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Abstract—The loading of spacecraft propellants is a risky and
unsafe operation. Therefore, diagnostic solutions are neces-
sary to quickly identify when a fault occurs, so that recovery
actions can be taken or an abort procedure can be initiated.
Model-based diagnosis solutions, established using an in-
depth analysis and understanding of the underlying physical
processes, offer the advanced capability to quickly detect and
isolate faults, identify their severity, and predict their effects
on system performance. We develop a physics-based model
of a cryogenic propellant loading system, which describes the
complex dynamics of liquid hydrogen filling from a storage
tank to an external vehicle tank, as well as the influence of
different faults on this process. The model takes into account
the main physical processes such as highly non-equilibrium
condensation of the hydrogen vapor, pressurization, and also
the dynamics of liquid hydrogen and vapor flows inside the
system in the presence of helium gas. Since the model in-
corporates multiple faults in the system, it provides a suitable
framework for model-based diagnostics and prognostics al-
gorithms. Using this model, we analyze the effects of faults
on the system, and derive symbolic fault signatures for the
purposes of fault isolation. We perform fault identification
using a particle filter approach. We demonstrate the detec-
tion, isolation, and identification of a number of faults using
simulation-based experiments. The results confirm the effec-
tiveness of a model-based approach.
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1. INTRODUCTION

The loading of spacecraft cryogenic propellants is an inher-
ently risky and unsafe operation, especially in the case of hy-
drogen [1–4]. Therefore, diagnostic solutions are necessary
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to quickly identify when a fault occurs, so that recovery ac-
tions can be taken or an abort procedure can be initiated be-
fore system safety is compromised. Model-based diagnosis
approaches enable quick and robust detection, isolation, and
identification of faults, because they rely on a detailed model
of system behavior under nominal and faulty conditions.

Applying a model-based approach requires an in-depth anal-
ysis and understanding of the underlying physical processes
in order to produce an accurate and reliable system model.
However, cryogenic propellant loading involves complex
physical processes that are difficult to capture. In this paper,
we develop a medium-fidelity, lumped-parameter dynamical
model of propellant loading that takes into consideration a
variety of complex multi-phase phenomena that govern the
storage and transfer of cryogenic propellants, yet is simple
enough to allow for physics analysis and numerical simula-
tions of real loading systems [5]. We concentrate on a system
of liquid hydrogen (LH2) filling that is functionally represen-
tative of the Space Shuttle refueling system. In this system,
LH2 is stored on the ground in a spherical, insulated, double-
walled storage tank (ST), and is transfered to the external ve-
hicle tank (ET) through a network of pipes and valves. A
feedback system involving a vaporizer attached to the storage
tank creates the pressure needed to move the propellant. The
model takes into account the main physical processes such as
highly non-equilibrium condensation of the hydrogen vapor,
pressurization, and also the dynamics of liquid hydrogen and
vapor flows inside the system in the presence of helium gas.
Since the model incorporates faults in the system, it provides
a suitable framework for model-based diagnostics and prog-
nostics algorithms.

We apply a model-based diagnostic approach to the system
using a combined qualitative-quantitative fault isolation and
identification methodology [6]. Deviations in measured val-
ues from model-predicted values imply the presence of faults,
and are abstracted to symbolic increasing/decreasing symbols
for quick fault isolation by comparing to qualitative predic-
tions made using the system model. Fault identification is
performed using particle filters for joint state-parameter esti-
mation. We demonstrate the detection, isolation, and identi-
fication of a number of faults using simulation-based experi-
ments.

The paper is organized as follows. Section 2 describes the
propellant loading system and develops the physics model.
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Figure 1. LH2 propellant loading schematic.

Section 3 overviews the diagnosis approach. Section 4 de-
scribes the fault detection methodology, Section 5 discusses
fault isolation, and Section 6 develops the fault identification
approach. Section 7 demonstrates the approach with a num-
ber of simulation-based experiments. Section 8 concludes the
paper.

2. SYSTEM MODELING

In model-based diagnosis, diagnosis algorithms utilize a
model of the system for the fault detection, isolation, and
identification tasks. We advocate a physics-based modeling
approach, because an understanding of the physical processes
in both the nominal and faulty cases is necessary for success-
ful fault identification. Information on fault severity is nec-
essary in order to make appropriate recovery actions in re-
sponse to a fault, especially in propellant loading domain. In
this section, we develop the physics model of the LH2 pro-
pellant loading system. Since the focus of the paper is on
diagnostics, we review the main features of the model, and
refer to [4, 5] for additional details. We first summarize the
filling protocol, followed by mathematical descriptions of the
tanks.

