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Abstract—Model-based prognostics approaches employ do-
main knowledge about a system, its components, and how they
fail through the use of physics-based models. Component wear
is driven by several different degradation phenomena, each
resulting in their own damage progression path, overlapping
to contribute to the overall degradation of the component. We
develop a model-based prognostics methodology using particle
filters, in which the problem of characterizing multiple damage
progression paths is cast as a joint state-parameter estimation
problem. The estimate is represented as a probability distri-
bution, allowing the prediction of end of life and remaining
useful life within a probabilistic framework that allows for un-
certainty management. We also develop a novel variance control
mechanism that maintains an uncertainty bound around the
hidden parameters to limit the amount of estimation uncertainty
and consequently reduce prediction uncertainty. We construct a
detailed physics-based model of a centrifugal pump, to which we
apply our model-based prognostics algorithms. We illustrate the
operation of the prognostic solution with a number of simulation-
based experiments and demonstrate the performance of the
chosen approach when multiple damage mechanisms are active.
Algorithm performance is evaluated using established prognostics
metrics.

I. INTRODUCTION

Model-based prognostics approaches employ domain
knowledge about a system, its components, and how they
fail through the use of physics-based models, derived from
first principles, that capture the underlying physical phenom-
ena [1]–[3]. In contrast, data-driven (model-free) approaches
use large amounts of run-to-failure data to train machine learn-
ing algorithms to make end of life and remaining useful life
predictions [4]. Component wear is driven by several different
degradation phenomena. Each of these degradation phenomena
results in its own damage progression path, which all combine
to contribute to the overall degradation of the component.
Due to manufacturing variances and differences in usage and
environmental conditions, the damage progression rates for the
different damage mechanisms vary among components of the
same type. This poses considerable challenges to data-driven
approaches lacking vast amounts of training data that cover
a significant portion of such cases. In the absence of such
data, model-based approaches are better-suited, since they use
underlying physical models to help estimate the amount of
damage and the rates of damage progression.

Extending previous work in [1], [5], [6], we develop a
model-based prognostics methodology using particle filters, in

which the problem of characterizing multiple damage progres-
sion paths is cast as a joint state-parameter estimation problem.
The estimate is represented as a probability distribution, al-
lowing the prediction of end of life and remaining useful life
within a probabilistic framework that allows for uncertainty
management. To reduce the amount of artificial uncertainty
introduced by particle filter-based parameter estimation, we
introduce a novel variance control mechanism that maintains
an uncertainty bound around an unknown parameter being
estimated.

We demonstrate our prognostics methodology on a cen-
trifugal pump application. Centrifugal pumps are used in a
wide variety of applications, from water supply to spacecraft
fueling systems. Because pumps typically see high usage,
they can particularly benefit from prognostics and health man-
agement solutions to ensure satisfactory system performance,
extended component lifetime, and limited downtime. Model-
based diagnosis has been investigated previously with centrifu-
gal pumps [7]–[9]. However, most prognostics approaches for
pumps have been data-driven, usually based on pump vibration
signals. A principal component analysis method is applied
for condition monitoring of a pump using vibration signals
in [10]. We illustrate our model-based prognostic approach
for centrifugal pumps using a number of simulation-based
experiments when multiple damage mechanisms are active. We
evaluate algorithm performance using established prognostics
metrics.

The paper is organized as follows. Section II formally
defines the prognostics problem and describes the prognostics
architecture. Section III describes the modeling methodology
and develops the centrifugal pump model for prognostics. Sec-
tion IV describes the particle filter-based damage estimation
method and develops the variance control scheme. Section V
discusses the prediction methodology. Section VI provides
results from a number of simulation-based experiments and
evaluates the approach. Section VII concludes the paper.

II. PROGNOSTICS APPROACH

The problem of prognostics is to predict the EOL and/or
the RUL of a component. In this section, we first formally
define the problem of prognostics. We then describe a general
model-based architecture within which a prognostics solution
may be implemented.



Fig. 1. EOL threshold in the damage space.

A. Problem Formulation

In general, a system model may be defined as

ẋ(t) = f(t,x(t),θ(t),u(t),v(t))
y(t) = h(t,x(t),θ(t),u(t),n(t))

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the
parameter vector, u(t) ∈ Rnu is the input vector, v(t) ∈ Rnv

is the process noise vector, f is the state equation, y(t) ∈ Rny

is the output vector, n(t) ∈ Rnn is the measurement noise
vector, and h is the output equation. This form represents a
general nonlinear model with no restrictions on the functional
forms of f or h. Further, the noise terms may be coupled in a
nonlinear way with the states and parameters. The parameters
θ(t) evolve in an unknown way. In practice, they are typically
considered to be constant, but may, in fact, be time-varying.

