Predicting Time Series Outputs
and Time-to-Failure for an
Aircraft Controller Using
Bayesian Modeling

Yuning He*
January 27, 2015

Abstract

Safety of unmanned aerial systems (UAS) is paramount,
but the large number of dynamically changing controller
parameters makes it hard to determine if the system is
currently stable, and the time before loss of control if not.
We propose a hierarchical statistical model using Treed
Gaussian Processes to predict (i) whether a flight will be
stable (success) or become unstable (failure), (ii) the time-
to-failure if unstable, and (iii) time series outputs for flight
variables. We first classify the current flight input into
success or failure types, and then use separate models for
each class to predict the time-to-failure and time series
outputs. As different inputs may cause failures at different
times, we have to model variable length output curves.
We use a basis representation for curves and learn the
mappings from input to basis coefficients. We demonstrate
the effectiveness of our prediction methods on a NASA
neuro-adaptive flight control system.

1 Introduction

Most unmanned aircraft (UAS) are equipped with elab-
orate control systems. In particular, autonomous op-
erations require that the flight control system performs
reliably and in the presence of failures. For certifica-
tion, controller stability and robustness must be demon-
strated. UAS controllers can range from simple PID
control to advanced adaptive controllers. Their behav-
ior is determined by numerous parameters, many of
which can be set during design time. More challeng-
ing, however, are adaptive control systems that change
their internal parameters (e.g., gains, model parame-
ters, modes) dynamically during the flight in response
to a changing mission profile, unexpected environment,
or damage.

There exist numerous architectures for adaptive
flight control systems. Regardless of its architecture,
however, safety requires that certain robustness and sta-
bility properties can be guaranteed for the currently ac-
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Figure 1: Histogram of T'q. Most failures occur before
T = 600 time steps. Successfully controlled flights are
more common and last for T'= 1901 time steps.

tive set of parameters. In most cases, such guarantees
cannot be provided a priori, so on-board dynamic moni-
toring techniques are needed to assess if—given the cur-
rent parameter setting—the aircraft (AC) will remain
stable and, if not, when the AC will become unstable.
Such information is vital for the on-board autonomous
decision making system, especially for UAS.

In this paper, we describe a statistical method
which enables us to answer two questions during the
flight: (i) given the current values of control system
parameters, will the system remain stable within the
next 7' time steps?ﬂ And, (ii) if not, at which time
T'tqi < T will the system be unstable? We also describe
a statistical method for efficient prediction of the actual
time-series outputs up to 7T time steps. This more
detailed information can be used for optimal and safe
autonomous decision making. For example, a damaged
rudder might require a specific parameter setting. If it
can be predicted that there needs to be extreme rudder
deflections within the near future, then the current
situation can be regarded as unsafe and other mitigation
techniques must be considered.

Our statistical framework to address these questions
is hierarchical. Most simulation runs are successfully
controlled and last for T = 1901 time steps. Most
failure runs have a time-to-failure T}q; < 600 time
steps. When observing the distribution of simulation
runs with a specific Tyq; over numerous parameter
settings, the histogram of T%,; in Figure [I| suggests
the existence of a few easy discernable failure groups.
Although, the general appearance of the time series
are typically quite different for runs with different

TFor our case study in this paper, one time step is 1/100s.
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Figure 2: Typical curves for different inputs that result
in (left) Tfqq ~ 250 and (right) T'tqs =~ 350...500. The
horizontal axis is time and the vertical axis is one of the
simulator outputs.
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T'tqi1, Figure [2 shows that the shape of time-series for
runs with T'q: ~ 250 look relatively similar to each
other as do curves with T4y ~ 350...500 time steps.
Although the data in the figure have been obtained with
from an experimental setup with a specific adaptive
control system (see Section [f]), similar behavior can be
encountered often.

We therefore developed a hierarchical model, where
the entire data first undergo a classification with re-
spect to prominent differences in failure time. Then
time-to-failure and time series prediction are performed
separately for each of the classes.

We illustrate our approach with a case study, where
we have used our statistical framework on a high-fidelity
simulation of a neuro-adaptive flight control system —
the NASA IFCS (Intelligent Flight Control System).
It will be described in Section [fl We have examined
classification strategies with one, two, and four classes
and provide comparative results as well as an analysis
of the quality of time-to-failure estimation in terms of
missed and false alarms.