Filling Protocol

The purpose of the LH2 propellant loading system is to
move LH2 from the storage tank (ST) to the external tank
(ET). Fig. 1 shows a simplified, but functionally equivalent
schematic of the system. Initially, the ullages of the tanks are
at atmospheric pressure due to the presence of gaseous hydro-
gen (GH2). Before filling, the tanks are first pressurized. The
ST is pressurized first to 54.7 psia, then 80.7 psia through the
use of the vaporizer, which boils off LH2 from the ST and
returns the GH2 to the ullage of the ST. The ET is filled with
gaseous helium (GHe) through the prepressurization valve,
until it reaches 38.7 psia. The purpose of pressurization is
two-fold. First, it limits potential boiling of the propellant by
keeping a high vapor pressure in the ullage of the tanks. Sec-
ond, the pressure difference between the ST and ET is what
drives propellant to the ET.

Filling progresses in stages with different filling rates, con-
trolled by the position of the transfer line valve (in reality
there are a number of valves between the tanks, but in this

Figure 2. Control Volumes (CV), mass and energy flows in
an LH2 tank.

paper we consider a simplified representation consisting of
a single valve). Slow fill begins first with a low flow rate
and chilling of the ET. As the liquid drains out of the ST, its
ullage pressure drops, so the vaporizer constantly maintains
the ullage pressure to keep LH2 flowing to the ET. The flow
through the vaporizer valve is modulated based on the error
between the measured ST ullage pressure and the ST pressure
set point. As the ET is filled, its ullage volume decreases, and,
therefore, its ullage pressure increases. The ullage pressure
in the ET is maintained using its vent valve, which opens and
closes to maintain the pressure between 38.7 and 41.7 psia.

When the ET is 5% full, fast fill begins. When the ET is
72% full, the ullage pressure of the ST is reduced to 64.7
psia. When the ET is 85% full, the fill rate is reduced. When
the ET is 98% full, topping begins at a lower flow rate. The
ET vent valve is also opened, reducing the ET ullage pres-
sure to 14.7 psia. Finally, at 100% full, topping ends and the
tank is continuously replenished to replace the boil off before
launch. During replenish, the fill valve position is modulated
to maintain the ET level at 100%.

Tank Modeling

For each tank, we will consider three control volumes: the
vapor, the liquid, and the vapor film, as shown in Fig. 2. By
convention, positive mass/energy flows enter the CV, and neg-
ative flows exit the CV.

The vapor CV (v) consists of GH2 (subscript v) and GHe
(subscript g), and is treated as a mixture of ideal gases with
partial densities ρv(g) and pressures pv(g), as well as a com-
mon temperature Tv , all related to each other by the following
equations of state:

pv = ρvRvTv

pg = ρgRgTv.

The liquid CV (l) is where, far from the surface, the tempera-
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ture is equal to Tl and the liquid is treated as incompressible.
Tl is treated as a constant at 20 K.

The vapor film CV (f ) separates the liquid and gas phases. It
is treated as saturated hydrogen vapor, whose temperature is
equal to that of the liquid/vapor interface, where [1, 4, 7]

Tf = TC

(
pv

pC

)n

,

with pC = 1.315 MPa, TC = 33.2 K, and n = 5 for hydro-
gen [7].

For the liquid CV, the mass conservation is defined by the ex-
ternal mass flow Jle (i.e., the flow across its boundaries other
than through the interface), and the interphase (condensation-
evaporation) flow Jlv (defined later):

ṁl = Jle + Jlv

Similarly, the GH2 and GHe mass conservation for CV (v)
yields

ṁv = Jve − Jlv

ṁg = Jge.

where Jve and Jge are the external GH2 and GHe flows. For
a given tank volume V , the vapor volume is fully defined by
the mass of liquid, since it has a constant density:

V = Vv + Vl = Vv +ml/ρl.

The energy conservation for the vapor CV is:

Q̇v = Q̇ve − Q̇vf − Ẇ − Jlvhvf +

Jve(hve + v2
ve/2) + Jge(hge + v2

ge/2),

where Q̇ve is the net external heat flow into the CV (v)
through the tank walls, Q̇vf is the heat flow lost through the
interface, Ẇ = −ptdVl/dt is related to the quasi-static power
due to compression (expansion) of the CV (v), hvf is the en-
thalpy of the Jlv flow (equal to that of the saturated vapor),
hve and hge are the enthalpies of the hydrogen and helium gas
entering the CV, and vve and vge are the velocities of the in-
coming gases [8]. Here, the kinetic energies associated with
both the GH2 and GHe mass flows entering the CV (v) are
taken into consideration, because the corresponding veloci-
ties vv(g)e are much greater than the one related to interphase
flow. The temperature of the mixed gas is then described by

Ṫv =
1

mvcV
(Q̇v − ṁvcV,vTv − ṁgcV,gTv),

where cV,v and cV,g are the specific heats at constant volume
for the vapor and gas, and cV is the specific heat at constant
volume for the mixed gas.

