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ABSTRACT
We describe a novel testing technique that uses the information
computed by a symbolic execution of a program unit to guide the
generation of inputs to the system containing the unit, in such a way
that the unit’s, and hence the system’s, coverage is increased. The
symbolic execution is performed at run-time, along program paths
obtained by system level simulations. Data mining techniques are
used to obtain a first approximation of the system-level input con-
straints that influence the satisfaction of the unit-level constraints
computed by the symbolic execution of the unit. Function fitting is
used to incrementally approximate the behavior of the unit’s calling
context. Finally, constraint solving for the unit-level constraints, to-
gether with the learned approximating functions and system-level
constraints, are used to predict the system-level inputs that uncover
new code regions in the unit under analysis. We demonstrate the
effectiveness of our technique on a series of examples from the
NASA domain.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures, perfor-
mance measures
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Theory
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1. INTRODUCTION
Modern software, and in particular flight control software like

that written at NASA, needs to be highly reliable and hence thor-
oughly tested. System-level Monte Carlo simulations are typically
used for testing NASA software. Such system-level “black-box”
simulations have the advantage that they are easy to set-up, since
the user only needs to specify the ranges for the system-level in-
puts, but they provide few guarantees in terms of testing coverage.
Furthermore, system-level simulation may be quite expensive, as
the system under analysis includes not only the flight software, but
also various models of the physical environment and of the space
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vehicle hardware. For example, a run using NASA’s ANTARES
simulator [1] may take hours to complete.

Recently, a new set of techniques [22, 26, 14], based on symbolic
execution [19], have emerged, for generating test cases that achieve
high code coverage. Symbolic execution, and its variant, concolic
execution, are “white-box” as they collect constraints based on the
internal code structure. The collected constraints are solved sys-
tematically to obtain inputs that exercise all the paths through the
code. However, the techniques are expensive, both in terms of pro-
gram paths to explore and in number of constraints to be solved.
Therefore, they can be used effectively for testing individual soft-
ware units (inside a system) but can hardly scale to the whole sys-
tem. Furthermore, it is often the case that the unit-level inputs are
constrained by the unit’s system-level calling context. To obtain
realistic test cases, such constraints need to be encoded explicitly,
which would require non-trivial manual effort from developers.

The goal of the work reported here is to study the synergy be-
tween “black-box” system simulation and “white-box” unit sym-
bolic execution to overcome their weaknesses. We propose an iter-
ative procedure that uses the information computed by a symbolic
execution of a unit to guide, via machine learning techniques, the
generation of new system-level inputs that increase the coverage of
the unit, and hence of the system containing the unit. Thus, our
proposed approach improves upon system-level testing by increas-
ing the obtained coverage with a reduced number of test cases, and
hence with a reduced cost. Furthermore, it enables a modular, more
scalable, unit-level analysis under realistic contexts, since symbolic
execution is performed only along the program paths obtained via
simulation.

Specifically, we use data mining techniques (i.e. treatment learn-
ing [21]) to obtain a first approximation of the system-level in-
put constraints that influence the satisfaction of the unit-level con-
straints computed by the symbolic execution of the unit. Func-
tion fitting is performed to incrementally approximate the behav-
ior of the unit’s calling context. Finally, the unit-level constraints
are solved with off-the shelf constraint solvers and the approxima-
tions together with the system-level constraints are used to guide
the generation of new system-level inputs towards executing un-
covered code regions in the unit under analysis.

We have implemented the techniques for function fitting, treat-
ment learning and symbolic execution in the context of the analy-
sis of C programs that perform complex, non-linear mathematical
computations. We report here on the application of our approach
on several non-trivial examples from the NASA domain.

2. BACKGROUND
In this section we provide background relevant to the rest of the

paper. We introduce a program model followed by concolic exe-



cution, a technique that combines symbolic and concrete program
execution to enhance path coverage. We then introduce a machine
learning technique called treatment learning [21] followed by a
brief description of function fitting. We use these techniques to-
gether with Monte Carlo simulations for system level testing.

2.1 A Program Model
We define a program as the tuple P = (I, A,C), where I is a

set of input parameters, A is a set of assignment statements and C
is a set of conditional statements. We assume that the elements
of I are of basic types, which we define to be a type from the
set {int, short, unsigned int, char, float, double, enum}, with
each element i ∈ I taking values from a domain Di based on its
type. Further, we assume that all assignment and conditional state-
ments refer to elements in I . We define the set of all executions
of the program P as R(P ) ⊆ (A ∪ C)∗; a set of finite sequences
of assignments and conditional statements visited over all possible
values of the parameters in I . An assignment over the parameters
in I , denoted ~I , associates every element i ∈ I to a value in Di.
Given an assignment ~I , we assume that all executions of the pro-
gram visits exactly the same finite sequence of assignments and
conditional statements; the programs are deterministic.

2.2 Concolic Execution
Concolic execution, introduced in [15, 25], is a technique that

combines concrete and symbolic program execution to increase
path coverage. The concrete execution of a program P =

(I, A,C), given an assignment ~I over I , leads to a unique path in
P characterized by the conjunction of the conditional expressions
that evaluated to true. Using symbolic names for the parameters in
I , every conditional expression can be represented symbolically so
that the path taken in P is uniquely characterized by the conjunc-
tion of these symbolic terms; such a conjunction of symbolic terms
is called a Path Constraint (PC). Every PC characterizes a unique
path taken in P . Given a PC, by exhaustively negating terms in the
constraint we can generate new path constraints for paths not taken
during concrete execution of P . When each new path constraint is
submitted to a constraint solver, we have that the constraint is either
satisfiable or unsatisfiable. If the constraint is satisfiable, then by
using the satisfiable assignment over I , returned by the constraint
solver, we can guide concrete program execution to visit the path
characterized by the constraint. If the constraint is unsatisfiable,
then the path cannot be taken by any concrete program execution.
Therefore, given a program P = (I, A,C), concolic execution
attempts to exhaustively cover all paths that can be taken by a pro-
gram, by selecting assignments over the input parameters I . We
use the code fragment in Program 1 to explain the technique.