2 Methodology & Architecture

We have implemented a toolchain for time-to-failure and
time series prediction using a two-stage hierarchical sta-
tistical model (Figure [BA). Our architecture consists of
a Categorical Treed Gaussian Process (CTGP) statis-
tical model for the mapping from input to success or
failure class, and within each given failure class, a dis-
tinct Treed Gaussian Process (TGP) model for the re-
lationship of input to time-to-failure (which is the out-
put curve length). The mapping from input to class
is learned through a CTGP supervised classification
method (Figure [BA).

In addition to predicting time-to-failure, we also
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Figure 3: Two-stage prediction of time to failure (A)
and supervised learning (B).

predict the actual time series outputs for flight variables
in both success and failure cases. As different inputs
may cause failures at different times, we have to model
variable length output curves. We do so by modeling the
mappings from input to a fixed number of coefficients in
a curve basis representation, using one TGP model for
each real-valued coefficient. Using a curve basis allows
us to have a fixed size representation of variable length
output curves. We hypothesize that, by fitting distinct
models for each of the distinct classes, the overall results
of prediction accuracy for time-to-failure and curve
basis coefficients will be improved. Our hierarchical
model can capture model parameter variation across the
success and failure classes.

Next we give some background on TGP models and
discuss other Gaussian Process (GP)-related options
for modeling output curves to provide context for our
statistical modeling decisions.



3 Background

3.1 Treed Gaussian Processes The Treed Gaus-
sian Process (TGP) model [9] is more flexible and over-
comes the limitations inherent in GP models by subdi-
viding the input space, and modeling each region r, of
the input space using a different GP. Fitting different,
independent models to the data in separate regions of
the input space naturally implements a globally non-
stationary model. Moreover, dividing up the space re-
sults in smaller local covariance matrices that are more
quickly inverted and thus provide better computational
efficiency. Also, partitions can often offer a natural and
data-inspired blocking strategy for latent variable sam-
pling in classification. The partitioning approach in the
standard TGP model is based on the Bayesian Classifi-
cation and Regression Trees model developed by Chip-
man et al. [5] [6].

The TGP subdivision process is done by recursively
partitioning the input space.This recursive partitioning
is represented by a binary tree in which nodes corre-
spond to regions of the input space, and children are
the resulting regions from making a binary split on the
value of a single variable so that region boundaries are
parallel to coordinate axes. The TGP parameters ©
include parameters for defining the subdivision process
which ultimately determine the number of regions in the
subdivision.

3.2 Classification Treed Gaussian Processes It
is also useful to be able to predict functions C

RP — {1,...,M} with a categorical output of M
possible classes. Recently, an extension of TGP called
CTGP (Classification TGP) [2, [I] was developed to use
Treed Gaussian Processes for classification. The CTGP
model first extends the GP model from regression to
classification by introducing M latent variables Z,,,
m=1,..., M, to define class probabilities via a softmax
function p(C(x) = m) x exp(—Z,(x)). In CTGP,
each class function Z,,(x) ~ TGP(©,,) is modeled
using a TGP and each class may use a different tree.

3.3 Curve Prediction with GP One approach to
predicting output curves instead of scalar-valued out-
puts is to extend the GP model to functions y : RP —
RY, where the vector output y represents samples of a
curve at ¢ = T time points. In the context of statisti-
cal emulation of a simulator computer program, Conti
and O’Hagan [7] call this the Multi-output (MO) emula-
tor and provide the statistical model for g-dimensional

Gaussian Processes:

Yy = f(~)|B,02,r~Nq(m(~),c(-,-)2),
m(x) = BTh(x),
cox) = exp{—(x—x)R(x—x)},

where h R — R™ is a vector of m regression
functions shared by each of the scalar-valued component
functions f1,..., fq, B € R™*? is a matrix of regression
coefficients, and R = diag(r) is a diagonal matrix of
p positive roughness parameters r = (r1,...,7,). Asin
the 1-dimensional GP, a common choice for defining the
mean m(-) is the linear specification h(x) = (1,x)7 for
which m =p+ 1.