Our goal is to predict EOL (and/or RUL) at a given
time point tP using the discrete sequence of observations up
to time tP , denoted as y0:tP . EOL is defined as the time
point at which the component no longer meets a functional
requirement (e.g., a pump is overheated). This point is often
linked to a damage threshold, beyond which the component
fails to function properly. In general, we may express this
threshold as a function of the system state and parameters,
TEOL(x(t),θ(t)), which determines whether EOL has been
reached, where

TEOL(x(t),θ(t)) =
{

1, if EOL is reached
0, otherwise.

The threshold is linked to a boundary in the multi-
dimensional damage space. Inside the boundary,
TEOL(x(t),θ(t)) = 0, and outside the boundary,
TEOL(x(t),θ(t)) = 1. Fig. 1 illustrates this concept with a
two-dimensional example, where the damage dimensions are
normalized such that di = 1 corresponds to the maximum
allowable damage for di, given all other dj = 0. Note that,
in general, the different damage mechanisms cannot be
considered independently in defining EOL, because increased
damage along one dimension may either allow a greater
amount of damage or restrict the allowable amount of damage

along another damage dimension. For example, in a valve,
where EOL is defined by valve opening and closing times,
friction damage will cause the valve to open more slowly, but
a weakening of the return spring will allow the valve to open
more quickly. If this were not the case, then the boundary
would form a hypercube in the damage space (denoted by
the dashed lines in the figure). The regions of the boundary
that extend beyond this hypercube are where more damage is
allowed, and the regions that fall within this hypercube are
where damage is restricted further.

Using the threshold function, we can formally define EOL
with

EOL(tP ) , arg min
t≥tP

TEOL(x(t),θ(t)) = 1,

i.e., EOL is the earliest time point at which the damage
threshold is met. RUL may then be defined with

RUL(tP ) , EOL(tP )− tP .

Note that we are interested in the EOL formed by the com-
bined effects of all damage progressions paths. Therefore, they
must be considered simultaneously, rather than independently.

In practice, many sources of uncertainty exist that affect
the prediction. Noise is inherent in the process and the
measurements, represented by the noise terms v(t) and n(t),
respectively. Further, the future inputs of the system, which
affect the evolution of the state, and therefore the progression
of damage, are not always known. Certain input profiles may
also excite some damage mechanisms more than others. Thus,
it is much more useful to compute a probability distribution
of the EOL or RUL, rather than a single prediction point. The
goal, then, is to compute, at time tP , p(EOL(tp)|y0:tP ) or
p(RUL(tP )|y0:tP ).

B. Prognostics Architecture

In our model-based approach, we develop detailed physics-
based models of components and systems that include descrip-
tions of how fault parameters evolve in time. These models de-
pend on unknown and possibly time-varying wear parameters,
θ(t). Therefore, our solution to the prognostics problem takes
the perspective of joint state-parameter estimation. In discrete
time k, we estimate xk and θk, and use these estimates to
predict EOL and RUL at desired time points.

We employ the prognostics architecture in Fig. 2. The
system is provided with inputs uk and provides measured
outputs yk. Prognostics may begin at t = 0, with the damage
estimation module determining estimates of the states and
unknown parameters, represented as a probability distribution
p(xk,θk|y0:k). In parallel, a fault detection, isolation, and
identification (FDII) module may be used to determine which
damage mechanisms are active, represented as a fault set F.
The damage estimation module may then use this to limit
the space of parameters that must be estimated. Alternatively,
prognostics may begin only when diagnostics has completed.
The prediction module uses the joint state-parameter distri-
bution, along with hypothesized future inputs, to compute



Fig. 2. Prognostics architecture.

Fig. 3. Centrifugal pump.

EOL and RUL as probability distributions p(EOLkP |y0:kP )
and p(RULkP |y0:kP ) at given prediction times kP . In this
paper, we focus on the damage estimation and prediction
modules, and assume that the FDII module does not inform the
prognostics, i.e., all possible damage progression paths must
be tracked starting from t = 0.

