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Abstract—The behavior of complex aerospace systems is gov-
erned by numerous parameters. For safety analysis it is important
to understand how the system behaves with respect to these
parameter values. In particular, understanding the boundaries
between safe and unsafe regions is of major importance. In this
paper, we describe a hierarchical Bayesian statistical modeling
approach for the online detection and characterization of such
boundaries. Our method for classification with active learning
uses a particle filter-based model and a boundary-aware metric
for best performance. From a library of candidate shapes
incorporated with domain expert knowledge, the location and
parameters of the boundaries are estimated using advanced
Bayesian modeling techniques. The results of our boundary
analysis are then provided in a form understandable by the
domain expert. We illustrate our approach using a simulation
model of a NASA neuro-adaptive flight control system, as well as
a system for the detection of separation violations in the terminal
airspace.

I. INTRODUCTION

Safety and controllability of an aircraft is a paramount
requirement. Within a given flight envelope, the aircraft must,
under all circumstances, perform safely and efficiently. Since
the behavior of a complex aerospace system is governed
by a multitude of parameters, it is extremely important to
obtain knowledge on how the aircraft behaves with respect to
these parameter values. In particular, the boundaries between
safe and unsafe behavior are of major importance. A typical
example is the stall speed vstall of an aircraft. If the current
airspeed Vas becomes smaller than vstall, the aircraft stalls and
and is in severe danger of crashing. However, the stall speed
is not a fixed number. It depends on a number of variables,
most notably, weight, lift-over-drag, altitude, turning/climbing,
or environmental effects like icing [1].

Figure 1 shows the safety boundaries for a commercial
transport (taken from the final report of the ill-fated Air France
flight AF447 [6]). When considering the safe and unsafe
regions in Figure 1 with respect to aircraft speed and altitude,
the stall speed clearly indicates boundaries, which separate safe
areas where controlled flight is possible, from unsafe areas
where the aircraft stalls. The non-linearity of the boundaries
are due to physical laws and the specific aircraft design.

For most complex systems, like aircraft, their behavior
can only be obtained by system simulation. A typical ex-
ample might be an adaptive flight control system, where the
behavior of the aircraft control dynamically adapts towards
counteracting aircraft damage or unexpected environmental

Fig. 1: Safety boundaries (grey) for aircraft over speed (Mach)
and altitude different scenarios [6].

conditions. Also many computerized systems for air traffic
control, e.g., for detection of safety violations, exhibit a highly
complex behavior due to advanced and complex algorithms
and their hybrid nature. Such systems often have to be treated
as “black boxes”, i.e., there is no information available about
their internal structure or underlying design.

Safety boundaries for such systems can be determined
by brute-force experiments: for each possible combination
of input values or parameter values, a simulation is started
and its outcome is labeled “safe” or “unsafe” accordingly. In
practice, such an approach usually fails because a large number
of parameters (and parameter values) prohibit the exhaustive
exploration of the parameter space. Obviously care must be
taken that no safety-boundary is missed, because “holes” in
an operational envelope can have disastrous consequences and
must therefore be recognized properly. For example, a software
problem caused multiple computer crashes on-board a group
of six F-22 Raptors when they crossed the 180th meridian of
longitude (the international date line) [7].

A safety-boundary, once located, must be somehow char-
acterized and described such that it can be understood by the
domain expert. Techniques using universal function approxi-
mators, like neural networks can be used to learn a boundary
of any shape, but the results are hard to interpret by the domain
expert. In practice, domain experts often have a good idea on
how the boundary should look like. Based upon background
knowledge and experience, they might provide information like
”this boundary should have a sphere-like structure”, but can
give no indication on center and size of the sphere. For exam-
ple, the stability boundary of an adaptive flight control system
can be expressed as an ϵ environment in the dimensions of the



parameters e1, . . . , en [2]. Then, the boundary shape could be
expressed as

∑
i λie2i = ϵ2 for unknown λ > 0 and ϵ > 0. We

believe that such background information substantially helps
for locating multiple boundaries and determining their true
shapes.

In this paper, we describe an advanced hierarchical statisti-
cal approach toward boundary detection and shape estimation.
By using active learning techniques as well as efficient data
structures and algorithms, we develop a framework that can
detect boundaries with a low number of required simulation
experiments. Shape and location parameters of boundaries
are estimated using an advanced Bayesian approach, which
is capable of providing high-quality feedback on the domain
expert’s input in the presence of noise and system dynamic
uncertainties.