If the film layer is considered negligibly thin so that one can
ignore its mass [1], then the energy balance equation for the
CV (f ) can be written as

Q̇vf − Q̇fl + Jlvhlv = 0,

where Q̇vf is the heat flow from the vapor CV, Q̇fl is the heat
flow to the liquid CV, and hlv is the enthalpy (heat) of vapor-
ization. Strictly speaking, hlv depends on the saturated vapor
temperature, such that it goes to zero when the surface tem-
perature approaches the critical temperature TC [9]. To take
this effect into consideration, we use the following simple in-
terpolation formula for Tf ≤ TC :

hlv(Tf ) = h0
lv

(
TC − Tf

TC − Tl

)1/2

,

where for liquid hydrogen, TC = 33 K and h0
lv
∼= u0

lv =
4.5 × 105 J/kg at p = 1 atm and Tl = 20 K [9]. The heat
flow terms may be computed based on the liquid, vapor, and
film temperatures, allowing for Jlv to be computed with the
energy balance equation.

The heat flows Qfl and Qvf are dominated either by conduc-
tion or convection, depending on the relative temperatures of
the liquid, vapor, and film [5]. If Tf > Tl then conduction
heat transfer defines Qfl, else convection does. If Tv > Tf ,
then conduction heat transfer defines Qvf , else convection
does. In the case of conduction, we use the following approx-
imation:

Q̇cond
fl = Afα

cond
fl (Tf − Tl)

Q̇cond
vf = Afα

cond
vf (Tv − Tf ),

where Af is the surface area of the interface, and the α terms
are heat transfer coefficients (see [5]). Typically, conduction
expressions contain complex integrals, but here, we use this
algebraic approximation that has proven adequate in for our
system [5]. For convection, we use

Q̇conv
fl = Afα

conv
fl (Tf − Tl)

Q̇conv
vf = Afα

conv
vf (Tv − Tf ).

Both the liquid and vapor CVs absorb external (e) heat from
the tank walls. This heat is transferred by means of convec-
tion so that

Q̇v(l)e = Av(l)αv(l)e

(
Tw − Tv(l)

)
,

where Av(l) are the internal tank surfaces in contact with va-
por (liquid), and αv(l)e are the convection heat transfer coef-
ficients [5]. The wall temperature Tw is governed by the heat
flow passing through the walls from the environment [1–3].

The temperature Tw of the tank wall, considered uniform, is
to be defined by the heat exchange rate with the tank sur-
roundings with the effective ambient temperature Ta:

Q̇w = Aαw (Ta − Tw) .

The wall temperature is governed by the tank energy conser-
vation:

mwcwṪw = Q̇w − Q̇le − Q̇ve.

Here, the heat transfer coefficients describe natural convec-
tion inside and outside the tank walls [1, 10].
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The Storage Tank

The above equations apply equally well to both the ST and
the ET. We denote variables of the ST with a 1 subscript, and
variables of the ET with a 2 subscript. For the ST, there is
no GHe in the ullage volume, so pg1 = ρg1 = 0. The exter-
nal mass flow for the liquid consists of vaporizer flow Jvap,
transfer line flow Jtr, and leak flow J,leak,1:

Jle1 = −Jvap − Jtr − Jl,leak1.

Jtr is described by

Jtr = λtrσtrαtr

√
p1 − p2,

where λtr is the valve position (an input), αtr is the flow
coefficient, p1 = pv1 + ρlhl1 is the total ST pressure where
hl1 is the height of the liquid, p2 = pv2 + pg2 + ρlhl2 is the
total ET pressure, and σtr is a (dimensionless) multiplicative
factor describing a transfer line blockage fault.

In the vaporizer, a certain amount of LH2 is evaporated and
returned to the ST, thus controlling its ullage pressure. We
assume that all liquid flow through the vaporizer is converted
instantaneously to GH2. The flow is given by

Jvap = λvapσvapαvap

√
p1 − pvap

where λvap is the vaporizer valve position, αvap is the flow
coefficient, pvap is the pressure in the vaporizer (close to at-
mospheric pressure), and σtr is a multiplicative factor de-
scribing the vaporizer valve blockage fault. The vaporizer
valve position is controlled by

λvap = min
(

1,max
(

0, 10
p∗v1 − pv1

p∗v1

))
,

where p∗v1 is the desired ST ullage pressure.

The liquid leak flow is given by

Jl,leak,1 = Al,leak,1αl,leak,1

√
p1 − patm,

where Al,leak,1 is the the area of the leak hole, αl,leak,1 is the
leak hole coefficient, and patm is atmospheric pressure.

In the vapor CV, Jve1 = −Jv,leak,1, where

Jv,leak,1 = Av,leak,1αv,leak,1

√
pv1 − patm.

Heat leaks constitute the external heat flow term, i.e., Q̇ve1 =
Q̇leak,1.

The External Tank

For the ET, the external liquid flow is given by

Jle2 = Jtr − Jl,leak,2 − Jboil,

where Jl,leak2 is described similar to that for the ST, and
Jboil = Q̇le2/hlv(Tw2 − Tl2) is responsible for intense LH2

evaporation as the ET walls are being initially chilled down
during the beginning of the slow fill stage.