III. PUMP MODELING

We apply our prognostics approach to a centrifugal pump,
and develop a physics-based model of its nominal and faulty
behavior. Centrifugal pumps are used in a variety of domains
for fluid delivery. A schematic of a typical centrifugal pump
is shown in Fig. 3. Fluid enters the inlet, and the rotation
of the impeller forces fluid through the outlet. The impeller is
driven by an electric motor, typically a three-phase alternating-
current induction motor. The radial and thrust bearings help to
minimize friction along the pump shaft. The bearing housing
contains lubricating oil which bathes the bearings. A seal
prevents fluid flow into the bearing housing. Wear rings
prevent internal pump leakage from the outlet to the inlet side
of the impeller, but a small clearance is typically allowed (a
small amount of internal leakage is normal).

The state x of the pump is given by

x(t) =


ω(t)
Tt(t)
Tr(t)
To(t)

 ,
where ω(t) is the rotational velocity of the pump, Tt(t) is
the thrust bearing temperature, Tr(t) is the radial bearing
temperature, and To(t) is the oil temperature.

The rotational velocity of the pump is described using a
torque balance,

ω̇ =
1
J

(τe(t)− rω(t)− τL(t)) ,

where J is the lumped motor/pump inertia, τe is the electro-
magnetic torque provided by the motor, r is the lumped friction
parameter, and τL is the load torque. In an induction motor,
a voltage is applied to the stationary part, the stator, which
creates a current through the stator coils. With a polyphase
supply, this creates a rotating magnetic field which induces
a current in the rotating part, the rotor, causing it to turn. A
torque is produced on the rotor only when there is a difference
between the synchronous speed of the supply voltage, ωs

and the mechanical rotation, ω. This difference, called slip,
is defined as

s =
ωs − ω
ωs

.

The expression for the torque τe is derived from an equivalent
circuit representation for the three-phase induction motor,
shown in Fig. 4, based on rotor and stator resistances and
inductances, and the slip s [11]:

τe =
npR2

sωs

V 2
rms

(R1 +R2/s)2 + (ωsL1 + ωsL2)2
,

where R1 is the stator resistance, L1 is the stator inductance,
R2 is the rotor resistance, L2 is the rotor inductance, n is
the number of phases (typically 3), and p is the number of
magnetic pole pairs. For a 3600 rpm motor, p = 1. The
dependence of torque on slip creates a feedback loop that
causes the rotor to follow the rotation of the magnetic field.
The rotor speed may be controlled by changing the input
frequency ωs, e.g., through the use of a variable-frequency
drive.

The load torque τL is a polynomial function of the flow rate
through the pump and the impeller rotational velocity [7], [8]:

τL = a0ω
2 + a1ωQ− a2Q

2,

where Q is the flow, and a0, a1, and a2 are coefficients derived
from the pump geometry [8].

The rotation of the impeller creates a pressure difference
from the inlet to the outlet of the pump, which drives the
pump flow, Q. The pump pressure is computed as

pp = Aω2 + b1ωQ− b2Q2,



Fig. 4. Induction motor equivalent circuit.

where A is the impeller area, and b1 and b2 are coefficients
derived from the pump geometry. Flow through the impeller,
Qi, is computed using the pressure differences:

Qi = c
√
|ps + pp − pd|sign(ps + pp − pd),

where c is a flow coefficient, ps is the suction pressure, and
pd is the discharge pressure. The small (normal) leakage flow
from the discharge end to the suction end due to the clearance
between the wear rings and the impeller is described by

Ql = clAl

√
|pd − ps|sign(pd − ps),

where cl is a flow coefficient and Al is the leakage flow
equivalent area. The discharge flow, Q, is then

Q = Qi −Ql.

Pump temperatures are often monitored as indicators of
pump condition. The oil temperature heats up due to the radial
and thrust bearings and cools to the environment:

Ṫo =
1
Jo

(Ho,1(Tt − To) +Ho,2(Tr − To)−Ho,3(To − Ta)),

where Jo is the thermal inertia of the oil, and the Ho,i terms
are heat transfer coefficients. Thrust bearing temperature heats
up due to the friction between the pump shaft and the bearings,
and cools to the oil and the environment:

Ṫt =
1
Jt

(rtω2 −Ht,1(Tt − To)−Ht,2(Tt − Ta)),

where Jt is the thermal inertia of the thrust bearings, rt is
the friction coefficient for the thrust bearings, and the Ht,i

terms are heat transfer coefficients. The radial bearings behave
similarly:

Ṫr =
1
Jr

(rrω2 −Hr,1(Tr − To)−Hr,2(Tr − Ta))

where Jr is the thermal inertia of the radial bearings, rr is the
friction coefficient for the radial bearings, and the Hr,i terms
are heat transfer coefficients. Note that rt ande rr contribute
to the overall friction coefficient r.