Consider the function swap in Program 1. It swaps the contents
of the pointer parameters x and y without using temporaries. We
are interested in exploring all possible paths that can be taken by
Program 1 and in particular, we would like to check if the assert
in Line 6 is ever executed; if we assume that the values of x and
y when we execute the function are such that ∗x > ∗y, then the
second condition is always false. To execute the function symbol-
ically, we first associate the parameters ∗x and ∗y with symbolic
names x and y. The PC is initially set to true. When we en-
counter the first conditional statement in Line 1, since (∗x > ∗y),
we conjoin the symbolic expression (x > y) to PC. When we
encounter an assignment, we bind the symbolic expression repre-
senting the right hand side to the symbolic variable on the left hand
side. For instance, after executing Line 2, ∗x is bound to the sym-
bolic expression x + y. At the point at which we test the second
condition in Line 5, it is easy to see that ∗x is bound to the sym-

Program 1 Swap without temporaries
void swap(int* x, int* y)
{

1 if (*x > *y) {
2 *x = *x + *y;
3 *y = *x - *y;
4 *x = *x - *y;
5 if (*x > *y)
6 assert(false); // should never happen

}
}

bolic expression ((x+ y)− ((x+ y)− y)) and ∗y is bound to the
symbolic expression ((x + y) − y). Since the second conditional
statement always evaluates to false, it is easy to see that if we
start with (∗x > ∗y), the value of PC when the function returns
will be true ∧ (x > y) ∧ (y ≤ x). To check if the then branch
in Line 5 is ever taken, we negate the last term in the constraint
to yield true ∧ (x > y) ∧ (y > x), which when submitted to a
constraint solver is unsatisfiable. This implies the assert in Line 6
is never executed. This exhaustive exploration technique has been
used effectively to explore paths in C programs.

2.3 Treatment Learning
Treatment learning [21] is a machine learning technique that

finds the minimal difference between two sets. It is generally used
as a crude optimization technique or as a sensitivity analysis tech-
nique. The goal of treatment learning is to determine a small num-
ber of controllable inputs and ranges that are most likely to lead to
some output. These inputs and their ranges are known as a treat-
ment or a rule. This is in contrast to many other association rule
learners [4, 23, 7] that potentially find more accurate rules at a cost
of greater complexity and time [18, 20].

The treatment learner used here, TAR3, is based on the concepts
of lift and support. The lift of a treatment is a ratio of a scoring
function if the treatment’s rules are applied to the same scoring
function over the entire dataset. Assume, for example, that we have
two classes in a dataset: ‘Ideal’ and ‘Not Ideal,’ and that we con-
sider 10 points out of 100 total data points to be ‘Ideal’. Assume
also that we have one input variable for our dataset that can take
any one of three values: ‘A’, ‘B’, and ‘C’. We give the ‘Not Ideal’
class a value of 2, and the ‘Ideal’ class a value of 4. In general, we
can assign any number of classes to the dataset, where each suc-
cessively better class has a value that is a power of 2 higher than
previous class. The scoring function over all of the data is then:

Score(all data) =
90
100
∗ 2 + 10

100
∗ 4

2 + 4
≈ .367 . (1)

Now assume we have a treatment that restricts our input variable to
the value ‘B’. When we apply this rule, assume there are 32 data
points, and that 6 of these data points are in our ‘Ideal’ class. The
scoring function for this treatment is then:

Score(treatment) =
26
32
∗ 2 + 6

32
∗ 4

2 + 4
≈ .396 . (2)

The lift of the treatment is then:

Lift =
Score(treatment)
Score(all data)

≈ 1.08, (3)

where a value over 1 shows that the treatment makes the ‘Ideal’
outcome in this dataset more likely when the treatment’s rule is
applied.



Note that it is possible for the algorithm to overfit to noise in a
dataset. When overfitting occurs, the lift value will be high but the
treatment rule will not be predictive for future datasets. To pre-
vent overfitting, TAR3 uses a second concept called support. The
support of a treatment is the ratio of the number of data points of
the desired class within the treatment, to the number of data points
of the desired class within the entire dataset. In the current ex-
ample, there are 6 ‘Ideal’ data points within the treatment and 10
‘Ideal’ data points within the data set, giving a support of 6

10
= 0.6.

The treatment learner will reject all treatments below a user-defined
minimum support, which for this paper has been set at 0.2.

Treatment learning has several strengths, two of them are its
speed relative to other optimization methods and its ability to easily
handle relationships involving both continuous and discrete vari-
ables [13]. It also has several weakness. Treatment learning looks
for rules given by the input variables and their ranges, it cannot find
a rule involving a combination of input variables. This limitation
can be overcome for simple relationships by looking at data trans-
formations [9] but these transformations have not been applied in
this paper. Another weakness of treatment learning is its naive dis-
cretization scheme; it generally divides each continuous variable
into n equally-wide buckets, where n is determined by the user.
TAR3 will return a range that is equal to the bucket size. We have
modified the TAR3 algorithm to group buckets together; this al-
lows us to choose fine discretizations across the entire range and
return the union of contiguous buckets as a treatment. Improving
the discretization of treatment learners is a current area of research.

2.4 Function Fitting
Function fitting is used to determine a predictive relationship be-

tween outputs and inputs, given some number of measurements.
We use the technique here to approximate a functional relationship
between the unit-level inputs given to us during concolic execution
and the system-level input variables that we used in order to obtain
those unit-level inputs. In particular, we use a discrete least squares
approximation—this technique minimizes the Euclidean distance
between the output variables given by the approximating function
and the measured output variables. This technique has the advan-
tage of being amenable to well-studied numerical linear algebra
techniques [28, 27] and of being less sensitive to outliers than many
competing techniques [5].