In the vapor CV, the external flows are given by

Jve2 = −Jv,vent,2 − Jv,leak,2

Jge2 = Jg,pp − Jv,vent,2 − Jg,leak,2,

where Jg,pp is the prepressurization flow of GHe, and

Jv(g),vent,2 = Avent,2αv(g),vent,2σvent,2λvent,2ρv(g)·√
pv2 + pg2 − patm.

Here, the dimensionless flow coefficient K (the loss factor)
can be found in Schmidt et. al. [10] (see Tables 7-2 and 7-3
therein); a dimensionless relative valve position assumes val-
ues between λk = 1 (fully open) and λk = 0 (fully closed)
[10]. During filling, the valve opens when the pressure ex-
ceeds 41.7 psia and closes when it falls below 38.7 psia. The
vapor/gas leaks may be defined as with the ST. Heat leaks
constitute the external heat flow term, i.e., Q̇ve2 = Q̇leak,2.

Nominal Dynamics

Fig. 3 summarizes the major results of the simulation of a
nominal loading regime, which are based on the parameters,
initial conditions, and filling protocol that all are typical for
LH2 loading systems. These values are provided in [5].

It can be seen (Fig. 3a) that the LH2 level in the ST drops
monotonically as the level in the ET rises (Fig. 3d). The
pressure p1 in the ST (Fig. 3b) is determined by the load-
ing dynamics (filling protocol) and controlled by the vapor-
izer. Once achieved during slow fill, the pressure in the ST
is maintained at approximately 80.7 psia up to the end of the
reduced-pressure fast fill (see Figs. 3b and 3j), at which point
it is maintained at 64.7 psia. Meanwhile, the ET ullage pres-
sure (Fig. 3e) is oscillating due to the cycling of the vent valve
that maintains the pressure between lower and upper thresh-
olds of 38.7 and 41.7 psia, correspondingly. The fluctuations
in the ET ullage temperature (Fig. 3f) as well as in the mass
flow rates (Figs. 3j and 3h) are driven by the ET pressure os-
cillations.

The LH2 partial pressure in the ET rises due to the contin-
uing hydrogen supply, while the GHe partial pressure drops
because the helium is being permanently removed through
the vent valve (Fig. 3i). In this case, due to the condensation
blocking effect [4], the flow of the condensed vapor in the ET
(Fig. 3h) is several orders of magnitude smaller than that in
the ST (Fig. 3g), because the vapor pressure is being main-
tained approximately equal to the equilibrium pressure of the
condensed vapor at the temperature of LH2. The ullage tem-
perature Tv2 in the ET (Fig. 3f) increases initially due to the
introduction of the GHe during the pressurization stage, then
drops from the initial high value due to venting and near-wall
boiling that generates relatively cold GH2 during filling. The
liquid surface temperature Tf1 in the ST increases (Fig. 3c)
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Figure 3. Nominal regime of LH2 propellant loading.

due to the vapor condensation at the interface. Simultane-
ously, the ST ullage temperature Tv1 increases, mainly be-
cause the relatively hot GH2 is supplied by the vaporizer as
loading is going on. As a result, the ullage temperature ap-
proaches the temperature of LH2 saturated vapor at a pressure
close to the final ST ullage pressure of approximately 5 atm
(Fig. 3b).

3. DIAGNOSIS APPROACH

We apply a model-based diagnosis approach using the
physics model of the LH2 system. In this paper, we con-
sider the problem of single fault diagnosis. The system may

be described in the following general form:

ẋ(t) = f(t,x(t),θ(t),u(t),v(t))
y(t) = h(t,x(t),θ(t),u(t),n(t)),

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the pa-
rameter vector, u(t) ∈ Rnu is the input vector, v(t) ∈ Rnv

is the process noise vector, f is the state equation, y(t) ∈
Rny is the output vector, n(t) ∈ Rnn is the measurement
noise vector, and h is the output equation.

Measurements are time-varying signal of y(t) obtained from
the system sensors. In the LH2 system, we consider the fol-
lowing measurements for diagnosis: Vl1, pv1, Tv1, Vl2, pv2,
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Figure 4. Diagnosis architecture.

Tv2, Jtr, λvap, and λvent,2.

We consider single, abrupt faults, modeled as unexpected step
changes in system parameter values. We name faults by the
associated parameter and the direction of change, i.e., θ+ de-
notes a fault defined as an increase in the value of parameter θ,
and θ− denotes a fault defined as a decrease in the parameter
value. For the LH2 system, we consider liquid and gas leaks,
heat leaks, and valve clogging. The liquid and vapor leaks are
defined by the equivalent leak areas, nominally zero, so faults
are defined as increases in these areas, denoted by A+

l,leak,1,
A+

v,leak,1, A+
l,leak,2, and A+

v,leak,2. The heat leaks are defined
by the heat leak rate, nominally zero, so faults are increases
in these values, denoted by Q̇+

leak,1 and Q̇+
leak,2. The valve

clogging faults are described by the σ parameters, which are
nominally 1, so faults are decreases in these values (0 at a
minimum), denoted by σ−tr, σ−vap, and σ−vent,2.