The overall input vector u is given by

u(t) =


ps(t)
pd(t)
Ta(t)
V (t)
ωs(t)

 .
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Fig. 5. Nominal pump operation.

The available complete measurement vector y is given by

y(t) =


ω(t)
Q(t)
Tt(t)
Tr(t)
To(t)

 .
Fig. 5 shows nominal pump operation. The input voltage

(and frequency) are varied to control the pump speed. The
electromagnetic torque is produced initially as slip is 1. This
causes a rotation of the motor to match the rotation of
the magnetic field, with a small amount of slip remaining,
depending on how large the load torque is. As the pump
rotates, fluid flow is created. The bearings heat up as the pump
rotates and cool when the pump rotation slows.

A. Damage Modeling

The most significant forms of damage for pumps are im-
peller wear, caused by cavitation and erosion by the flow,
and bearing failure, caused by friction-induced wear of the
bearings. In each case, we map the form of damage to a
particular parameter in the nominal model, and this parameter
becomes a state variable that evolves by a damage progression
function. This function is parameterized by a set of unknown
wear parameters.

Impeller wear is represented as a decrease in impeller area
A [9]. We use the erosive wear equation! [12]. Erosive wear
rate is proportional to fluid velocity times friction force. Fluid
velocity is proportional to fluid volumetric flow rate, and



friction force is proportional to fluid velocity. We lump the
proportionality constants into the wear coefficient wA to obtain

Ȧ = −wAQ
2
i .

A decrease in the impeller area will decrease the pump
pressure reduced, which, in turn, reduces the delivered flow,
and, therefore, pump efficiency. The pump must operate at a
certain minimal efficiency. This requirement defines an EOL
criteria. We define A− as the minimum value of the impeller
area at which this requirement is met, hence, TEOL = 1 if
A(t) < A−.

Bearing wear is captured as an increase in friction. Sliding
and rolling friction generate wear of material which increases
the coefficient of friction [1], [5], [12]:

ṙt(t) = wtrtω
2

ṙr(t) = wrrrω
2,

where wt and wr are the wear coefficients. The slip compensa-
tion provided by the electromagnetic torque generation masks
small changes in friction, so it is only with very large increases
that a change in ω will be observed. These changes can be
observed much more readily through the bearing temperatures.
Limits on the maximum values of these temperatures define
EOL for bearing wear. We define r+t and r+r as the maximum
permissible values of the friction coefficients, before the
temperature limits are exceeded over a typical usage cycle.
So, TEOL = 1 if rt(t) > r+t or rr(t) > r+r . Vibration and
acceleration sensors have also been used in pumps for bearing
monitoring, e.g., in [10], however, when using such methods it
is difficult to map changes in vibration back to changes in the
thrust bearings, radial bearings, or both, while also quantifying
the amount of damage.

IV. DAMAGE ESTIMATION

In model-based prognostics, damage estimation reduces
to joint state-parameter estimation, i.e., computation of
p(xk,θk|y0:k). A general solution to this problem is the
particle filter, which may be directly applied to nonlinear
systems with non-Gaussian noise terms [13], [14]. In particle
filters, the state distribution is approximated by a set of discrete
weighted samples, called particles.

With particle filters, the particle approximation to the state
distribution is given by

{(xi
k,θ

i
k), wi

k}Ni=1,

where N denotes the number of particles, and for particle i,
xi

k denotes the state vector estimate, θi
k denotes the parameter

vector estimate, and wi
k denotes the weight. The posterior

density is approximated by

p(xk,θk|y0:k) ≈
N∑

i=1

wi
kδ(xik,θik)

(dxkdθk),

where δ(xik,θik)
(dxkdθk) denotes the Dirac delta function

located at (xi
k,θ

i
k).