In addition to the MO emulator, Conti and
O’Hagan [7] outline two other possible approaches for
multi-output emulation: Ensemble of single-output (MS)
emulators and the Time Input (TI) emulator. In the MS
approach, each of the T curve values are predicted in-
dependently using T single-output emulators. On the
other hand, the TI approach adds the time parameter
t to the input x and builds one, single-output emulator
for y(x,t) : (R? xR) — R. The MO emulator is the sim-
plest from the computational perspective with a com-
putational load that is comparable to a single-output
GP emulator, in which the bottleneck is n x n matrix
inversion for n training inputs S. The MS method uses
T single-output GP emulators and thus has a compu-
tational burden 7' times more than that of the MO
method. A naive implementation of the TI emulator
would require nT" times the computation of the MO em-
ulator as the training samples are now S x {1,..., M},
but the structure of the problem allows the required
nT x nT matrix inversions to be done via n x n and
T x T matrix inversions. Of course, this is still more
computation than required by the MO emulator.

For prediction, the key component is the correlation
between outputs over the input domain as there are
only a limited number of training samples available.
There are more substantial differences in the MO,
MS, and TI methods in terms of their covariance
structures, at least for a diagonal covariance matrix R
as specified above. For the covariance of outputs f;(x1)
and fi(x2) at the same time ¢, the MS method is most
flexible as it estimates different roughness parameters r
for each output time while the MO and TI methods
estimate a single r for all times. In terms of the
covariance between different outputs fi, (x1) and fi, (x2)
at different locations x; and x5, the MO method is most
general because this covariance is ¢(x1,x2) X X(t1, t2)
and the matrix entry X(¢1,¢2) is not constrained. The
TI approach is less flexible than the MO approach
because the covariance between different outputs is the
Gaussian process variance times exp(—rr(t; — t2)?),



essentially replacing the generality of ¥(¢;,t2) with an
exponentially decreasing squared time difference. The
main disadvantage of the MS approach is a lack of
correlation structure over time because it emulates the
output curve values at different times independently.
For this reason, Conti and O’Hagan [7] dismiss the MS
approach for emulation of dynamic computer models.

4 Our Statistical Models

For increased generality in modeling, we do not want
to assume stationarity and thus we do not use the GP-
based MO approach described above for predicting out-
put curves. One possibility is to build a non-stationary
MO approach by extending TGP as described in [8] [9]
from 1-dimensional outputs to model multi-dimensional
outputs by using multi-dimensional GP models in dif-
ferent regions of the input space. Multi-dimensional
outputs are not supported in the current TGP R pack-
age [9], so a new implementation would need to be done
to test this idea. The current TGP method for scalar
output is already quite slow for even modest size prob-
lems in terms of the dimension of the input space and
the number of training examples. Although the compu-
tation for multi-dimensional GPs is comparable to the
computation for 1-dimensional GPs in terms of the num-
ber of training examples n, there is more computation
and space needed for the multi-dimensional case. Thus
the TGP-based MO idea does not seem to be a practi-
cal one, and we opt for another non-stationary modeling
approach.

In our approach to predicting one output variable
curve, we represent output curves y € R” in terms
of a linearly independent set of D orthogonal curves
B ¢ RT™P: y = Be. We use orthogonal curves
which measure different curve characteristics so that the
basis coefficients in ¢ = (¢;) € R” are as uncorrelated
as possible. Then we model the coefficients ¢;, ¢ =
1,..., D, independently using D TGP models. Thus
by changing the curve representation, we can use an
MS approach without being subject to the criticism of
not modeling correlations over time. Now the multiple
output values being modeled are not values of the curve
at distinct time points but rather the coefficients in a
“basis” representation of the curve. In addition to the
MS advantages of simplicity and flexibility of modeling
correlations of the same coefficient output value over
different inputs x, the MS implementation can be
parallelized by running each single output emulator,
both fitting and prediction, in parallel. In many
applications, using D < T orthogonal curves will suffice
to accurately represent output curves and the use of
a good basis provides a substantial data reduction.
Although we may not need a full orthogonal basis in

which D =T, we refer to B as a ”basis” or a "reduced
basis”. Another advantage of our basis representation
approach is that it allows us to have a fixed size output
representation D for applications which have output
curves whose length T vary with input x.