To find a least-squares solution, we assume some number of ba-
sis functions (β), where a basis function is a term in the overall
approximating function. For example, to find a linear fit between
an output y and one input variable x, we need two basis functions
β1 = x and β2 = 1. The least squares solution p(x) = c1β1+c2β2

will be given by the constant values c1 and c2 that minimize the to-
tal Euclidean distance between p(x) and y(x) at the measurements
x. This sum of distances is called the residual. Figure 1 shows
the least squares solution p(x) = c1x

2 + c2x + c3 for the func-
tion y(x) = ex and measurements taken at x = 0 : 0.02 : 10.
To get a better approximation, we can change the basis functions
or decrease the domain on which we are fitting our approximation
function. In general, we will use polynomials as our approximat-
ing functions. If we assume that the relationships we are trying
to approximate are smooth, where by smooth we mean Lipschitz
continuous, then we can find a polynomial approximation that is
arbitrarily close to our desired function by the Weierstrass Approx-
imation Theorem [3]. A function that is not smooth along its entire
domain may be locally smooth, or smooth along some subinterval
of the domain. A polynomial constructed on this subset is known
as a piecewise-polynomial approximation. For a smooth function,
shrinking the subinterval on which the approximation is made al-

Figure 1: A plot showing y = f(x) where f(x) = ex on the
domain 0 to 10, along with its best quadratic least squares approx-
imation p(x). The dots along the curve y = f(x) show where the
measurements were taken, and y = p(x) is the quadratic curve that
minimizes the sum of the distances between f(x) and p(x) at the
measurements x.

Table 1: A table showing the number of measurements needed in
order to fit polynomial approximations of up to cubic order for one
output variable with up to 4 input variables.

Number of Variables
Polynomial Fit 1 2 3 4

linear 2 3 4 5
quadratic 3 6 10 15

cubic 4 10 20 35

lows for arbitrarily close approximations with low-order polynomi-
als [24].

In this work, we fit one output variable i to a subset of the input
variables I . We must solve for every constant c in front of each
term. For every unknown c, we need at least one equation, which
means we need at least one measurement. Having exactly the same
number of measurements as unknown constants c means that we
can find an exact solution. If we have more measurements than un-
knowns, then the problem is overdetermined and the solution will
be the least squares solution. Increasing the number of variables I
increases the number of measurements needed, as does increasing
the order of the approximating polynomial, as shown in Table 1.

3. APPROACH
In this paper we are concerned with increasing path coverage

during system-level testing. While concolic execution has been
shown effective in covering paths in programs, the technique fails
either in the presence of non-linear constraints or when the program
being tested becomes too large. Similarly, Monte Carlo simulations
may not cover interesting corner cases even with very large sets of
random assignments over system inputs. The systems we encounter
are typically large with large non-linear fragments and thus expose
the limitations of both techniques. We therefore find that during
system level testing, many paths leading potentially to unsafe pro-
gram states are left uncovered. The testing challenge is to see if
we can merge the results of learning-based directed heuristic test-
ing with concolic execution to increase system-level path coverage.
Figure 2 captures the systems we are interested in testing.



Figure 2: A system with inputs S and an embedded unit with inputs
I .

In the figure, we show a System Under Test (SUT) that consists
of one or more white-box program units. Each white-box unit is
an interesting code fragment that lends itself to concolic testing;
typically these are code fragments with linear constraints and of
small enough size that they can be completely covered using con-
colic execution. In Figure 2, S is a system with input parameters
I containing a unit U = (i, A,C) with unit-level parameters i. A
subset of the behavior of the system is then some function f of the
system-level parameters I that computes values for the inputs i of
the unit U . Let c ∈ C denote some conditional statement in U that
was not covered during system-level testing. Let Cons(c) denote
the unit-level constraint, over parameters in i, associated with state-
ment c; for example if i = {v, w}, a constraint could be (v > w).
Since concolic execution of U excludes the system that instantiates
U , it generates an over-approximation of the set of paths that can
be covered during system-level testing. By the same token, paths
that are unreachable in U remain unreachable in S; a path unreach-
able in the most liberal environment for U remains unreachable in
the restricted environment provided by S. If Cons(c) is satisfiable,
then a satisfying assignment ~i will enable us to cover statement
c at the unit level. Our testing challenge is then to generate as-
signments over the system-level parameters I , given the satisfying
assignment~i at the unit level, that can cover statement c during sys-
tem level testing. To solve this, we either a.) assume f is invertible
and take I = f(i), for the unknown function f , and use machine
learning techniques to approximate f , or b.) use nonlinear solving
techniques to find I . Once we have an approximation for f , we at-
tempt to cover statement c by composing a system level test vector
using I = f(i), evaluated for the assignment ~i. We describe our
approach in detail in the next section.

4. TESTING ALGORITHMS
As a running example, consider the program in Figure 2. There

are two system level integer valued parameters I1 and I2. Further
since globals may be referred in either System or Unit, we consider
the two integer valued global variables g1 and g2 as parameters to
both System and Unit. The unit level inputs are therefore i1, i2, g1
and g2. While the program is linear, we will use this example to
illustrate key concepts in our approach.

4.1 Constraints Trees
We use concolic execution on the program fragment called Unit.

The set of input parameters is i = {i1, i2, g1, g2}. Since Unit is
small and linear we achieve full path coverage using concolic exe-

Program 2 Prototype Linear Example
int g1 = 1, g2 = 2;
int System(int I1, int I2)
{
if (I1 > 0) g1 = I2; else g1 = -I2;
g2 = I1 + 3;
Unit(I2, I1);

}
int Unit(int i1, int i2)
{
if(i1 > 0) {

i2 = g2;
if(i2 > 0) return 0; else return 1;

} else {
i2 = g1 + 3;
if(i2 > 0) return 2; else return 3;

}
}

cution. Given an assignment over the variables in i, each path taken
in Unit is precisely characterized by the path constraint PC when
Unit returns. All such path constraints, accumulated over all exe-
cutions of Unit, are stored in a tree which we call the Constraints
Tree. The constraints tree reflects the set of all paths that were taken
by all executions of a program unit.