The remainder of this paper is structured as follows:
Section II gives an overview of our active learning and shape
detection approach. In Section III, we focus on boundary find-
ing and present a metric for active learning that is aware of the
boundary location. Section IV presents our Bayesian approach
to modeling and analyzing the boundary shapes. Experiments
with artificial data sets, a simulation of a NASA neuro-adaptive
flight control, and a detection system for aircraft separation
violations are discussed in Section V. Section VI concludes.

II. METHODOLOGY OVERVIEW

A. Algorithm Overview

We propose a sequential method for the estimation of
parameterized boundary shapes in high dimensional spaces.
A dictionary of shape classes is provided by the domain ex-
pert. Additional constraints on the parameters, e.g., parameter
ranges and other prior information can be given. Typical exam-
ples for such shape classes include (hyper-)surfaces, polygons,
spheres, or ellipses.

We represent our boundary problem as learning the re-
sponse surface for the function f , where f(x) = 1 + ϵ if
the experiment succeeds and f(x) = 0+ ϵ otherwise for some
small ϵ > 0. In this representation a boundary is determined
by points x with f(x) = 0.5. This representation allows us
to formulate powerful methods to select the next data point,
which is explained later.

Our framework is depicted in Figure 2. Given an set of
labeled data D0, an initial classifier is built, which provides an
initial partitioning of the space and provides the information
to estimate posteriors over given sets of data points. Then,
candidate points (i.e., sets of input parameters) are iteratively
selected by the algorithm and handed over to the computer
experiment, which executes the system under consideration
using the given parameters and returns a categorical result
(success or failure). Since each run of the simulator requires
substantial computational resources, the overall number of new
data points should be kept as small as possible. By adding new
data points, the classifier will be extended and improved with
the main goal of identifying and characterizing the boundaries.

Our algorithm is based upon the sequential classification
and regression framework as given by DynaTree [8], [9]. It
features dynamic regression trees and a sequential tree model.
Particle learning for posterior simulation makes DynaTrees a

good candidate for applications, where new data points are
processed sequentially. In our architecture, the classifier is
represented by a Dynatree at any given point in time. After
adding a number of new data points, the current classifier is
used to estimate a set of data points, which are close to the
current prediction of the boundary. This is a subset of data
points from a regular grid or a Latin hyper square, for which
their entropy measure is high (classification representation) or
the estimated response value is close to 0.5.
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Fig. 2: Architecture overview

This set of data points is then used to estimate the best
parameters Θ for each of the the boundary shapes, together
with a confidence interval for each of the parameters.

The candidate point selection in this active learning algo-
rithm can use as much information as is available at the current
stage, for example, prior information given by the domain
expert. It then selects a new point (i.e., set of input parameters),
for which the label is obtained by running the system simulator.
Next we present the individual steps in detail.

III. ACTIVE LEARNING AND EXPECTED IMPROVEMENT

A. Finding boundaries

Each data point describing one simulation run (experiment)
is defined as x = ⟨P1, . . . , Pp⟩, where Pi are the input pa-
rameter settings and the outcome o(x) ∈ {success, failure}.
Thus these data define a classification problem with C = 2
classes. Informally, a boundary can be found between regions,
where all experiments yield success p(x = success) = 1 and
those, where the experiments do not meet the success criterion
p(x = failure) = 1. Therefore, we can define a point x to be
on the boundary if p(x = success) = p(x = failure) = 0.5.
Although this condition can easily be generalized to more than
two classes, in this work, we will focus on C = 2.

A common metric to characterize points on the bound-
ary is based upon the entropy. The entropy entr =
−
∑

c∈c1,..,cC
p(x = c) log p(x = c) becomes maximal at

the boundary. In cases of more than two classes, [10] uses
a BVSB (Best vs. Second Best) strategy. [11] defines a metric
advantage as essentially adv(x) = |p(x = success)− p(x =
failure)|. Then [11] considers points with minimal advantage



to be close to the boundary. In the general case with more than
two dimensions, [11] proposed to use the difference between
the two most likely classes.