Algorithm 1 SIR Filter
Inputs: {(xik−1,θ

i
k−1), w

i
k−1}Ni=1,uk−1:k,yk

Outputs: {(xik,θik), wik}Ni=1

for i = 1 to N do
θik ∼ p(θk|θik−1)
xik ∼ p(xk|xik−1,θ

i
k−1,uk−1)

wik ← p(yk|xik,θik,uk)
end for

W ←
N∑
i=1

wik

for i = 1 to N do
wik ← wik/W

end for
{(xik,θik), wik}Ni=1 ← Resample({(xik,θik), wik}Ni=1)

We use the sampling importance resampling (SIR) particle
filter, using systematic resampling [15]. The pseudocode for a
single step of the SIR filter is shown as Algorithm 1. Each
particle is propagated forward to time k by first sampling
new parameter values, and then sampling new states using
the model. The particle weight is assigned using yk. The
weights are then normalized, followed by the resampling step
(see [13]).

Here, the parameters θk evolve by some unknown process
that is independent of the state xk. However, we need to
assign some type of evolution to the parameters. The typical
solution is to use a random walk, i.e., for parameter θ, θk =
θk−1 + ξk−1, where ξk−1 is sampled from some distribution
(e.g., zero-mean Gaussian). With this type of evolution, the
particles generated with parameter values closest to the true
values should be assigned higher weight, thus allowing the
particle filter to converge to the true values.

The selected variance of the random walk noise determines
both the rate of this convergence and the estimation perfor-
mance once convergence is achieved. Therefore, it is very
desirable to tune this parameter to obtain the best possible
performance. Too large a shock may converge quickly but
track with too wide a variance, while too small a shock
will take very long to converge, if at all, but once it does,
will track with a very small variance. One approach is to
use kernel shrinkage, in which the random walk noise is
diminished over time [16]. This approach assumes that the
parameter is constant, but in reality, this may not be the case,
so some amount of noise should still be included to account
for unmodeled deviations in the parameter value over time.
In [17], [18], this noise (viewed as a model hyper-parameter)
is tuned using outer correction loops based on prediction error.
In this case, the underlying prognostic model is assumed to
contain only a single fault dimension, therefore it cannot be
applied in our case.

We develop a ξ adaptation method similar to [17], but with
some key distinguishing features. First, we consider a multi-
dimensional damage space, therefore, we must simultaneously
adapt the random walk noise for multiple parameter values.
Second, we cannot use prediction error to drive the adaptation,
because we cannot, in general, map errors in prediction to



Fig. 6. ξ adaptation scheme.

Algorithm 2 ξ Adaptation
Inputs: {(xik,θik), wik}Ni=1, ξk−1

State: a
Outputs: ξk
if k = 0 then

a← 0
end if
for all j ∈ {1, 2, . . . , nθ} do
vj ← RMAD({θik(j)}Ni=1)
if a(j) = 0 and vj < T then

a(j)← 1
end if
if a(j) = 0 then
v∗j ← v∗j0

else
v∗j ← v∗j∞

end if
ξk(j)← ξk−1(j)

(
1 + P

vj−v∗j
v∗j

)
end for

specific wear parameters, since each output is dependent on
multiple damage mechanisms. Instead, we try to control the
variance of the hidden wear parameter estimate to a user-
specified range by modifying the random walk noise variance.
Since the random walk noise is artificial, we should reduce it
as much as possible, because this uncertainty propagates into
the EOL predictions. So, controlling this uncertainty helps to
control the uncertainty of the EOL prediction.

The algorithm for the adaptation of the ξ vector is given
as Algorithm 2, and Fig. 6 shows how it interacts with the
particle filter. We assume that the ξ values are tuned initially
based on the maximum expected wear rates, e.g., if the pump is
expected to fail no earlier than 100 hours, then this corresponds
to particular maximum wear rate values. The initial wear rate
estimate values may start at 0. We use the relative median
absolute deviation (RMAD) as the measure of variance:

RMAD(X) = 100
Mediani (|Xi −Medianj(Xj)|)

Medianj(Xj)
,

where X is a data set and Xi is an element of that set. We
use RMAD because it is statistically robust, and, because it is
a relative measure of spread, it can be treated equally for any
wear parameter value. The adaptation scheme is essentially a
proportional control law, where the error between the actual
RMAD of a parameter θ(j), denoted as vj in the algorithm,
and the desired RMAD value (e.g., 10%), denoted as v∗j in the
algorithm, is normalized by vj . The error is then multiplied by

a factor P (e.g., 1×10−3), and the corresponding variance ξ(j)
is increased or decreased by that percentage. We utilize two
different setpoints. First, we allow for a convergence period,
with setpoint v∗j0 (e.g., 50%). Once the vj reaches T (e.g.,
1.2v∗j0), we mark it using the a(j) flag, and begin to control
it to a new setpoint v∗j∞ (e.g., 10%).