[Parameters]
2 i1
3 g2
4 g1
[Tree]

7 (i1 > 0) (C, 0, 248, 0)
8 (g2 > 0) (C, 0, 250, 0)
9 (g2 <= 0) (S, 0, 250, 1)
10 (i1 <= 0) (C, 0, 248, 1)
11 ((g1 + 3) > 0) (C, 0, 261, 0)
12 ((g1 + 3) <= 0) (S, 0, 261, 1)

Figure 3: The constraints tree after some rounds of initial testing

In Figure 3 we have a constraints tree for Unit after some ini-
tial testing. The parameters section contains the set of parameters
that are involved in the constraints in the tree. The tree section
contains a textual representation of the constraints tree. The num-
ber of constraints in the tree is equal to the number of leaves in
the tree and each constraint is a conjunction of the terms encoun-
tered along the parent hierarchy of each leaf. Therefore, given the
tree in Fig 3, the set of constraints are, (i1 > 0) ∧ (g2 > 0),
(i1 ≤ 0) ∧ (g2 ≤ 0), (i1 ≤ 0) ∧ ((g1 + 3) > 0) and (i1 ≤
0) ∧ ((g1 + 3) ≤ 0). Of these constraints, (i1 > 0) ∧ (g2 > 0)
and (i1 ≤ 0)∧ ((g1+3) > 0) were covered during our initial test-
ing. The text within parentheses after each term is annotated with a
string of the form ([C|U |S|?], IN, IN, IN), where the first character
is C if the term was true and hence the constraint leading up to it
was Covered during a run, U if the constraint leading up to it is
Unsatisfiable, S if the constraint leading up to it is Satisfiable and
? if the constraint leading up to it is unknown. By using models re-
turned by a constraint solver for the two satisfiable constraints, we
obtain assignments over the parameters in i that completely cover
all paths in Unit.

4.2 Algorithm
We consider a system S, with parameters I , and a unit U within

S, with parameters i; we assume U can be analyzed using concolic
execution. Let T be a constraints tree extracted by monitoring U



during system level testing. Consider nodes in T that are satisfiable
at the unit level but not covered by system level testing. Since we
cannot use concolic execution at the system level, our coverage
algorithm attempts to cover all nodes that are satisfiable at the unit
level using a combination of concolic execution, treatment learning
and function fitting. For a node n ∈ T we take Cons(n) as the unit
level constraint that leads to n and that when satisfiable will cover n
at the unit level. In order to present our coverage algorithm, we first
present the following observations that are used by the algorithm.

Consider a path σ = n1, n2, . . . , nk in a constraints tree T such
that all nodes n1, n2, . . . , nk are covered by system level testing.
Since the nodes were covered, there exist vectors at the system and
unit level that are witnesses to cover the nodes in σ. We then have
the following properties of these witnesses, the first of which fol-
lows easily by noting that Cons(nk) ⇒ Cons(nk−1) ⇒ . . . ⇒
Cons(n1), for the constraints of nodes in σ.

OBSERVATION 1. (Monotonicity of Witnesses.) For a con-
straints tree T and a path σ = n1, n2, . . . , nk of nodes in T , such
that n1, n2, . . . , nk are covered with witness sets V1, V2, . . . , Vk

at the system level and v1, v2, . . . , vk at the unit level, we have,
V1 ⊇ V2 ⊇ . . . ⊇ Vk and v1 ⊇ v2 ⊇ . . . ⊇ vk.

OBSERVATION 2. (Sufficiency of Witnesses.) For a con-
straints tree T and a path σ = n1, n2, . . . , nk of nodes in T , such
that n1, n2, . . . , nk are covered with witness sets V1, V2, . . . , Vk

at the system level and v1, v2, . . . , vk at the unit level, let |Vj | ≥
Threshold such that for all i ∈ [1, k] with |Vi| ≥ Threshold, we
have |Vj | ≤ |Vi|. If the relation between the vectors in Vj and vj is
not smooth for function fitting, then it is the case that for all i ≤ j,
the relation between Vi and vi is also not smooth for function fit-
ting.

Consider a constraints tree T and a path σ = n1, n2, . . . , nk in
T , such that all nodes that precede nk are covered during system
level testing, but node nk is not covered. Since we cannot use con-
colic execution on the entire system S, we have that Cons(nk) is
the finest symbolic path constraint, such that when Cons(nk) is
satisfiable, using the assignment that satisfies Cons(nk), we can
cover nk at the unit level. We take Term(nk) as the term corre-
sponding to the node nk and Parent(n) as the parent of a node n
in σ. Given a constraint C, we take Vars(C) as the set of param-
eters that appear in the terms of constraint C. The path constraint
Cons(nk) is then Term(n1)∧Term(n2)∧ . . .∧Term(nk). As
we cannot extend the path constraint to the system level, we would
like to learn the system level behavior as a function f , such that
I = f(Vars(Cons(nk)), via function fitting. Given Cons(nk)
is satisfiable, we can then use f to find a system level vector that
covers nk using the satisfying assignment over Vars(Cons(nk))
as returned by a constraint solver for Cons(nk). But the caveat in
this approach is that function fitting is in general difficult over large
data sets due to both the number of parameters involved and due to
the presence of discontinuities. We tackle this problem as follows:
• We attempt function fitting for a constraint C, starting at

Term(nk), progressively conjoining terms Term(ni) for
i = k − 1, k − 2, . . . , 1, stopping as soon as we succeed
in finding a smooth function. This reduces the number of
unit level parameters we consider and by the sufficiency of
witnesses uses the smallest number of data points needed to
fit a smooth function.
• We reduce the number of system level parameters for func-

tion fitting by using treatment learning. For a constraint C,
we use the data seen during system level testing to find the
subset In ⊆ I of system level parameters that have the high-

est likelihood of affecting the values of the unit level param-
eters in Vars(C).