The diagnosis architecture is shown in Fig. 4. The system
receives inputs u(t) and produces outputs y(t). The system
physics simulation runs simultaneously, producing predicted
outputs ŷ(t), given the inputs u(t). Using statistical meth-
ods, the fault detection module decides when a measurement
has deviated from its nominal value, triggering fault isola-
tion. Measurement deviations are then used to quickly isolate
faults F . Fault identification computes, for each fault f ∈ F ,
the value of the fault parameter that best fits the outputs of the
system, and candidate with the lowest output error is selected
as the best candidate.

4. FAULT DETECTION

In model-based fault detection, a model of the system pro-
vides reference outputs representing nominal system behav-
ior. For each sensor output y(t), we define the residual as
r(t) = y(t)− ŷ(t), where ŷ(t) is the model-predicted output
signal. Statistically significant deviations of the actual system
outputs from the model-predicted outputs imply the presence
of a fault. If the model is accurate, then fault detection thresh-
olds can be small and faults detected quickly. The thresholds
are dynamic in that they are defined with respect to nominal
behaviors as a function of time. This is favorable to the cur-
rent practice with such systems, where thresholds are static,
preventing one from detecting subtle deviations from nominal
behavior indicating faults

We use the Z-test for robust fault detection using a set of slid-
ing windows [11, 12]. A small window, W2, is used to esti-
mate the current mean µr(t) of a residual signal:

µr(t) =
1
W2

t∑
i=t−W2+1

r(i).

The variance of the nominal residual signal, σ2
r(t), is com-

puted using a large window W1 preceding W2, by a buffer
Wdelay, which ensures that W1 does not contain any samples
after fault occurrence. The variance is computed using:

σ2
r(t) =

1
W1

t−W2−Wdelay∑
i=t−W2−Wdelay−W1+1

(r(i)− µ′r(t))2,

where

µ′r(t) =
1
W1

t−W2−Wdelay∑
i=t−W2−Wdelay−W1+1

r(i).

A pre-specified confidence level determines the bounds z− <
0 and z+ > 0 for a two-sided Z-test. The fault detection
thresholds, ε−r (t) and ε+r (t), are dynamically computed us-
ing:

ε−r (t) = z−
σr(t)√
W2

− E

ε+r (t) = z+ σr(t)√
W2

+ E,

where E is a modeling error term. A fault is detected if µr(t)
lies outside of the thresholds at time t. If µr(t) < ε−r (t), a
- symbol for the measurement is used by the fault isolation
module, and if µr(t) > ε+r (t), a + symbol is used. Generally,
the parametersW1,W2,Wdelay, the z bounds, andE must be
tuned to optimize performance to minimize both false alarms
and missed detections.

5. FAULT ISOLATION

We utilize a qualitative diagnosis methodology that isolates
faults based on the transients they cause in system behav-
ior, manifesting as deviations in observed measurement val-
ues from nominal measurement values [6]. The transients are
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abstracted using qualitative + (increase), - (decrease), and 0
(no change) values to form fault signatures. Fault signatures
represent these measurement deviations from nominal behav-
ior as the immediate (discontinuous) change in magnitude,
and the first nonzero derivative change.

The fault signatures can be derived automatically from a
graph-based representation of the system model, known as a
temporal causal graph (TCG) [6]. A TCG captures dynamic
system variables as nodes in a graph, and the qualitative re-
lations between them as edges. These edges are labeled with
dt, representing integration, +1, denoting a proportionality,
−1, denoting an inverse proportionality, and system parame-
ters. Faults that are modeled as parameter changes appear on
edges, allowing the qualitative effects of parameter changes
to be propagated over the system variables. Propagation to
measured variables reveals the qualitative effects of faults on
measurements.

A partial TCG for the LH2 system, showing some key vari-
ables of the ST, is shown in Fig. 5. Variables within dashed
boxes are measured. Here, we show only the σvap fault. A
forward propagation algorithm may be used to derive the fault
signatures. Details may be found in [6], so here, we use the
example of the vaporizer valve clogging fault as an example
to illustrate the general procedure. According to the TCG, a
decrease in σvap will lead to a decrease in Jvap, and subse-
quently a decrease in Jv1, and, due to the −1 label, an in-
crease in Jl1. The decrease in Jv1 will lead to a first-order
decrease (due to the dt label) in mv1 and, subsequently, pv1,
which is a measured variable. This change then propagates
as a decrease in Jtr, and then towards ET variables. The in-
crease in Jl1 will lead to a first-order increase in ml1 and Vl1,
which is measured, leading to an increase in Jtr. This con-
flicts with the previously predicted decrease from the other
path with the same derivative order, resulting in an ambiguity
denoted with a *. We can use the simulation and knowledge
of the system dynamics to resolve these. In this case, we
know that the hydrostatic pressure due to the height of the
liquid is negligible compared to pv1 due to the very low den-
sity of LH2. Therefore, we know that the decrease effect will
dominate. The propagation continues to all system variables.