Because there is some inertia to the process of vj changing
in response to a new value of ξ(j), the gain P cannot
be too large, otherwise vj will not converge to the desired
value, instead, it will continually shrink and expand. This
is illustrated in Fig. 7, where the value of P is varied for
estimation of wA for the pump. For P = 1 × 10−2, this
oscillatory behavior occurs because P is too large. In contrast,
if P is too small, such as when P = 1×10−5, vj will converge
to v∗j much more slowly. In our experiments, P = 1 × 10−3

worked well over the entire range of values considered for each
wear parameter. Ideally, the wear parameter variance would
be zero, but the particle filter needs some amount of noise to
accurately track the parameter. So, v∗j cannot be too small,
and we have found that controlling to an RMAD of 10%
introduces an acceptable amount of uncertainty while allowing
for accurate tracking.

V. PREDICTION

Prediction is initiated at a given time kP . Using the cur-
rent joint state-parameter estimate, p(xkP ,θkP |y0:kP ), which
represents the most up-to-date knowledge of the system
at time kP , the goal is to compute p(EOLkP |y0:kP ) and
p(RULkP |y0:kP ). As discussed in Section IV, the particle
filter computes

p(xkP ,θkP |y0:kP ) ≈
N∑

i=1

wi
kP δ(xikP ,θikP

)(dxkP dθkP ).

We can approximate a prediction distribution n steps forward
as [19]

p(xkP+n,θkP+n|y0:kP ) ≈
N∑

i=1

wi
kP δ(xikP+n,θikP+n)(dxkP+ndθkP+n).

So, for a particle i propagated n steps forward without new
data, we may take its weight as wi

kP
. Similarly, we can

approximate the EOL as

p(EOLkP |y0:kP ) ≈
N∑

i=1

wi
kP δEOLikP

(dEOLkP ).

To compute EOL, then, we propagate each particle forward
to its own EOL and use that particle’s weight at kP for the
weight of its EOL prediction.

If an analytic solution exists for the prediction, this may be
directly used to obtain the prediction from the state-parameter
distribution. An analytical solution is rarely available, so the
general approach to solving the prediction problem is through
simulation. Each particle is simulated forward to EOL to
obtain the complete EOL distribution. The pseudocode for the
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Fig. 7. Estimation of wA with different values of P .

prediction procedure is given as Algorithm 3 [1]. Each particle
i is propagated forward until TEOL(xi

k,θ
i
k) evaluates to 1; at

this point EOL has been reached for this particle.
Note that prediction requires hypothesizing future inputs

of the system, ûk, because damage progression is rarely
independent of the system inputs. For the pump, an increased
rotation speed will cause bearing friction to increase at a
faster rate, and will cause an increased pump flow, which,
in turn, will cause impeller wear to increase at a faster rate.
The choice of future expected inputs depends on what kind of
information the user wants, e.g., for a worst-case scenario one
would consider the pump running at its maximum rotation.

Fig. 8 shows example results from the simultaneous predic-
tion of impeller wear and thrust bearing wear for N = 100 (not
all of the trajectories are shown in the lower plot) for a single
future input trajoectory. Initially, the particles have a very
tight distribution of friction and impeller area damage values,
but the distribution of the wear parameters, wA and wrt , is
relatively large. As a result, the individual trajectories for
the different wear parameter values are easily distinguishable
as EOL is approached. Because the the damage threshold

Algorithm 3 EOL Prediction
Inputs: {(xikP ,θ

i
kP

), wikP }
N
i=1

Outputs: {EOLikP , w
i
kP
}Ni=1

for i = 1 to N do
k ← kP
xik ← xikP
θik ← θikP
while TEOL(xik,θ

i
k) = 0 do

Predict ûk
θik+1 ∼ p(θk+1|θik)
xik+1 ∼ p(xk+1|xik,θik, ûk)
k ← k + 1
xik ← xik+1

θik ← θik+1

end while
EOLikP ← k

end for

50 55 60 65 70 75 80
0

0.05

0.1

t (hours)

P
ro

ba
bi

lit
y

EOL Probability Mass Function

1.5
2

2.5
3

50

60

70

80

10

11

12

rt (Nsm)

←− A−

Predicted Trajectories

t (hours)

←− r+
t

A
(m

2
)

Fig. 8. Simultaneous prediction of impeller wear and thrust bearing wear in
the pump.

is multi-dimensional, we show also the projections of the
trajectories onto the damage-time planes. The dotted lines from
the ends of those projections onto the time axis distinguish
the EOLs. For some particles, A− is reached first, while for
others, r+t is reached first. The different EOL values along
with particle weights form an EOL distribution approximated
by the probability density function shown in the upper plot.