This reduces the number of parameters for function fitting and
avoids discontinuities by focusing on finding functions that are lo-
cally smooth. For all terms in Cons(nk) that are not considered
in a given iteration of function fitting, i.e., terms in Cons(nk) but
not in C, we use treatment learning to find assignments for sys-
tem level parameters that satisfy those terms. By the monotonicity
of witnesses, we have more data points to cover these terms, thus
improving the accuracy of treatment learning. We now describe
our coverage algorithm, presented in Algorithm 1. The algorithm
works as follows:

1. Lines 2–4. We perform n-factor combinatorial Monte-Carlo
(MC) simulations by picking values over a space sp; a d-
dimensional space for d input parameters constrained by
their data types. For every system level vector a, we mon-
itor the unit and capture the unit level vector b together with
the path constraint for the path taken within the unit. At the
end of this step, the set of path constraints that summarize all
the execution paths that were taken in the unit are available
in a constraints tree T ; the system and unit level vectors are
stored in sets V and v.

2. Lines 7–9. We traverse the nodes in T in breadth first order.
We run the treatment learner for each node n ∈ T that was
covered as long as its sibling is also covered; this is necessary
as treatment learning is efficient at identifying system level
parameters and their ranges, that have the highest likelihood
of reaching n, in the presence of data points that differentiate
n from its sibling. This step gives us a subset In of system
level parameters and their ranges in Rn that have the highest
likelihood of reaching n.

3. Lines 12–15. For each node n ∈ T that is satisfiable, but that
was not covered by our MC simulations, we store the assign-
ment,~i, over i that satisfies the path constraint Cons(n). We
then start with a constraintC set to Term(n) with the expec-
tation that we will progressively strengthen C as we attempt
to find a system level vector to cover n. Since we may need
to fit a function that maps system level inputs to the unit level
inputs, we keep track of the parameters in C in in and the re-
striction of~i to the parameters in in in ~in.

4. Line 16. In this step, we call the treatment learner to find
a reduced set In ⊆ I of system level parameters and their
ranges Rn that most influence the unit level parameters in
and come closest to satisfying the constraint C. At the end
of this step, we have made the determination that the data for
the node n is either smooth or not.

5. Lines 18–24. If the relation between In and in is smooth,
then we first fit a function fn so that In = fn(in). If the
assignment ~In as returned by fn(in) for the assignment ~in
is not contained in the ranges we learned in line 9, then we
cannot hope to cover n using ~In as there exists at least one
term in Cons(n), which is not in C, that cannot be satisfied
by ~In. In this case, we walk up the parent hierarchy of n,
adding more terms to our constraint C and return to line 14
to learn a better treatment. If the values are consistent, we
mark the node as having a smooth function.

6. Lines 26–35. If the relation between In and in is not smooth,
we pick a node p in the parent hierarchy of n such that there
are as many data points that satisfy the corresponding con-
straint Cons(p) as Threshold; here we use sufficiency of
witnesses. If we cannot find Threshold number of data
points we attempt a linear fit using just the data points that
covered the parent node of n. In either case, we do a final



attempt at learning a treatment and fitting a function.
7. Lines 36–38. We iterate over all uncovered nodes n for

which we have a smooth function fn and for each node we
run a system level test by composing a system level vector
as follows: (a) We take In = fn(~in) and (b) for all other
system level parameters j, we pick a value from the ranges
Rj returned by the treatment learner in step 9.

REMARK 1. (Termination.) In the presence of perfect func-
tion fitting, if we have an over-approximation of the subset of sys-
tem level parameters that control the unit level parameters in =
Vars(Cons(n)) for every node n that is satisfiable at the system
level, then the algorithm will eventually terminate with all such
nodes covered. Consider a node n, satisfiable at the system level,
that cannot be covered by considering any constraint weaker than
Cons(n). Since we progressively strengthen the unit level con-
straint from Term(n) to Cons(n), we eventually include all terms
in Cons(n) and all variables, in, in Vars(Cons(n)). If now, we
find a perfect function f , such that In = f(in), then as long as
In includes all the system level parameters that control in, we are
guaranteed to cover n. We use treatment learning to extract the
subset of system level parameters In. This step can be supplanted
with other static analysis techniques, such as [8], that learn an
over-approximation of the set In.

5. EXPERIENCE
In order to scale the unit-level test cases to the system-level test

cases, we try to fit functions between the unit-level inputs i and the
system-level inputs I so that I ≈ f(i). We then use the unit-level
test cases suggested by concolic execution to choose values of I
that would generate the desired i if our fitted functions were accu-
rate. Each attempt to fit the function generates another data pair
between i and I . In general, our fitted functions will become more
accurate, as we collect data, if the actual relationships between i
and I are locally smooth in the region defined by both the collected
values and the desired values.

5.1 A Piecewise Linear Case Study
As our baseline example we use the simple, piecewise linear im-

plementation shown in Program 2. The function Unit is instru-
mented to perform symbolic execution and graphical results are
shown in Figure 4. The relationships between the system-level and
unit-level variables for this academic example can be determined
explicitly, either by hand or automatically using a tool like sym-
bolic execution. All invocations of the Unit function begin at Node
1 in Figure 4. The relationship between the unit and system-level
variables that determines whether the control flow will pass from
Node 1 to Node 2 or to Node 5 is i1 = I2. Therefore, if I2 > 0
the control flow will pass to Node 2 and if I2 ≤ 0 the control flow
will pass to Node 5. For our demonstration purposes, we treat the
relationship between i1 and I2 as unknown, and try to determine it
using heuristic methods.