In general, there are two basic methods: explicitly from
knowledge of the classification function, or by treating the clas-
sifier as a black box and finding the boundaries numerically.
For some classifiers it is possible to find a simple parametric
formula that describes the boundaries between groups, for
example, LDA or SVM. Most classification functions can
output the posterior probability of an observation belonging
to a group. Much of the time we do not look at these, and just
classify the point to the group with the highest probability.

Points that are uncertain, i.e., have similar classification
probabilities for two or more groups, suggest that the points
are near the boundary between the two groups. For example, if
a point is in Group 1 with probability 0.45, and in Group 2 with
probability 0.55, then that point will be close to the boundary
between the two groups. We can use this idea to find the
boundaries. If we sample points throughout the design space
we can then select only those uncertain points near boundaries.
The thickness of the boundary can be controlled by changing
the value, which determines whether two probabilities are
similar to each other or not. Ideally, we would like this to be
as small as possible so that our boundaries are accurate. Some
classification functions do not generate posterior probabilities.
In this case, we can use a k-nearest neighbors approach.
Here we look at each point, and if all its neighbors are of
the same class, then the point is not on the boundary and
can be discarded. The advantage of this method is that it is
completely general and can be applied to any classification
function. The disadvantage is that it is slow (O(n2)), because
it computes distances between all pairs of points to find the
nearest neighbors. In general, finding of the boundaries faces
the “curse of dimensionality”: as the dimensionality of the
design space increases, the number of points required to make
a perceivable boundary (for fitting or visualization purposes)
increases substantially. This problem can be attacked in two
ways, by increasing the number of points used to fill the design
space (uniform grid or random sample), or by increasing the
thickness of the boundary.

B. Active Learning

Computer simulation of a complex system like those dis-
cussed above, is frequently used as a cost-effective means to
study complex physical and engineering processes. It typically
replaces a traditional mathematical model in cases where such
models do not exist or cannot be solved analytically.

Active learning, or sequential design of experiments
(DOE), in the context of estimating response surfaces (in
our case boundaries), is called adaptive sampling. Adaptive
sampling starts with a relatively small space-filling input data,
and then proceeds by fitting a model, estimating predictive
uncertainty, and choosing future samples with the aim of min-
imizing some measure of uncertainty, or trying to maximize
information. We perform active learning with new data until
the boundary is characterized with sufficient accuracy and
confidence, and the whole space has been sufficiently explored
to not miss any boundaries in the space.

Consider an approach which maximizes the information
gained about model parameters by selecting the location x,
which has the greatest standard deviation in predicted output.
This approach has been called ALM for Active Learning-
Mackay, and has been shown to approximate maximum ex-
pected information designs [12]. An alternative algorithm is
to select Σ2 minimizing the expected reduction in the squared
error averaged over the input space [13]. This method is
called ALC for Active Learning-Cohn. Rather than focusing
on design points which have large predictive variance, ALC
selects configurations that would lead to a global reduction in
predictive variance.

The ALM/ALC algorithms are suitable for classification
but not primarily for boundary detection [14]. These heuristics
are in general not suited for the boundary-finding task because
they do not take the specifics of the boundaries into account
and they tend to also explore sparsely populated regions far
away from current boundaries.

C. Boundary Expected Improvement

Finding a boundary between two classes can be considered
as finding a contour with a = 0.5 in the response surface of
the system response. Inspired by [16] and work on contour
finding algorithms, we loosely follow [15], and define our
heuristics by using an improvement function. In order to use
the available resources as efficiently as possible for our con-
tour/boundary finding task, one would ideally select candidate
points which lie directly on the boundary, but that is unknown.
Therefore, new trial points x are selected, which belong to
an ϵ-environment around the current estimated boundary. This
means that 0.5− ϵ ≤ ŷ(x) ≤ 0.5 + ϵ. New data points should
maximize the information in the vicinity of the boundary.
Following [16] and [15], we define an improvement function
for x as

I(x) = ϵ2(x)−min{(y(x)− 0.5)2, ϵ2(x)}

Here, y(x) ∼ N(ŷ(x),σ2(x)), and ϵ(x) = ασ(x) for a
constant α ≥ 0. This term defines an ϵ-neighborhood around
the boundary as a function of σ(x). This formulation makes
it possible to have a zero-width neighborhood around existing
data points. For boundary sample points, I(X) will be large
when the predicted σ(x) is largest.