VI. RESULTS

In this section, we present simulation-based experiments to
analyze the performance of the prognostics algorithm in the
case of multiple damage progression paths. We first define the
metrics used to evaluate the algorithm performance. We then
provide detailed results for a single experiment to demonstrate



the approach, followed by results summarized over a large
number of experiments.

A. Evaluation Metrics

We evaluate the performance of the wear parameter estima-
tion by quantifying estimation accuracy and spread. Accuracy
is calculated using the percentage root mean square error
(PRMSE), which expresses relative estimation accuracy of w
as a percentage:

PRMSEw = 100

√√√√Meank

[(
ŵk − w∗k
w∗k

)2
]
,

where ŵk denotes the estimated wear parameter value at time
k, w∗k denotes the true wear parameter value at k, and Meank

denotes the mean over all values of k. In computing PRMSE,
we ignore the initial time frame associated with convergence
of the wear parameter estimate.

We calculate the spread using RMAD as defined in Sec-
tion IV. For estimation spread, for time k we, compute for
wear parameter w, RMADw,k using the distribution of wear
parameter values given by the particle set at k as the data
set. We denote the average RMAD over multiple k using
RMADw:

RMADw = Meank(RMADw,k).

In computing estimation spread, we also ignore the initial
time frame associated with convergence of the wear parameter
estimate.

For a particular prediction point kP , we compute measures
of accuracy and spread for the prediction. For accuracy, we
use the relative accuracy (RA) metric [20]:

RAkP = 100

(
1− |RUL

∗
kP
−Meani(RULi

kP
)|

RUL∗kP

)
.

RA is averaged over each prediction point to obtain a single
value that characterizes the overall accuracy, denoted as RA.

We calculate prediction spread using RMAD, which we
denote as RMADRUL for the RUL prediction. To obtain a
single value for overall spread, RSD and RMAD are averaged
over all prediction points starting from the prediction at which
a prognostics horizon (where RA is within a specified bound)
is first reached, denoted using RMADRUL. Prognostics perfor-
mance is summarized using the α-λ metric which requires that
for a given prediction time λ, at least β of the probability mass
of the RUL prediction lies within α of the true value [20].

B. Demonstration of Approach

We first provide an example scenario to illustrate the
approach. Fig. 9 shows the estimation results for the hid-
den wear parameters. Estimation error for the sensor signals
was negligible, so those plots are not shown. In this case,
w∗A = 2 × 10−3, w∗t = 4 × 10−11, and w∗r = 2 × 10−11.
Initially, the estimate bounds are significantly above the true
value, however, as the estimates begin to converge the RMAD
of each is reduced to 50% through the adaptation scheme,
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Fig. 9. Simultaneous estimation of pump wear parameters for N = 500,
T = 60%, v∗0 = 50%, v∗∞ = 10%, and P = 1× 10−3.

and then to 10%. Once convergence has occurred, tracking
proceeds very well. The RMAD is maintained around 10% to
the end of the experiment. The PRMSE of the different wear
parameters are correspondingly low, with PRMSEwA = 4.36
PRMSEwt = 3.60, and PRMSEwr = 5.51. The mean RMADs
of the wear parameters are RMADwA = 8.60, RMADwt =
8.42, and RMADwr = 8.29, which are less than the controlled
value of 10%.

Prediction performance is shown by the α-λ of Fig. 10.
Here, the impeller wear damage dominates the EOL predic-
tion. The accurate and precise wear parameter estimates yield
correspondingly accurate and precise RUL predictions. Here,
α = 0.1 and β = 0.5, so the α-λ test requires that 50%
of the probability mass lies within 10% of the true value
at each prediction point. The test succeeds at all but the
last prediction point, although the probability mass contained
within the α-bounds, 49.6%, is very close to the requirement
of 50%. The average relative accuracy, using the mean of the
RUL distribution, is 97.16%. The average RMAD of the RUL
distribution is 9.14%. Maintaining the variance of the wear
parameter estimates maintains also the RMAD of the RUL
(though not necessarily to the same setpoint).