Our initial trial is conducted by creating the 25 test cases com-
posed of all combinations of I1 and I2 for the integer values
bounded by -2 and 2 (Algorithm 1, Lines 2–4). For this set of
test cases, Node 4 and Node 7 within the unit are uncovered, but
the unit level constraints are given. The constraints tree is shown
in Figure 3. Lines 2–4 show the unit-level parameters that the tree
depends on: g2, g1, and i1. These correspond to the identically-
named variables shown in Program 2. Lines 7–12 show the actual
constraints tree for the unit. Line 12 corresponds to Node 7 in the
constraint graph. The ‘?’ on that line refers to the fact that the con-

Algorithm 1: COVER(S, U)
input : System S with inputs I with d = |I|, unit U with

inputs i

1 T ← {∅} and sp← IRd;
2 Perform n-factor combinatorial MC simulations over

space sp;
3 (V, v)← {(a, b) | a is a system level vector and b is the

corresponding monitored unit level vector};
4 T ← T ∪ (PC from U );
5 repeat
6 T ′ ← T ;

// Do BFS on T
7 for (node n ∈ T using BFS) do
8 if (n and n’s sibling are covered) then
9 (In, Rn, _)←

RunTAR3(I, V, v,Term(n));
10 else
11 if (n is satisfiable but not covered) then
12 ~i← model for Cons(n);
13 C ← Term(n);
14 in ← Vars(C);
15 ~in ← restrict~i to in;
16 (In, Rn, smooth)←

RunTAR3(I, V, v, C);
17 if (smooth) then
18 Build map In = fn(in);
19 if (∃j ∈ I.fn(~in) ∩Rj = {∅}) then
20 if (Parent(n) exists) then
21 C ← C ∧Term(Parent(n));
22 n← Parent(n);
23 go to step 14;

24 Smooth(n)← true;
25 else
26 while (Parent(n) exists) do
27 C ← C ∧ Term(Parent(n));
28 n← Parent(n);
29 (V ′, v′)← {(a, b) ∈ (V, v) | b

satisfies Cons(n)};
30 if (|V ′| ≥ Threshold) then
31 break;

32 (In, Rn, smooth)←
RunTAR3(I, V ′, v′, C);

33 if (smooth) then
34 Build map In = fn(in);
35 Smooth(n)← true;

// Now build new testcases
36 for (nodes n ∈ T with Smooth(n) = true) do
37 Run S with fn(~in) and ∀j ∈ (I \ In) using Rj

from 9;
38 T ′ ← T ′ ∪ (PC from U );

39 T ← T ′;
40 until (T has no unprocessed nodes);



Algorithm 2: RUNTAR3(I, V, V, C)
input : System level parameters I , system level vectors

V , unit level vectors v and a constraint C
output: (I ′, R, smooth) where I ′ ⊆ I , R is a set of

ranges for each parameter in I , smooth is set to
true by examining the dataset

1 smooth← false;
2 sp← constraint space for C;
3 Define penalty function g(x, y) = ||x− y|| for vectors
x ∈ v and y ∈ sp;

4 distance = minx∈v,y∈sp g(x, y);
5 if (distance = 0) then
6 Compose I ′ ⊆ I as the set of system level vectors for

g(x, y) = 0 and R = {∅};
7 else
8 P ← partition of v into classes based on g;
9 Call TAR3 with V and P ;

10 if (lift is within range for a system) then
11 smooth← true;

12 Compose I ′ ⊆ I and R based on the results of running
TAR3;

13 Return (I ′, R, smooth, distance);

straint is not covered. The first set of parentheses on line 12 give
the unit-level term necessary to cover the node.

We begin by doing a breadth-first search of the tree (Algorithm 1,
Lines 7–35). Lines 7 and 10 in Figure 3 are covered sibling nodes
(Algorithm 1, Line 8) and TAR3 returns the contrast rule set that
will increase the likelihood that we pass through Node 2. TAR3
automatically uncovers the system level constraint 0.5 ≤ I2 ≤ 2,
as shown by the bars in Figure 5 outlining the highest-scoring treat-
ment. (Note that TAR3 can only learn a rule for data that is seen, so
there will always be a lower and upper bound on every constraint.)
The boxed data in the plot is the ‘desired’ set in the two contrasting
sets, and is the data that passed through Node 2. Similarly, TAR3
discovered the relationship (−2 ≤ I2 ≤ 0.5) necessary to guide
execution through Node 5. Note that we do not expect TAR3 to ex-
actly capture the location of the discontinuity; the system constraint
boundary between Node 2 and Node 5 will depend on TAR3’s dis-
cretization location. Node 3 and Node 6 are covered nodes, but
we cannot use TAR3 to learn the necessary conditions for passing
through them, since there is no contrasting data to learn from.

In order to build a relationship between uncovered nodes and
system-level inputs we begin by finding the Euclidean distance be-
tween each test case and the constraint boundary for each uncov-
ered node (Algorithm 2, Line 3). It is possible that the constraint
at the uncovered node is satisfied somewhere in the data set, but
that the parent constraints are unsatisfied; in this case the constraint
distance is zero. We build two contrasting data sets by looking for
the 20% of data that is closest to the constraint boundary. For Node
7, the top-scoring treatment results are shown in Figure 6. Here we
see that the desired data set consisted of five data points spread dis-
continuously across the I1 and I2 space, and the top-scoring treat-
ment made a prediction involving only three of the points. This is
likely to happen when the entire data set is used and the relation-
ship between the unit level variables of interest and the system level
variables are non-smooth; in this case, the functional relationship
between g1 and I2 has a discontinuity at I1 = 0. For Node 4,
TAR3 suggests that the value of g2 depends only on I1, and that
the relationship between the two is smooth.

Figure 4: The complete control flow tree for the prototype example
Unit function given in Figure 3 after the initial testing. Covered
nodes are represented by solid circles and uncovered nodes have
dotted outlines.

We will now try to build approximations between the unit level
variables in the uncovered node constraints and the system-level
variables (Algorithm 1, Lines 18–24). We suspect that the relation-
ship between g1, I1, and I2 is non-smooth. We hope to build a
relationship that is locally smooth near the constraint boundary of
interest by restricting the data. As a heuristic, we choose to ex-
amine only the data that passed through some subset of Node 7’s
ancestor nodes–we must have enough data to build a function, but
we are more likely to find a smooth relationship as we restrict the
data. For this case we examined the 15 tests that passed through
Node 5 and chose as one of our two contrast sets the 3 tests that
come closest to the constraint boundary. TAR3’s top-scoring result
suggested that g1 depends on both I1 and I2 and that the rela-
tionship for this restricted set is now smooth. We now function fit
between g1, I1, and I2. In this case, the linear least squares regres-
sion analysis has an error less than 10−15 and predicts g1 = I2,
which for this simple test case is the exact solution. Cubic function
fitting for the other uncovered node gives us g2 = I1 + 3 with an
error less than 10−14.