The expected improvement E[I(x)] can be calculated eas-
ily following [15] as

E[I(x)] = −

0.5+ασ(x)∫

0.5−ασ(x)

(y − ŷ(x))2φ

(
y − ŷ(x)

σ(x)

)
dy

+2(ŷ(x)− 0.5)σ2(x) [φ(z+(x))− φ(z−(x))]

+(α2σ2(x)− (ŷ(x)− 0.5)2) [Φ(z+(x))− Φ(z−(x))] ,

where z±(x) = 0.5−ŷ(x)
σ(x) ± α, and φ and Φ are the standard

normal density and cumulative distribution, respectively. Each
of these three terms are instrumental in different areas of the
space. The first term summarizes information from regions of
high variability within the ϵ-band. The integration is performed
over the ϵ-band as ϵ(x) = ασ(x). The second term is
concerned with areas of high variance farther away from the
estimated boundary. Finally, the third term is active close to



the estimated boundary. After the expected improvement has
been calculated, the candidate point is selected as the point,
which maximizes the expected improvement.

IV. BOUNDARY SHAPE

1) Notation: Suppose there are m shape classes
M1, . . . ,Mm with m ≥ 1, which are parameterized by
Θ1, . . . ,Θm. The task is to fit l shapes S1, . . . , Sl, l ≥ 1,
where S1 = (i1,Θ1), . . . , Sl = (il,Θl) and ij denotes the
shape class for the jth shape with ij ∈ M = {M1, . . . ,Mm}.
Several of the ij can be the same to accommodate more than
one shape belonging to the same class. The Θi should be
different since we do not want to represent the same boundary
shape twice. We also seek to determine the correct number of
shapes l that represents the input point set Xn.

For example, we may consider the m = 2 shape classes
M1 = hyperplane and M2 = sphere in Rd. Hyperplanes
are represented as a1x1 + · · · + adxd + ad+1 = 0 with
parameter vector Θ1 = (a1, . . . , ad, ad+1) ∈ Rd+1. In the
same d-dimensional space, a sphere of radius r with center
c = (c1, . . . , cd) is described by (x1−c1)2+· · ·+(xd−cd)2 =
r2 with parameter vector Θ2 = (c, r) ∈ Rd+1.

2) What is a Good Shape Set S for an Input Point Set
Xn?: There are three conditions that specify when a shape
set S provides a good fit to the data Xn:

(i) Summary: each point on a shape S ∈ S is close to
some classifier boundary point in Xn,

(ii) Completeness: each classifier boundary point in Xn is
close to some shape point on some shape S ∈ S , and

(iii) Minimality: the shapes in S are as different from one
another as possible.

Condition (i) encourages each shape S ∈ S to be a good
summary of one of the parts of the boundary of classifier Pn.
That is, the points of a shape should lie along high entropy
areas of Pn.

Condition (iii) encourages that shape set S to be minimal;
i.e., S will not use any extra shapes to form a complete sum-
mary of the boundaries of classifier Pn. A complete summary
S (i.e., one satisfying (i) and (ii)) remains a complete summary
if one of its shapes S ∈ S is added to S either exactly or after
a small perturbation. In fact, adding a small perturbation Ŝ
of S may actually improve completeness slightly since Ŝ can
be even closer to some high entropy points than S. And if
S were a good summary, then so too would Ŝ. We need the
minimality condition (iii) to be able to obtain the simplest (i.e.,
smallest) shape set that is a complete summary of the classifier
boundaries.

3) Statistical Modeling: The shape set posterior is

P (S|Xn) =
P (Xn|S)P (S)

P (Xn)
∝ P (Xn|S)P (S).