C. Simulation Results

We performed a number of simulation experiments in which
combinations of wear parameter values were selected ran-
domly within a range, with N = 500. We selected values
in [0.5× 10−3, 4× 10−3] at increments of 0.5× 10−3 for wA,



TABLE I
ESTIMATION AND PREDICTION PERFORMANCE

n PRMSEwA PRMSEwt PRMSEwr RMADwA RMADwt RMADwr RA RMADRUL
1 6.10 7.06 4.58 8.48 8.39 8.29 96.11 10.21

10 4.56 2.70 3.30 8.59 8.80 8.53 96.74 10.62

100 4.50 2.84 2.49 9.08 8.84 8.87 95.77 11.63
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Fig. 10. α-λ performance with α = 0.1 and β = 0.5 for N = 500,
T = 60%, v∗0 = 50%, v∗∞ = 10%, and P = 1× 10−3.

in [0.5×10−11, 7×10−11] at increments of 0.5×10−11 for wt,
and in [0.5× 10−11, 7× 10−11] at increments of 0.5× 10−11

for wr, such that the maximum wear rates corresponded to a
minimum EOL of 20 hours. In order to confirm that the wear
parameter variance could still be maintained with additional
sensor noise, we varied the sensor noise variance by factors
of 1, 10, and 100, and performed 20 experiments for each
case. We considered the case where future input of the pump
is known, and it is always operated at a constant RPM.
This way, no additional uncertainty is introduced and the
remaining uncertainty reduces to that involved in the process
and sensor noise terms and that introduced by the particle
filtering algorithm.

The averaged estimation and prediction performance results
are shown in Table I. In all experiments, we used T = 60%,
v∗0 = 50%, v∗∞ = 10%, and P = 1 × 10−3. In each of the
cases, the PRMSE for the different wear parameter estimates
remained at most around 7% for the normal amount of noise,
and under 5% for increased noise. We attribute the higher
PRMSE of the normal noise cases to a couple outlier scenarios
where convergence was slower, throwing off the estimate early
on. In these cases the median PRMSEs were under 5%. The
PRMSE for wA is on average higher than that for the bearing
wear parameters because the flow measurement Q is relatively
more noisy than the temperature measurements Tt and Tr.

The RMAD of each wear parameter was successfully con-

trolled to 10%, averaging around 8 to 9%. This translated to
good prediction performance, with the RA averaging around
96% and the RMAD of the RUL prediction averaging around
11%. Even as the noise increases, the variance control scheme
was able to maintain the RMAD setpoint, and so the spread
of the RUL prediction increased only slightly as the amount
of sensor noise increased.

Fig. 11 shows the RMAD of the wear parameters as a
function of wear parameter value. Here, it is clear that the
RMAD can be controlled well independently of the wear
parameter value. Performance is similar across different wear
parameters and their values, which then translates to the
similar prediction performance observed across different wear
parameter values in Table I.

VII. CONCLUSIONS

We investigated the issues of multiple damage progression
paths and developed a model-based prognostics methodology
to accommodate them. Damage progression paths are char-
acterized by a fault or damage variable and a set of wear
parameters that describe how they evolve in time. Particle
filters perform joint state-parameter estimation in order to
estimate the health state of the component. The state-parameter
distribution is then extrapolated to the EOL threshold to
compute RUL predictions in the presence of multiple damage
progression paths. A novel variance control mechanism keeps
the uncertainty necessary for proper functioning of the particle
filter in check, in order to maintain the uncertainty of the un-
known wear parameters at a certain level. The framework was
applied to a centrifugal pump, and the results demonstrated
good performance over a range of wear parameter values and
sensor noise levels.

In higher dimensional systems, the particle filter requires
a very large number of particles to track successfully. Using
only 500 particles was sufficient enough for good results here,
but as the number of states or damage mechanisms needed to
be tracked increases, the number of particles must increase
also. For large enough N , the particle filter approach may
not be efficient enough. In future work, we would like to
investigate alternative approaches with reduced computational
burden for high-dimensional state spaces. Also, the model-
based approach presented here could possibly be comple-
mented by data-driven methods that utilize pump vibration or
acceleration sensors, in a hybrid model-based and data-driven
approach.
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