the case of quadrotors, the resulting equation (31) is

square with an invertible B matrix, and the solution is given by (33).

We summarize the decision making algorithm as follows. Let the number of failed motor be

m (0 ≤ m ≤ n− 3).

• m = 0: if n = 4 apply (33), if n > 4 apply RTI for (31) with constraints (32).

• m > 0: set fj1 = 0, . . . , fjm = 0 and delete the j1, . . . , jm columns of matrix B, where the

indexes j1, . . . , jm of failed motors are provided by the identi�cation block.

• If n = 4, activate the safe landing mode.

• If n > 4, apply RTI for (31) with modi�ed B matrix and constraints (32) to compute individual

motor thrusts fj , j ∈ {1, . . . , n} − {j1, . . . , jm}. If no solution exist, activate the safe landing

mode.

VI. Simulation Results

For the demonstration of the bene�ts of the proposed algorithm we use the quadrotor Armattan

CF-226 presented in Figure 1 in our numeriacal simulation study. The quadrotor total mass is 0.516

kg (with battery), the frame is in ”x” - con�guration with arm lengths of 0.125 m.

Figure 2 displays motor current readings in the test with the propeller separating from the
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Fig. 1 Quadrotor Armattan CF-226.

motor. It can be observed that the current sharply drops at 44.01 sec when the propeller comes

o� as predicted by the identi�cation algorithm. From the readings it can be concluded that the
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identi�cation threshold can be set at 0.75 amps.
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In the simulation experiment, the drone is commanded to move to the position x = 5, y =

−5, z = 8 meters from the zero initial position. At t = 8sec the motor number 2 fails. 40

milliseconds time delay is introduced to simulate the failure detection and identi�cation time, after
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Fig. 5 The controller performance in rotational dynamics with motor failure at 8 sec

move to the x = 0, y = 0 position in 5 sec, then to land. Figure 3(a) displays the inertial

position time histories. It can be observed that the presented safe landing algorithm performance

is satisfactory with a little o�set in horizontal position when the drone is maintaining the altitude

while looking for a safe spot to land. After the drone lands (the altitude reaches to zero), its inertial

velocities converge to zero as it can be seen from Figure 3(b). The drone's trajectory is presented

in Figure 4.

Figure 5(a) displays the attitude angles time histories of the drone. It can be seen that the

yaw angle is growing starting at t = 8sec, when the safe mode controller has taken over giving up
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Fig. 6 The required total thrust and torque vs the actually delivered total thrust and torque

with motor failure at 8 sec
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Fig. 7 The individual motor thrusts.

the yaw control. This indicates that the drone goes into a spin, the rate of which converges to a

constant value as it can be observed from Figure 5(b). The roll and pitch angles and angular rates

converge to zero, thus providing a safe landing con�guration.

Figure 6(a) displays the total thrust and torque demanded by the controller. It can be observed

that the controller demands a continuously growing positive yaw torque after the failure occurrence,

however the decision making algorithm activates the safe landing mode which gives up the yaw

control. This creates a torque imbalance in yaw direction, and a negative yaw torque is delivered to

the drone forcing it to spin in the negative direction as it can be observed from Figure 6(b). Figure

7 displays the individual motor thrust curves. It can be observed that after the failure of motor
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number 2, the controller commands zero thrust for the motor number 4, thus preventing �ip-over

of the drone.

VII. Conclusion

We have presented an algorithm for detecting/identifying the failures of the multi-rotor drone's

motors. A recon�gurable controller capable of continuing or aborting the mission based on the

switching logic of the decision making algorithm, assuming that the parameters and the dynamics

of the drone are known, is also presented. The performance of the algorithms is guaranteed as long

as the drone retains controllability in vertical direction and the stabilizability in the horizontal plane.

The bene�ts of the proposed architecture have been demonstrated in simulations. Future research

will include extension of the proposed algorithms to the case of uncertain drones parameters as well

as test the algorithm in realistic �ight experiments.
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