We build the posterior model P (S|Xn) by modeling the
likelihood P (Xn|S) and the shape set prior P (S). In the
posterior P (S|Xn) ∝ P (Xn|S)P (S), we will model the
likelihood P (Xn|S) to encourage completeness and the prior
P (S) to encourage distance between shapes and therefore

minimality. It makes sense that the data likelihood accounts for
completeness because completeness requires observed points
to be close to a shape and the observed points arise from
the ground truth shapes with the addition of noise. We will
encourage good summary using a Bayesian loss function that
grows with increasing distance of the shapes to the point set.
Finally, we determine the number of shapes l by minimizing
the expected posterior loss.

a) Likelihood: Our likelihood will encourage complete-
ness. For the completeness condition (ii), we are interested

in making the average squared distance D
2
Xn,S of boundary

points in Xn = {x1, . . . , xn} to shapes in S small:

D
2
Xn,S =

∑
x∈Xn

d2Xn,S
(x)

|Xn|
=

∑n
j=1 d

2
Xn,S

(xj)

|Xn|
, (1)

where
d2Xn,S

(x) = min
s∈S

||x− s||22 (2)

is the minimum squared distance of a high entropy point x to
a point on any shape in the collection S = (S1, . . . , Sl).

An observed point xj ∈ Xn is assumed to have been
generated from a shape Szj , where zj gives the shape number
that explains xj . Given zj , we model the likelihood of xj as a
decreasing function of the minimum distance from xj to Szj .
The closer xj is to shape Szj , the higher the likelihood of
xj . The observations xj are assumed to be independent and
modeled as

xj = sj + εj = sj + rjnj , rj ∼ N(0,σ2
r),

where nj is a unit normal to Szj at sj and rj = (xj −sj) ·nj .
Here the noise vector εj = rjnj is along a unit normal nj to
the shape Szj at the closest shape point sj to xj . The scalar
residual rj is the signed distance along nj from the shape Szj
to xj . We model the observation error εj by modeling the
signed residual as a N(0,σ2

r) random variable.

Note that the squared residual r2j is just the minimum
distance squared from xj to the closest point sj on shape Szj :

r2j = min
s∈Szj

||xj − s||22,

where the minimum occurs at s = sj . Let Z = (z1, . . . , zn).
Assuming independence of points and that xj depends only
on shape Szj , then P (Xn|Z,S) =

∏n
j=1 P (xj |zj , Szj ) =∏n

j=1 N(rj |0,σ2
r). Since rj ∼ N(0,σ2

r), it follows that

P (Xn|Z,S) = Kσ
−n
r exp

(

−
1

2σ2
r

n∑

j=1

min
sj∈Szj

||xj − sj ||
2

2

)

, (3)

for a constant K. Note that if the observed point set Xn is close
to the shapes in S , then P (Xn|Z,S) is high. This statement
assumes, of course, that the correct shape Szj explaining each
point xj has also been identified.

We can obtain the likelihood P (Xn|S) by model-
ing Z|S and integrating out Z as in P (Xn|S) =∫
Z
P (Xn|Z,S)P (Z|S)dZ. We could, for example, model

Z|S by modeling a count vector C = (c1, . . . , cl) which
holds the number of observations ci explained by shape Si.
Here ci =

∑n
j=1 1zj=i. We can encourage good summary

by modeling C ∼ multinomial(n, (1/l, 1/l, . . . , 1/l)) where



each of the l shapes in S has the same probability 1/l of
generating an observed point. This would make shape sets with
any shapes that are from the data quite unlikely because we
would expect to see points around each shape according to the
given multinomial distribution.

It is difficult, however, to optimize over shape sets with
the hidden random variables Z in our models. Instead, we
make a simple but accurate and effective approximation in
our models and assume that the shape Szj that explains
observation xj is the shape in S which is closest to xj . Thus
we replace the minimization in equation (3) over sj ∈ Szj
with a minimization sj ∈ S over the entire shape set to obtain
the approximation

P (Xn|S) = Kσ
−n
r exp

(

−
1

2σ2
r

n∑

j=1

min
sj∈S

||xj − sj ||
2

2

)

. (4)

From equations (1),(2), we can see that the inner sum in

equation (4) is just a scaled version |Xn|D
2
Xn,S of our

completeness measure. We can easily write our likelihood in

terms of the completeness measure D
2
Xn,S . To do so cleanly,

define σ2
complete = σ2

r/|Xn|. Then

P (Xn|S) = Kσ−n
complete exp

(

−
1

2σ2
complete

D
2
Xn,S

)

,

where another constant factor has been absorbed into K.

b) Shape Set Prior: We build the shape set prior P (S)
based on the distances of points on each shape Si to the rest
of the shape set S−i = S\{Si}. To keep shapes apart from
one another, we want a large average squared distance from
points on each shape to the rest of the shapes. Let d2Si,Sj

(si)
be the minimum squared distance of a point si ∈ Si to another
shape Sj :

d2Si,Sj
(si) = min

sj∈Sj

||si − sj ||
2
2.