In the case of variable length output curves, mod-
eling the output curve y(x) requires modeling both the
length T'(x) as well as the T'(x) curve values at different
times. In our basis approach, we model the output curve
y by modeling its coefficients in a chosen orthogonal ba-
sis of D curves. Thus we have D + 1 scalar output func-
tions to model: x — T, X — ¢y, ..., X — c¢p. We use
TGP for these scalar-valued prediction problems. The
statistical model for our MS, basis approach is given by:

y|T,c,B,Vy ~ N([Bc|i.r,Vy),
T(x) ~ TGP(Or),
Ci(X) ~ TGP(@l), = 1,...,D

where [Bc]y.r indicates truncation of the predicted
output curve to its correct length 7.

5 Our Prediction Method

It is now straightforward to give our full algorithm
for emulating variable-length output curves from a
simulator. Our strategy for emulation is as follows:

1. Fitting. Find coefficients { ¢; }2., to approximate
the training output curves y in some basis { b; }2 ;:

D
y= Z cib;
i=1

(5.1)

2. Learning Coefficient Mappings. Learn the D map-
pings from inputs x to coefficients ¢; for i =

1,...,D.
3. Coefficient Prediction. Predict the coefficients
Cipred for a new input x"*V fori =1,...,D.

4. Output Curve Prediction. Predict the output curve
y™V corresponding to input x"*V using the pre-
dicted coefficients Cred:

D
(5.2) Yhow =Y i bs

i=1

6 Results

We will demonstrate our approach using a simulation
model of the NASA TFCS adaptive control system. This
damage-adaptive control system has been developed
by NASA and was originally test-flown on a manned



F-15 aircraft [3]. The underlying architecture (Fig-
ure [4)) is very generic. The output signals of the model-
referencing PID controller are subject to control aug-
mentation that is produced by the neuro-adaptive com-
ponent (a Sigma-Pi or Adaline neural network). A
dynamic inverse converts the required rates into com-
mands for the actuators of the aircraft. The neural
network itself is trained online to minimize the error
between the desired and the actual aircraft behavior.
For details see [4, [3] Although this system has orginally
been developed for a manned aircraft, it could be easily
used to control a UAS. This system is configured using
a considerable number of parameters (e.g., gains, NN
learning rate), which makes it an interesting testbed for
our approach.

In our experiments, we ran the simulator with a
multitude of different parameter settings and levels of
damage, recording 12 output signals and the elapsed
time T'qq if the system went unstable. A maximum
simulation time of 19s was used.
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Figure 4: The IFCS adaptive control system
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6.1 Classification Results Our experimental data
set consists of a total of 967 simulation runs. Table [
summarizes two different classification strategies: divid-
ing the data into two classes (Two Class Problem) and
into four classes (Four Class Problem). Each strategy
separates the data into categories according to the indi-
vidual time to failure. In our setup, a time of 7' = 1901
(the maximum recorded length in the simulation) indi-
cates as success (.5).

We performed experiments to determine the best
classifer for the data. We split the 967 runs into 637
training examples and 300 test examples to evaluate
classifier performance. We implemented five different
classification methods and compared the results for
several classifiers (nearest neighbor, several variants of

2-class Prob. runs 4-class Prob. runs

F | 0<T <1900 569 || Fi 0<T <180 257
Fs 180 < T < 280 241

Fs | 280 < T <1900 71

S T = 1901 398 S T = 1901 398

Table 1: A summary of the data classification strategies
we used in our experiments.

TGP and CTGP, and SVM). As a whole, the CTGP-
based classification methods gave, despite relatively
long training times, the lowest classification error rates.
Table P summarizes our CTGP classification results on
the 100 test cases.

2-class F S total
training 507 360 867
test 62 38 100
7 errors 3 8 11
error rate | 4.8% | 21.1% | 11.0%
4-class F s Fs S | total
training 228 213 66 360 867
test 29 28 5 38 100
# errors 5 9 5 2 21
error rate | 17.2% | 32.1% | 100% | 5.3% | 21%

Table 2: Overall CTGP performance on the different
classification strategies for two and four classes.