For experimentation purposes, using all 15 of the test runs that
passed through Node 5 results in an incorrect fit of g1 = −0.6 ∗
I1−0.2∗I2; the discontinuity creates errors in the function fitting.
Had we used this incorrect fit in order to generate new system level
test cases we would have been unlikely to uncover Node 7. How-
ever, we would have generated more data that would have passed
through Node 5, and this would have improved our prediction ca-
pability during the next iteration.

We now use our approximations between i and I to build new
test cases (Algorithm 1, Lines 36–38). For these simple test cases,
the function fitting was exact and allowed us to quickly find the cor-
rect constraints for I1 and I2. We note that we must pass through
the ancestor nodes and hence combine the system level parameter
ranges we found previously, (Algorithm 1, Line 9), with values de-
termined through function fitting to pass through both uncovered
nodes on the next iteration.

5.2 A Piecewise Quadratic Case Study
The linear test case detailed in 5.1 has the advantage of being

easily understood, but does not show how we can deal with com-
plex, non-linear constraints, which are known to be problematic for
symbolic execution approaches. Our technique is more likely to be
of benefit when the relationships between the system and the mon-



Figure 5: The bars show the system-level constraints returned by
TAR3 that we should use to guide execution through Node 2 within
the unit. All data points are shown with an asterisk. The data that
passed through Node 2 is boxed. In this case, it is possible to find a
contiguous region for all of the boxed data, as shown by the dotted
oval. If this had been a treatment for an uncovered node in the con-
straints tree, a region like this would suggest that the relationship
between the unit level input i and the system level inputs I returned
by the treatment was smooth.

Program 3 The System Function in the Prototype Quadratic Ex-
ample. The Unit Function is the same as in Program 2, except that
the Unit Function for this case expects inputs of type double.
double g1=1.0, g2=2.0;
int System(double I1, double I2)
{

if (I1 > 0) g1 = I2; else g1 = -I2;
g2 = I1*I2+3.0*I1*I1+I2*I2;
Unit(I2, I1);

}

itored unit are complicated and/or nonlinear. As a simple example
of how our technique could be used for nonlinear constraints, we
propose the academic example shown in Program 3. The only dif-
ferences between Program 3 and Program 2 are the use of doubles
instead of ints as a variable type and the nonlinear formula for the
assignment of g2 before Unit is called in the system. For this case
study, the constraints tree is identical to the one given in Figure 3
and Figure 4. Our breadth-first search over the covered nodes gives
us identical results to those found in 4.3.1.

We will now begin to build relationships between uncovered
nodes and system-level inputs. The results from TAR3 for Node
4 are shown in Figure 7. The boxed data is contiguous, suggesting
that there may be a smooth relationship between the variables. The
fact that it is not possible to draw a box around only the desired
contrast set suggests that the relationship between g2, I1 , and I2
is likely to be nonlinear.

We now function fit for the uncovered nodes. For Node 4, the
quadratic least squares fit gives a residual error of less than 10−15

for g2 = 3.0 ∗ I12 + I22 + I1 ∗ I2, which is the exact solution.
The next step is to conjoin our constraints in order to find new test
cases. We use the quadratic formula to solve the conjoined con-
straints for Node 4 and discover that there are no real roots that
satisfy the constraint for g2 given the approximating function and
the constraint on the ancestor nodes (Algorithm 1, Line 19). We

Figure 6: The highest scoring treatment for Node 7. All data points
are shown with an asterisk, and there are boxes around the data
closest to the constraint boundary. The treatment suggests that the
value of g1 depends upon both I1 and I2. It is not possible to find
a contiguous region that contains all of the boxed data, suggesting
that the relationship between the value of g1 and the system level
variables is not smooth.

therefore perform function fitting for the ancestor node (Node 2) in
order to attempt to resolve our conflicting constraints. The result
from the function fitting with a residual error on the order of 10−15

is that i1 = I2, the exact result. By simple substitution the cor-
rect system-level constraint is I2 > 0. A close examination of this
final uncovered node reveals that the two system-level constraints
are unsatisfiable; there is no system-level test that will exercise the
unit-level constraint.

5.3 A Physical Case Study
We now examine a case study from the aerodynamics domain.

We assume we are looking at code for a new, supersonic aircraft
that is designed to fly between 30,000 and 80,000 feet at Mach
numbers between 0.8 and 3.0. The Mach number Ma is a ratio of
the airspeed of the plane to the speed of sound, and is calculated by
measuring the ratio of the measured air pressure Pt to the static air
pressure Ps. Values ofMa below 1 mean that the plane is traveling
subsonically, while values above 1 mean that the plane is traveling
supersonically. This aircraft has a novel control system, and the
code uses a function to predict the drag coefficient Cd so that it can
update several coefficients in the yaw control law. For our system,
we implemented the part of the code that takes in three arguments
from sensors: Pt, Ps, and the altitude Alt. It uses this sensed data
to calculateMa, compressible and incompressible skin friction co-
efficients Cf and Cfb, and the corresponding terminal skin friction
coefficients CfTerm and CfbTerm. For subsonic compressible
flow, Ma is given by the following equation [2], where we have
simplified the expression using the constants for air:

Ma =

vuut5
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#
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For supersonic flow, Ma is found implicitly using the Rayleigh
Pitot tube formula, shown here as Equation 5.
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Figure 7: The top-scoring treatment for Node 4. All data points are
shown with a asterisk. The data closest to the constraint boundary is
boxed. In this case, the boxed data is contiguous and the treatment
implicates both system level variables.