Then the squared distance of si ∈ Si to the shape set S−i is

d2Si,S−i
(si) = min

Sj∈S−i

d2Si,Sj
(si),

which finds the closest point in the rest of the shapes S−i to
si ∈ Si. Finally we average the inter-shape squared distances
over all points on all shapes to get

D
2
S =

∑
Si∈S

∑
si∈Si

d2Si,S−i
(si)∑

Si∈S |Si|

To keep the shapes apart a priori, we want D
2
S to be large,

indicating that on average the inter-shape distance is large.
Equivalently, 1/DS should be small. Therefore we model the
prior for S using the normal distribution

S ∼ N(D
−1
S ; 0,σ2

shapesim).

c) Bayesian Loss: Next we define a Bayesian loss
function that encourages good summary. We can think of the
summary condition (i) as requiring a small distance from each
shape S ∈ S to the set of classifier boundary points Xn. Let
d2S,Xn

(s) denote the squared distance from a shape point s ∈ S
to the point set Xn:

d2S,Xn
(s) = min

x∈Xn

||s− x||22.

We capture the average squared distance D
2
S,Xn

from the shape
set S to the input points Xn by averaging over all points on
all shapes in S = (S1, . . . , Sl):

D
2
S,Xn

=

∑l
a=1

∑
s∈Sa

d2Sa,Xn
(s)

∑l
a=1 |Sa|

.

We define our Bayesian loss function as

loss(S, Xn) = λsummaryD
2
S,Xn

The smaller the distance from each shape in S to the point
set Xn, the smaller the loss. Thus minimizing the loss will
encourage good summary.

4) Shape Fitting Method: Our shape fitting method has two
main steps:

Step 1 Minimize the expected posterior loss

g(l) = E[loss(S, Xn)], |S| = l

over l to obtain the number of shapes l∗

Step 2 Compute the MAP shape set S∗,l∗ for sets of size
l∗

a) Determining the Number of Shapes: We assume that
we can apriori limit the number of shapes l to some set L. For
example, if we know that there will not be more than five
boundaries then we can set L = {1, 2, 3, 4, 5}.

For each l ∈ L, we compute the expected posterior loss

g(l) = E[loss(S, X)] =

∫

{S:|S|=l}
loss(S, Xn)P̂ (S|Xn)dS.

Here we denote the shape set posterior probability distribution
for shape sets with a fixed number of shapes as P̂ (S|Xn). Then
we choose the number of shapes to minimize the expected
posterior loss:

l∗ = argmin
l∈L

g(l).

5) Our Shape Set Posterior Sampling Method: For a fixed
shape set size |S| = l, we will draw samples from the posterior
P (S|Xn) ∝ P (Xn|S)P (S) using an iterative procedure.
Shape set samples S with a small value for

− log(P (Xn|S)P (S)) = − log(P (Xn|S))− log(P (S))

should be more likely to occur.

V. EXPERIMENTS AND RESULTS

A. Evaluation on Artificial Data Sets

1) Active Learning: We illustrate the behavior of our
approach using a 2D artificial data set and a quadratic boundary
function normalized to a unit square. Starting with a low
number of Ninit = 126 randomly selected initial data points,
the active learning procedure selects N = 500 new data points
according to different candidate selection rules (random, ALC,
ALM, EI, and boundary EI). N has been selected this large
for visualization purposes. Figure 3 shows, how the different
selection algorithms behave. Our goal is to find many data
points near the threshold curve in order to enable accurate
representation and to facilitate subsequent shape estimation.



A B

C D

E

Fig. 3: Candidate points during active learning: (A) random
selection, (B) ALC, (C) ALM, (D) EI, and (E) boundary-EI.
Circles: initial data points. Solid: points added during active
learning (colored according to experiment outcome).

On the other hand, the entire area should be considered as
well in order not to miss any other boundary.