The overall CTGP classification error rate for the
4-class case is 27%, making 27 incorrect classifications
out of the 100 tests. Although the overall error rate is
higher for the 4-class problem than the 2-class problem,
the error rate for the S class is lower. In the 4-class
case, CTGP misclassified only 2 of the 38 S tests, for
a S error rate of just 5.3%. The S class had more
training examples than the other three classes. The
failurel and failure2 error rates were 17.2% and 32.1%,
respectively. All 5 test cases in class failure3 were
classified incorrectly. Because the number of training
data for this class is substantially lower than the other
classes, this result is not surprising and should be
disregarded. We expect that the error rate for this
failure type would improve with more training samples.

Since our intended application is a safety-critical
flight control system, the consequences of misclassifica-
tion are very different for successes and failures. In ge-
neral, safety-critical systems require that there be no
missed failures (a failure misclassified as a success),
and as few false alarms (misclassfied success) as pos-
sible. In Table [3] we break down our misclassification
error rates by these two categories. For the Two Class
Problem, we not only have a lower overall error rate
(11%), but also a much smaller missed failure error rate
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Figure 5: ROC for prediction of time-to-failure.

(4.8%).
2-class Prob. | 4-class Prob.
false alarm rate 21.1% 5.3%
missed failure rate 4.8% 30.6%

Table 3: False Alarm and Missed Failure Percentages

The performance of our time-to-failure estimation
with respect to missed and false alarms can be best
visualized using a Receiver Operations Characteristics
(ROC) curve. Figure |5|shows the curve for our 100 test
cases in a coordinate system of true positive rate over
false positive rate. The graph of a high-performance
system rises sharply, meaning we obtain a good sensi-
tivity (i.e., we can detect most alarms) having to take
into account only few false alarms. The diagonal corre-
sponds to a random selection. With a curve close to the
upper left corner in Figure |5, our prediction results are
good.

In Figure [6] we can see one of the advantages of
using our statistical method is that we not only can
make predictions, but our Bayesian modeling method
also returns a confidence interval/error bar on the
prediction. Here the independent axis is the test run
index, which we ordered by increasing time to failure.
The dependent axis is the time to failure 7. The
true failure times (dark blue smooth center line—dots
connected for better visibility) shows the ground truth
values of T where the curve is formed by connecting
T values with short line segments. TGP is a Bayesian
model, which means it can provide samples from the
distribution of T'|x. The posterior mean predictions T
by TGP (circles) are plotted. For perfect predictions,
the circles would be along the dark center curve.

predict T black=ground v, buecigp
ManFal=s05 nestFalzs.

Figure 6: A: Posterior mean 7’4, prediction using TGP
Model for Class Fy. Prediction errors with TGP (solid)
and SVM (dashed) for the entire data set (B) and for
failure runs only (C).

6.2 Output Curve Prediction In Table[d] we show
the prediction errors for each of the PCA, Fourier, and
wavelet bases (with dimension D = 25) for each of the
classification strategies 4 class, 2 class, and 1 class (i.e.,
just 1 model for all types of output curves). Prediction
errors are mean values over the 12 output variables.
During basis fitting, here we padded training vectors
y to Tax by repeating the last element in y.

[ | n F,  Fs S| F ST all]
HPCA 046 045 0.78 0.32 [ 063 042 [ 1.39
ohoa 033 029 034 0.5 | 030 0.5 | 1.08
HFourier | 0.56 051 0.82 0.41 [ 0.82 0.41 | 1.60
0% purier | 036 031 034 015 | 032 0.5 | 1.00
Hwavetet | 056 052 0.85 0.34 [ 0.84 0.34 | 1.44
02 eler | 040 035 034 0.5 | 036 0.15 | 1.09

Table 4: Output curve prediction errors for different
kinds of bases and 4-class, 2-class, and 1-class perfect
classification.

The errors reported in the table entries in Table [4]
were computed as follows. Let x; denote the test in-
puts with true output curves y; € RT®:) and predicted
output curves nyEd e RT(x) We use the standard de-
viation o; for true output curve y; to standarize errors
across different output curves and different output vari-
ables. The error e, . for output variable v and class ¢

with the set of test output curves S, . is given by

.d
Z ||y?re —yilla
€Sy, c o

(6.3) T s T0x)

€v,c =

pred

The true and predicted output curves y; and y;  are
for the given output variable v, but we leave out the
dependence on v to simplify the error formula .The
denominator of is the total number of output curve
values predicted, thus making the reported error an
average over all predicted points.