Fault signatures for the LH2 system are shown in Table 1.
Due to the dynamics of the system, all faults appear as smooth
changes in the measured values, so only the first change
presents useful diagnostic information, hence, we show only
the first symbol derived from forward propagation. Recall
that the derived symbols represent deviations from nominal
behavior, so, for example, the + symbol for Vl1 caused by
A+

v,leak,1 does not necessarily mean that Vl1 increases, rather,
it increases with respect to its nominal value, i.e., it decreases
at a slower rate. The remaining * symbols are for those in
which the qualitative effect may be different depending on the
state of the system. Note also that this is a hybrid system, i.e.,
it has continuous dynamics mixed with discrete dynamics due
to the valves, and we show only the signatures for the mode

Figure 5. Partial TCG of the LH2 system.

Table 1. Fault Signatures for the LH2 System

Fault Vl1 pv1 Tv1 Vl2 pv2 Tv2 Jtr λvap λvent,2

A+
l,leak,1 - - * - - * - + -

A+
v,leak,1 + - - - - * - + -

Q̇+
leak,1 - + + + + * + - +

A+
l,leak,2 - - * - - * + + -

A+
v,leak,2 - - * + - - + + -

Q̇+
leak,2 + + * - + + - - +

σ−tr + + * - - - - - -

σ−vap + - - - - * - + -

σ−vent,2 + + * - + + - - +

where the vent valve is closed. When the vent valve opens,
some of the signatures will flip. A systematic framework for
dealing with this issue is discussed in detail in [13].

Using the signatures, we can perform diagnosability analy-
sis to determine the effectiveness of the isolation step. We
can see that in most cases, the set of signatures produced dis-
tinguishes most faults. One exception is the pair A+

v,leak,1

and σ−vap, which have all the same signatures, therefore, fault
identification will have to distinguish between them, since
quantitatively, they should have different effects on the mea-
sured variables. If we measure Jvap, then the faults can
be distinguished, because σ−vap would produce a decrease
in Jvap, whereas A+

v,leak,1 would produce an increase. The
faults Q̇+

leak,2 and σ−vent,2 are similarly indistinguishable.

We can also use the signatures to perform measurement selec-
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tion. The measurement of λvap always has the same signature
as p1, therefore one of these can be eliminated without loss
of diagnosability. However, both quantities are relatively easy
to measure, so there is value in keeping them both. However,
λvap is typically more sensitive to faults than p1, since p1

is controlled which may mask faults. Similarly, both p2 and
λvent,2 are not needed. Changes in p2 are reflected in changes
in the switching frequency of the vent valve, and therefore
provide the same information, although changes in the vent
valve position can be detected much more easily, again be-
cause the control of p2 leads to fault masking in that measure-
ment. It is also beneficial to keep as many measurements as
possible, because this gives more information for fault iden-
tification as well. Further, the qualitative fault signatures say
nothing about fault magnitude. Some faults may not produce
large enough changes in some variables for the changes to be
detected, therefore, having more measurements helps to alle-
viate this problem.

6. FAULT IDENTIFICATION

Fault identification is initiated immediately after the initial
set of fault candidates is produced after fault detection. Each
candidate has its own identification module that updates its
estimate at every time step. Identification is performed using
the particle filtering algorithm for joint state-parameter esti-
mation [14, 15] and has seen previous application in model-
based diagnosis and prognosis algorithms [16–19]. The mag-
nitude of the fault parameter θ is estimated along with the
system state.

The identification module must compute p(xk,θk|y0:k). A
general solution to this problem is the particle filter, which
may be directly applied to nonlinear systems with non-
Gaussian noise terms. Particle filters offer approximate (sub-
optimal) solutions for systems where optimal solutions are
unavailable or intractable [14, 15]. In particle filters, the state
distribution is approximated by a set of discrete weighted
samples, called particles. As the number of particles is in-
creased, performance increases and the optimal solution is
approached. Due to the highly nonlinear dynamics of the
LH2 loading system, particle filters are favored over other
estimation approaches such as the extended Kalman filter.

With particle filters, the particle approximation to the state
distribution is given by

{(xi
k,θ

i
k),wi

k}Ni=1,

where N denotes the number of particles, and for particle i,
xi
k denotes the state vector estimate, θi

k denotes the parame-
ter vector estimate, and wi

k denotes the weight. The posterior
density is approximated by

p(xk,θk|y0:k) ≈
N∑

i=1

wi
kδ(xi

k,θi
k)(dxkdθk),

where δ(xi
k,θi

k)(dxkdθk) denotes the Dirac delta function lo-

cated at (xi
k,θ

i
k).