The random Monte-Carlo style selection (Figure 3A) needs
a prohibitively large N for reasonable results. The classical
ALC [13] (Figure 3B) finds many points near the boundary,
but still too many data points are away from the curve,
demanding large N . Other algorithms are too localized and
do not even explore the entire threshold curve (Figure 3C,
D). Our approach (Figure 3E) tries to find a suitable balance
between both requirements.
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Fig. 4: A: Histogram for distances d of candidate points
from boundary. Leftmost bars cropped for better visibility. B:
Histograms of boundary coverage.

There is a trade-space between closeness of selected points
to the safety boundary and a good curve coverage. For exam-
ple, a greedy algorithm might always select the same point

near the threshold (high closeness) but extremely low coverage.
Figure 4 shows this trade space. For each of the newly added
points, we calculate d as the minimal distance of that point to
the boundary. Obviously, small values should be preferred, as
such points close to the threshold help to accurately estimate its
shape. Figure 4A shows a histogram of distances d for various
update rules. Whereas random and ALC have large numbers
of points that are far away from the threshold surface, ALM
seems to perform best for this metric. However, Figure 4B
reveals that ALM only covers a very small portion of the
threshold surface. Random selection provides the best coverage
here. With our analysis goal in mind, our boundary-aware EI
metric features a good overall coverage and a high density of
points close to actual threshold surface.

Our boundary metric is parameterized by the parameter α
(see Section III-C). This parameter influences the width of the
”band” around the threshold surface that is considered for the
selection of the candidate point. Figure 5 shows runs with
several values of α. It seems that values around α = 0.8
produce the best results; values of α that are too small or
too large tend to lead to a situation, where the new points are
located too far from the threshold surface.

A B C D

Fig. 5: Boundary-EI for α = 0.2, 0.5, 0.8, 1

The performance of the active learning method and the
shape estimation can also be assessed by analyzing the al-
gorithm convergence, i.e., how many new data points are
necessary, before the estimated shape parameters are close to
the ground truth that has been used to generate the artificial
data set. For example, for a single hyperplane boundary, we

obtain C =
√
|̂θ|− |θ|, where θ and θ̂ are the ground truth

and the estimated parameters, respectively. Figure 6 compares
the convergence of random selection, ALC, and our method
over 10 runs and shows a superior performance of our method.
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Fig. 6: Convergence C for random (red), ALC (black), and
boundary-EI (green) over learning iterations.

2) Shape Selection: To assess the performance of our shape
selection and estimation method, we carried out experiments
with boundaries in the shape of hyperspheres. Table IA shows
the results in the two-dimensional case. With a total 126+700
data points, sphere S1 was correctly recognized in all 25
runs; S2 was only correctly estimated in 5 of the runs. The



table shows the ground-truth values, means and variances for
the successful runs. 74 data points were selected for shape
estimation.

TABLE I: Parameters for 2D (A) and 5D spheres (B).

true value µ̂(σ̂2)
x0 0.3 0.295(1.4e-5)
y0 0.3 0.289(3e-5)
r0 0.2 0.20(6.6e-6)
x1 0.7 0.715(8.5e-5)
y1 0.7 0.72(8.6e-5)
r0 0.2 0.20(5.2e-5)

true value µ̂(σ̂2)
c1 0.3 0.29(7e-3)
c2 0.3 0.26(5e-3)
c3 0.3 0.32(8e-3)
c4 0.3 0.31(7e-3)
c5 0.3 0.27(9e-3)
r 0.3 0.29(8e-4)

Table IB shows the situation in a 5D space. With the
centers located at c⃗1 = (0.3, 0.3, 0.3, 0.3, 0.3)T , and c⃗1 =
(0.7, 0.7, 0.7, 0.7, 0.7)T , respectively and radius r = 0.3.
Active learning selected 1000 data points, 155 of which were
selected for shape estimation. Here, the results are much worse.
E.g., the second sphere was not recognized in any of the 10
runs, indicating that for a 5D space, the number of data points
must be considerable larger. Future work will address this
issue.