This equation would normally be implemented in code as a look-
up table. For our system, we solve the equation using Newton’s
Method and have checked the results against the table printed in [2].
The skin friction coefficients Cf , Cfb, CfTerm and CfbTerm
are complicated nonlinear functions of Ma and Alt, and are found
using equations from the USAF Stability and Control DATCOM
manual [12]

The unit calculates Cd based on the skin friction and the base
drag, again based on basic DATCOM equations. The relationships
between Cd and the unit inputs are nonlinear, but the constraints
that determine what that relationship is are linear and trivial to solve
for using concolic execution. We begin our testing of the system by
looking at nominal ranges for the aircraft: Alt between 30 and 80
thousand feet, Pt between 0.0145 and 25, and Ps between 0.00971
and 3.5. Performing 2-factor combinatorial testing [17] with 5 bins
for each of these variables gives us 9 initial test cases. Two of these
cases have Pt < Ps, a physical impossibility, so those two test
cases are thrown out. The constraints tree for our 7 initial test cases
are shown in Figure 8; these tests cover only two paths through the
tree. There are uncovered constraints for Cf less than CfTerm
and for Mach numbers in the subsonic and transonic regime where
Ma ≤ 1.04.

We do a breadth-first search of the constraints tree. For the un-
covered nodes at line 22 and line 18 of Figure 8, TAR3 suggests
that there may be a smooth relationship between the associated
unit-level variables and the system-level variables Ps and Alt. For
the constraints on line 17 and lines 19-21 of Figure 8, TAR3 sug-
gests that there may be a smooth relationship between Ma and the
system-level variables Pt and Ps. Function-fitting for the uncov-
ered nodes gives that the best approximations are quadratic rela-
tionships such that Ma = f(Pt, Ps) and the other unit-level vari-
ables all are approximated as f(Ps, Alt).

We now solve to find test cases for each uncovered node in the
constraints tree. For each of the uncovered nodes in Figure 8 we
end up with undetermined systems (more unknowns than equa-
tions). In addition, this is a complicated set of equations involv-
ing two nonlinear equalities and an inequality, so we attempt to
solve the set of equations graphically. We create a large number
of test cases and evaluate them, the approximations are no greater
than quadratic, so the solution of 235,000 tests (including graph-

[Parameters]
2 CfbTerm
3 Cf
4 Ma
5 CfTerm
6 Cfb

[Tree]
9 (Cf > CfTerm) (C, ...)
10 (Ma >= (780000 / 1000000)) (C, ...)
11 (Ma > (1040000 / 1000000)) (C, ...)
12 (Ma >= (600000 / 1000000)) (C, ...)
13 (Cfb > CfbTerm) (C, ...)
14 (Ma >= 1) (C, ...)
15 (Ma <= (2000000 / 1000000)) (C, ...)
16 (Ma > (2000000 / 1000000)) (C, ...)
17 (Ma < 1) (?, ...)
18 (Cfb <= CfbTerm) (?, ...)
19 (Ma < (600000 / 1000000)) (?, ...)
20 (Ma <= (1040000 / 1000000)) (?, ...)
21 (Ma < (780000 / 1000000)) (?, ...)
22 (Cf <= CfTerm) (?, ...)

Figure 8: The constraints tree after seven rounds of initial testing

ing) takes 1.37 seconds in MATLAB on a laptop computer. We
repeat this process for every uncovered node; when we are unable
to find a solution using the quadratic approximations, we use the
linear approximations. We arbitrarily choose potential test cases
and add them to our suite. The approximated relationship between
CfTerm and the system-level variables suggests that we expand
the range of Pt to a max of 50. For this first test case expan-
sion we create 17 new tests, and the constraints tree now has 21
covered nodes and 12 uncovered nodes with a total 5 paths now
taken through the tree. When our new constraints tree is compared
against the constraints tree in Figure 8, we see that the constraints
at lines 18, 20 and 22 are now covered. Only 5 of the uncovered
nodes in the new constraints tree are satisfiable. As a comparison, a
test suite generated using 25 n-factor combinatorial tests alone has
16 covered nodes and 10 uncovered nodes.

6. RELATED WORK
The work related to automated testing is vast and we only high-

light here the work that is most related to our approach.
There are many approaches that use symbolic or concolic execu-

tion [29, 14, 26, 6] for automated test case generation. However,
all these approaches apply at the unit-level and they do not consider
integration with system-level testing, as we do here.

Our work is related to other hybrid approaches such as [30, 16].
These works combine abstraction techniques and theorem proving
for program analysis and testing but do not address the problem of
constraining the system-level inputs for a more focused unit analy-
sis.

The work on carving differential unit tests from system tests [10]
extracts the components that influence the execution of a unit and
re-assembles them so that the unit can be exercised as it was by
the system test. Differential unit tests are used to detect differences
between multiple unit implementations and they can not be used to
guide the system-level inputs to increase coverage .

We use machine learning techniques to determine constraints on
system-level inputs that lead to coverage of various regions in the
code under analysis. For the case studies presented here we used
a simple analysis to determine correlations between system level
inputs in terms of range restriction on unit inputs. However other
learning techniques, such as the Daikon invariant detector tool [11],
can be used for the same purpose.

Finally, in previous work [22] we described a symbolic execu-



tion framework that used system level simulations to improve the
precision of symbolic execution at the unit level. This was achieved
in two ways: first, the framework allows symbolic execution to be
started at any point in the program; thus, the concrete execution
of the system can be effectively used to set up the environment
for the symbolic execution of a unit in the system. However, that
work could not be used for guiding the generation of new system
level inputs to increase the coverage of the unit – which is our con-
tribution here. Furthermore, we describe in [22] how to use the
data collected during system level runs to mine constraints on the
unit-level inputs (using treatment learning or Daikon, for example).
While this approach would allow more focused unit-level testing,
it suffers from the drawback that the mined constraints can be un-
realistically restrictive, and thus prevent us to achieve coverage of
corner cases in the unit.

7. CONCLUSION
We described a novel testing technique that combines the

strengths of black-box system simulation with white-box unit sym-
bolic execution to overcome their weaknesses. The technique uses
machine learning, function fitting and constraint solving to itera-
tively guide the generation of system-level inputs to increase the
testing coverage. We have applied the techniques for testing com-
plex code from the aerospace domain. In the future, we plan to
study alternative approaches to the machine learning technique de-
scribed here (e.g. Daikon) and to perform a tighter integration of
the black-box and white-box techniques. We also plan to perform
a thorough evaluation of the technique to determine its utility in
practice.
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