Algorithm 1 SIR Filter
Inputs: {(xi

k−1,θ
i
k−1),wi

k−1}
N
i=1,uk−1:k,yk

Outputs: {(xi
k,θ

i
k),wi

k}
N
i=1

for i = 1 to N do
θi

k ∼ p(θk|θi
k−1)

xi
k ∼ p(xk|xi

k−1,θ
i
k−1,uk−1)

wi
k ← p(yk|xi

k,θ
i
k,uk)

end for

W ←
N∑

i=1

wi
k

for i = 1 to N do
wi

k ← wi
k/W

end for
{(xi

k,θ
i
k),wi

k}
N
i=1 ← Resample({(xi

k,θ
i
k),wi

k}
N
i=1)

We employ the sampling importance resampling (SIR) parti-
cle filter, and implement the resampling step using systematic
resampling [20]. The pseudocode for a single step of the SIR
filter is shown as Algorithm 1. Each particle is propagated
forward to time k by first sampling new parameter values and
sampling new states. The particle weight is assigned using
yk. The weights are then normalized, followed by the resam-
pling step3.

Here, the parameters θk evolve by some unknown process
that is independent of the state xk. However, we need to
assign some type of evolution to the parameters. The typi-
cal solution is to use a random walk, i.e., for parameter θ,
θk = θk−1 + ξk−1, where ξk−1 is typically Gaussian noise.
With this type of evolution, the particles generated with pa-
rameter values closest to the true values should be assigned
higher weight, thus allowing the particle filter to converge to
the true values. The selected variance of the random walk
noise determines both the rate of this convergence and the es-
timation performance once convergence is achieved. Using
the simulation, we can determine appropriate values for the
random walk variances.

Under the single fault assumption, we can run a set of par-
allel particle filters, one for each consistent fault candidate.
This reduces the dimensionality of the estimation task over
combined estimation of all fault parameters, and allows the
particle filters to be much more efficient. The particle filters
are initiated at the point of fault detection, using the model-
estimated state at that time point for initialization of the states.
The fault parameter estimate starts at its value during nomi-
nal operation (e.g., 0 for leak areas). When the fault isolation
module reduces the set of candidates F , the identification task
continues only for those faults remaining in F .

Because diagnosability may be limited, fault identification
must also be used to help refine fault candidates. The par-
ticle filter for the true fault candidate should estimate the cor-
rect fault parameter and track the faulty outputs with low er-
ror, whereas the particle filters for the incorrect faults will not
track and result in large error. We compute the mean squared

3Pseudocode for the systematic resampling algorithm is provided in [14].
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output error for each candidate from the point of fault detec-
tion to the present time. The candidate with the lowest output
error e is considered to be the true candidate.

7. RESULTS

We illustrate the diagnosis process with the A+
v,leak,1 fault

injected at 1800 s with magnitude 3 × 10−3 m2. Note that
from diagnosability analysis, the observed signatures will be
consistent with both the ST vapor leak fault A+

v,leak,1 and the
vaporizer valve clogging fault σ−vap, so the fault identification
stage will have to resolve the ambiguities. Relevant measure-
ments are shown in Fig. 6. The diagnoser, running at a sample
time of once per second, detects the fault at 1805 s due to an
observed decrease in p1. The initial list of consistent faults is
{A+

v,leak,1, A
+
v,leak,2, A

+
l,leak,1, A

+
l,leak,2, σ

−
vap}. At 1807 s, a

decrease in Jtr is detected, followed by an increase in λvap at
1811 s and a decrease in Tv1 at 1815 s. The fault set remains
the same. At 1882 s, a decrease in Vl2 is detected, which
rules out the ET vapor/gas leak fault A+

v,leak,2. At this point,
the output error of all candidates are fairly close, so more
data is needed. Decreases in Tv2 and λvent,2 are detected at
1900 s and 1909 s, respectively. At 2008 s, an increase in
Vl1 is detected, ruling out A+

l,leak,1 and A+
l,leak,2, resulting in

the candidate list {A+
v,leak,1, σ

−
vap}. At this point, the output

error for A+
v,leak,1 is significantly less than that for σ−vap, as

shown in Fig. 7. By 2200 s, the particle filter for A+
v,leak,1

has converged on the correct value of the fault magnitude.
The fault was detected within 5 seconds of its occurrence,
identification confirmed the true fault within 3 minutes, and
its magnitude was correctly estimated within 7 minutes. It
is important to quickly discriminate between a vapor leak in
the ST and a clogging of the vaporizer, because the former
requires an abort, whereas the system can continue fueling in
a safe manner with the latter. As discussed in Section 5, mea-
suring Jvap would allow a faster discrimination of these two
faults.