B. IFCS Data Set

The Intelligent Flight Control System (IFCS) is a damage-
adaptive Neural Networks (NN) based flight control system
developed by NASA and test-flown on a manned F-15 aircraft
[2]. An on-line trained NN provides control augmentation to
dynamically counteract damages to the aircraft. For our exper-
iments, we considered this system as a black box, controlled
by numerous parameters (e.g., NN weights, controller gains, or
learning rate). A simulation run was considered to be success-
ful, if, after an injected damage, the aircraft remained stable
for at least 20 seconds. After an initial parameter sensitivity
analysis, we selected the parameters wp, wq, wr,Klat, and ζ
for further analysis, where the wi are proportional gains of
the controllers, Klat the lateral stick gain, and ζ a damping
coefficient. We generated a combinatorial data set of 32,768
data points, out of which 7,992 runs were successful.

A boundary over these parameters exist in a shape of a
hypersphere. This spherical shape is a consequence of the
IFCS design, and the shape can be described by (wp−x0

φ1
)2 +

(wq−φ2−y0

φ3
)2 = (wr−φ3−z0

φ4
)2 = ζ × φ5 −Klat. This stability

boundary is is parameterized by unknown φi. x0, y0, z0 are
design-time constants.

Figure 7A shows the actual and estimated boundary in a
projection into wp, wq , and Klat. For our shape fitting and
estimating experiment, we used 1000+5000 data points. The
shape parameters for the boundary in Figure 7B were estimated
based upon 485 points near the boundary within an ϵ-band of
width 0.2.

C. Experiments with TTSAFE

The Terminal Tactical Separation Assured Flight Envi-
ronment (TTSAFE) is a software tool to predict violations
of separation rules between aircraft near an airport [17].
TTSAFE uses novel algorithms for predicting the trajectories
and encodes all complex terminal separation rules. Thus, we
decided to analyze TTSAFE as a black box. The inputs to
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Fig. 7: A: Actual boundary (blue) and estimated boundary
(green) over wp, wq,Klat. B: Estimated hypersphere shape.

TTSAFE are the aircraft trajectories as well as a number
of configuration parameters. During each run, the number of
detected losses of separation (“numlos”) as well as the time to
loss of separation (“ttlos”) is reported. For a given scenario,
low numbers of numlos and late detection (small ttlos) mean
unsafe situations. We analyzed the behavior of the TTSAFE
system with respect to different parameter values and altitude
biases. Here we focus on the altitude biases, which can be
caused by noisy or faulty radar measurements.
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Fig. 8: A: Active learning of boundaries. B: Different values
of numlos over different altitude biases for aircraft 1 and 2.

Figure 8A shows a boundary with respect to the TTSAFE
parameters “MinHorizSepNmi” (minimal horizontal separation
in Nautical miles) and how often the detection algorithm is
executed “CheckPeriodMinutes” in a normalized space. Red
and green circles denote the initial data points; triangles the
points added by active learning. The blue line visualizes the
estimated (hyperplane) boundary. A bias in the altitudes of
the two converging aircraft can confuse TTSAFE: the aircraft
might appear closer to each other than they actually are,
causing a false alarm. Alternatively, they might appear farther
apart than in reality. This is a dangerous situation as TTSAFE
would not detect the loss of separation. In Figure 8B we show
the space spanned by the two bias parameters. Blue dots are
in a safe region (higher numbers of numlos); red and magenta
dots represent unsafe regions.

Figure 9A shows results of the above experiment with
respect to time to loss (ttlos). It turned out that this boundary
is rather small and hidden in the entire parameter space
(Figure 9B).

VI. CONCLUSION AND DISCUSSION

In this paper, we described a statistical modeling ap-
proach for the online detection and characterization of safety
boundaries. Given a library of candidate shapes, location and
parameters of the boundaries are estimated using an advanced
Bayesian modeling approach. The results of our boundary
analysis is provided in a form understandable by the domain



A B

Fig. 9: A: Boundary of ttlos over altitude biases. New data
points added by active learning with ttlos > 0.5 (blue) and
ttlos < 0.5 (red). B: Boundary shown in A (red) in otherwise
insensitive parameter space.

expert. Our active learning procedure uses a boundary-aware
metric to quickly and effectively find new data points near the
boundary. Experiments show that existing boundaries could
be reliably found and their shape parameters estimated with
confidence interval. Our boundary-EI substantially improved
the selection of new data points.

In our future work, we will investigate whether a tighter
coupling of the selection metric and the posteriors of shape
detection can improve the active learning performance.
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