The PCA basis gives the best performance for each

of the classification strategies. This can easily be seen
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Figure 7: Output curve predicition errors for different
bases and output variables.

in the 4 class strategy in the plots in Figure [} Some
representative predictions using the dim D = 25 PCA
basis for output variable 1 can be seen for the 3 failure
classes and the success class in Figure[§] Note that the 4
different classes have differing amounts of training data.
Of the 867 training runs, 228 are F) cases, 213 are Fj
cases, 64 are F3 cases, and 360 are S cases. The very
small amount of training data for F3 makes this class
the most difficult to predict (Figure 8] bottom left).
We obtained curve prediction results using CTGP
to determine, which output class model is applied. For
the 4-class model and F5, we obtained a prediction error
of upca = 0.49 with 0%, = 0.28. With two classes
F1, the prediction error was upcg = 0.32, J%CA =0.15.
Compared to the Table[d] we see that the CTGP results
for the two-class classification are considerable better
than those in Table [df Examples of predicted curves
(for output variable 1) are shown in Figure [0} In these
plots, the black curve is the ground truth curve and is
plotted for the correct number of time steps T'(x) for
test input x. The red curve is the predicted curve using
the model for the correct class C'(x), and it is plotted for
the maximum length 75 that defines the class C (x).
If CTGP incorrectly predicted the class, then the blue
curve is the predicted curve using the model for the
incorrectly predicted class CP™4(x) and it is plotted for

red
the maximum length Tn?:x (x) of that class. In the title
for each test plot there is an indication of whether the

Class Fy

Run #166: output #1 (lack), Prediced fom pea(2s) i red), rain=228

Class: Fs

Run #470; utout #1 (lack), Prcicid fom pea(zs) it ), nTian=213

Class F3

ot 41 (Back), Prciced from pea(2s) f ), nTrain=6

Figure 8: D = 25 PCA-based predictions for each class
(Output Variable 1).

CTGP classifier predicted the correct class or not, and
the incorrect class prediction is given for classification
errors.

The red prediction curve for the correct class is
always at least as long as the black ground truth curve
because the true length 7T'(x) must be less than or equal

to TS in order for x to be in the class C(x). (Note
that this is different from the plots in Figure |8} in which
we truncated the predicted curve to the known correct
length T'(x).) For tests in which CTGP predicts the
wrong class CP*4(x),the predicted blue curve may be
shorter or longer than the black ground truth curve.
In the third example in the upper left of Figure [9] the
correct class is F; with Thd = 180, but the input was
incorrectly classified as S with Tr;?ax = 1901 so that the
predicted curve is much longer. In the last example
in the lower right of Figure [9] the correct class is S

with T2 = 1901 but the predicted class was F3 with

max
T ,f:f’x = 600 so that the predicted curve is shorter.

In Figure[J] we see more examples of excellent curve
predictions using the correct output class predicted by



Class Fy Class F»

Figure 9: Predicted Output variable 1 curves using
CTGP classification. D = 25 PCA-based predictions:
(upper left) class F, (upper right) class Fb, (lower left)
class F3, (lower right) class S.

CTGP. We also see something quite interesting in the
examples with incorrect classification: the predicted
output curve using the model from an incorrect class is
typically quite good near the beginning of the simulation
run and often does reasonably well over a significant
fraction of the true output curve. As expected, the
predicted curve using the correct class is usually better
than the one using the incorrect class.

7 Conclusion

In this paper, we discussed a novel statistical toolchain
for efficient detection of time-to-failure and prediction
of output curves of an adaptive controller. Due to
nonlinearity and the large number of parameters in such
a controller, it is extremely hard to see which parameter
settings yield a stable control system and which ones
lead to instability after some time. We predict if the
controller is stable, the time-to-failure if unstable, and
the output curves. Reliable information is extremely
important for autonomous decision making on-board a

UAS. For our prediction technique, we used a two-stage
statistical approach based on Treed Gaussian Processes
(TGP). This method reduces the overall error in the
time-to-failure prediction by an order of magnitude for
our adaptive control simulator application.
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