Diagnosis results over the complete set of faults are shown in
Table 2. Here, ∆td denotes the time to detect the fault, ∆ti
denotes the time to isolate, taken as the last time at which
the candidate set is reduced, Fid denotes the output of the
fault identification module at the end of the scenario, and f∗

denotes the final output of the diagnoser, i.e., the identified
fault with the lowest error. For the fault identification stage,
50 particles were used per particle filter, which seemed to
offer a reasonable trade off between computation time and
identification accuracy.

Overall, the results are fairly good. In all cases, the correct
fault was identified with sufficient accuracy. In some cases,
the effects of the faults are very subtle at first, and it takes
some time before the changes they produce can be distin-
guished from the sensor noise. For the vent valve clogging
fault, the effects are visible only when the valve is open, so
if the fault first appears when the valve is closed, it will take
time for the fault to be detected. The σ−tr fault was detected
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Figure 6. Predicted and observed outputs for the A+
v,leak,1

fault injected at 1800 s with magnitude 3× 10−3 m2.

1800 2000 2200 2400 2600 2800 3000
0

2

4

6

x 10
−3

Â
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Table 2. Diagnosis Results

Fault Magnitude ∆td ∆ti Fid f∗

A+
l,leak,1 1× 10−3 m2 17 113 A+

l,leak,1 = 9.98× 10−4, e = 69.7 A+
l,leak,1 = 9.98× 10−4

A+
v,leak,1 3× 10−3 m2 5 208 A+

v,leak,1 = 3.01× 10−4, e = 1236 A+
v,leak,1 = 3.01× 10−4

σ−vap = 0.35, e = 7.4× 105

Q̇+
leak,1 3× 104 W 111 151 Q̇+

leak,1 = 2.95× 104, e = 8.54 Q̇+
leak,1 = 2.95× 104

A+
l,leak,2 1× 10−3 m2 31 37 A+

v,leak,1 = 1.4× 10−4, e = 5.3× 106 A+
l,leak,2 = 1.06× 10−3

A+
l,leak,1 = 7.05× 10−5, e = 5.3× 106

A+
l,leak,2 = 1.06× 10−3, e = 287

σ−vap = 0.95, e = 5.3× 106

A+
v,leak,2 1× 10−4 m2 36 109 A+

v,leak,1 = 1.3× 10−4, e = 350 A+
v,leak,2 = 1.08× 10−4

A+
v,leak,2 = 1.1× 10−4, e = 8.54

A+
l,leak,1 = 9.0× 10−5, e = 399

A+
l,leak,2 = 4.2× 10−4, e = 1.6× 105

σ−vap = 0.95, e = 350

Q̇+
leak,2 3× 104 W 19 105 Q̇+

leak,1 = 4.1× 103, e = 1251 Q̇+
leak,2 = 3.2× 104

Q̇+
leak,2 = 3.2× 104, e = 17.3

σ−tr 0.5 0 15 σ−tr = 0.50, e = 93.2 σ−tr = 0.50

σ−vap 0.5 7 71 A+
v,leak,1 = 2.16× 10−3, e = 3.38× 105 σ−vap = 0.50

σ−vap = 0.50, e = 9.26

σ−vent,1 0.5 112 124 Q̇+
leak,2 = 3.4× 103, e = 210 σ−vent,1 = 0.52

σ−vent,1 = 0.52, e = 10.1

right away because the change in Jtr was significant. With-
out this measurement, it would take some time for the fault to
be visible in the liquid volumes of the tanks.

For some faults, the operation of the vaporizer masks the
change in ST pressure, therefore, it is important to monitor
the vaporizer valve position in order to obtain a more sensitive
detection. Changes in the vent valve switching frequency are
also easy to observe, but one must wait for the upper pressure
threshold to be reached before it can be determined whether
it closes early or late. We also observed that faults in the ET
have very small effects on measured variables in the ET, re-
sulting in the large size of Fid for some of the ET faults. In
these cases, fault identification becomes even more crucial to
resolving ambiguities.

8. CONCLUSIONS

In this paper, we developed a physics-based model of a pro-
pellant loading system. Using this model, we analyzed the
effects of faults, and applied a model-based diagnosis ap-
proach to fault detection, isolation, and identification. The
detection stage compares observed and model-predicted out-
puts to detect faults. The isolation stage compares model-
predicted fault transients to observed measurement deviations
to quickly isolate faults and reduce the complexity of the
identification stage. The fault identification stage uses par-
ticle filters to estimate the values of fault parameters and re-
solve isolation ambiguities.

The simulation results showed that with such a model-based
diagnosis approach, faults can be quickly detected, isolated,
and identified, and this knowledge can be used to determine

if the system can continue loading safely or if an abort is re-
quired. We considered only single faults here, and in the fu-
ture we will extend the framework to multiple faults. Using
the physics model for prognostics and loading optimization
is also of interest. We would like to validate the approach as
well on historical data, where available. Such data can be dif-
ficult to find, and, further, there is only a limited capability to
inject faults into the system for the purpose of diagnosis al-
gorithm validation, due to the high cost of a fueling operation
and the explicit danger that fault injection presents in such a
system.
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